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Abstract 
 

While it is difficult to define precisely what makes a “good” rhythm good, it is not hard to 
specify properties that contribute to a rhythm’s goodness. One such property is that the mirror-
symmetric transformation of the rhythm about some axis of the rhythm’s cycle, represented as 
a circle, be the same as its complementary rhythm. Rhythms that have this property are called 
interlocking reflection rhythms. Another family of rhythms termed toggle rhythms are those 
cyclic rhythms that when played using the alternating-hands method, have their onsets in one 
cycle divided into two consecutive sets such that first set is played consecutively with one 
hand, and the second set is played consecutively with the other hand. Several simple rhythm-
generation methods that yield good rhythm timelines with these properties are presented and 
illustrated with examples. 

 
1. Introduction 
 
It is well known that music and mathematics complement each other in wonderful and useful ways 
[1]-[4], [7]-[10], [25]. For example, it has recently been shown that a simple algorithm dating back 
to Euclid of Alexandria may be used to generate most of the traditional rhythms used in music 
throughout the world [2]. The algorithm in question is one of the oldest and well-known 
algorithms, described in Propositions 1 and 2 of Book VII of The Elements, and today referred to 
as the Euclidean algorithm. This algorithm computes the greatest common divisor of two given 
natural numbers. The computer scientist Donald Knuth calls it the “granddaddy of all algorithms, 
because it is the oldest nontrivial algorithm that has survived to the present day.” The idea is 
captivatingly simple. Repeatedly replace the larger of the two numbers by their difference until 
both are equal. This last number is then the greatest common divisor. In [1] it is shown how the 
execution of the algorithm, or more precisely the algorithm’s history during execution, generates 
the rhythms. This algorithm then implicitly captures a fragment of the notion of what makes a 
“good” rhythm good. Characterizing such rhythms is the ultimate, but not easily attainable, goal of 
this research. While it is difficult to define precisely the necessary and sufficient conditions that 
make a “good” rhythm good, it is not too hard to list a variety of properties that contribute to a 
rhythm’s goodness. One such property is that the mirror-symmetric transformation of a rhythm 
about some axis of the rhythm cycle, represented as a circle, be equal to its complementary 
rhythm. Rhythms that have this property will be called interlocking reflection rhythms. Another 
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family of rhythms termed toggle rhythms consists of those cyclic rhythms that when played using 
the alternating-hands method, have their onsets in one cycle divided into two consecutive sets 
such that first set is played consecutively with one hand, and subsequently the second set is played 
consecutively with the other hand. Thus it is as if a toggle switch at one point during the execution 
of the rhythm simultaneously turns off the right hand and turns on the left hand, and at a later 
point switches the roles of the hands back to their starting positions. Of course any rhythm 
whatsoever has the toggle property if we choose to ignore the fact that toggling, by definition, may 
be done only twice. Strictly speaking the rhythms defined here should be called two-state-left-
right toggle rhythms, or linearly separable toggle rhythms, as will become clear in the following. 
However, for convenience the shorter name toggle rhythms will be employed in this work. 
 
This paper describes several simple rhythm-generation methods that yield rhythms with the 
properties mentioned in the preceding. These properties are closely related to the more general 
notion of syncopation. Syncopation leaves out stresses or adds stresses where they are unexpected. 
Much has been written about how adding syncopation to a perfectly regular rhythm may convert a 
monotonous dull rhythm into a “good” one. According to George Coleman Gow, “Syncopation is 
the piquant of rhythm.” [13, p. 649]. Gow also quotes C. Abdy Williams on p. 648: 
 

“Though a hard and fast line cannot be drawn, it may be said in a general way that when 
rhythms begin to omit any of their accents they begin to appeal to the imagination and the 
intellect more than to the physical faculties. For it requires a higher degree of culture to 
recognize a thing that is only hinted at than a thing that is plainly set before one.” 

 
The methods considered here are radically different from those used for generating rhythms 
automatically, described in the artificial intelligence and music information retrieval literatures. 
These latter approaches are inspired either by models of biological processes such as neural 
networks that learn from experience, by genetic programming that models the evolutionary laws 
of natural selection, or by statistical models such as Markov processes [26]. Many of these 
techniques are based on guided random search of the space of all possible rhythms [11], [12], [14]. 
Typically genetic methods first define a measure of rhythmic “goodness” generally termed a 
fitness function, and then use simple rules for transforming a given collection of rhythms in such a 
way as to improve their fitness. These rules are usually stated in general terms as reproduction, 
crossover, and mutation, applied in this order. Reproduction selects a pair of rhythms, say A and 
B, at random from the collection. Crossover involves creating new offspring rhythms of A and B 
by swapping some elements from A to B and vice-versa. Mutation involves changing one of the 
elements of a new offspring of A or B at random, and with low probability. Finally, the algorithm 
stops (or is stopped) when the fitness function has (or seems to have) reached a maximum value 
[11].  
 
Gibson and Byrne [12] incorporate a neural network in their genetic approach. First they use 
humans to label a collection of training-data rhythms as either “good” or “bad.” Then they use the 
trained neural network to classify rhythms generated by the genetic algorithm as either “good” or 
“bad,” thus serving as the fitness function. Damon Horowitz [14] describes an interactive 
approach that allows the user to “simply execute fitness functions (that is, to choose which 
rhythms or features of rhythms the user likes) without necessarily understanding the details or 
parameters of these functions.” This “ostrich head-in-the-sand” approach may be attractive and 
useful to those composers and other users that are satisfied with only the end product. By contrast, 
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the methods proposed here for generating “good” rhythms are structural in nature, and guided by 
musicological and empirical knowledge of rhythms that humanity has come to cherish over 
thousands, if not millions, of years of evolution. The crux in these methods is precisely the 
understanding of the details, and the elimination of the parameters in neural networks that must be 
tweaked in order to obtain good rhythms. These methods are closer in spirit to computational 
music theory, and represent an attempt to understand the temporal structures that make a rhythm 
“good.” Furthermore, if desired the properties discussed here may also be incorporated into fitness 
functions for use in the standard genetic algorithms. 
 
The music theory literature contains some work on the related topic of rhythmic consonance and 
dissonance [15]. However, these notions refer more to the description of a pair of rhythms rather 
than to a property of a single rhythm, and there is no attempt to associate consonant with “good” 
or dissonant with “bad.” Two rhythms that differ considerably in their beat structure, such as the 
two-against-three, or three-against-four beats are considered dissonant [15], yet in the cultural 
context of West and Central Africa, rhythms that combine all three rhythms are part of the 
standard repertoire of polyrhythmic rhythms [18]. A rhythm that sounds dissonant, complex, or 
new to one culture may be the order of the day to another, as was recounted more than one 
hundred years ago, using some language that is now considered culturally offensive, by Thomas F. 
Dunhill following one of his travels in the South Pacific [16, p. 4]. 
 

"One of the most interesting of my own-experiences during one rather extensive travels of two 
years ago, was a brief visit to one of the islands of Samoa, in the Pacific, where I had the great 
pleasure of hearing a really characteristic song sung by the natives. It consisted of a short 
phrase of two bars repeated many times over with growing intensity. The fragment was 
peculiar and fascinating, and was very decidedly cast in a rhythm of five beats to the bar. This 
circumstance struck me very much, because, when a certain celebrated modern composer 
wrote the whole of a symphonic movement in that time it was generally regarded, in spite of 
some established precedence, as a new evidence of some fresh possibilities in rhythm. Yet 
here were the far-away, primitive Pacific islanders singing a tune in a similar measure, 
naturally, persistently, and with no evident consciousness of its unusual pulsation."  

 
The notion of what is a “good” rhythm may also change with time and the whims of fashion. 
Quintuple rhythms (those that contain five beats to the bar, in Dunhill’s terminology), were used 
extensively by the ancient Greeks, especially in religious ceremonies, and in tragic plays as a 
means of expressing intense emotions. With the advent of Christianity they almost disappeared in 
Europe for two thousand years, before experiencing their renaissance at the turn of the 20th 
Century [17]. On the other hand, in folk music from many cultures quintuple rhythms remained a 
stable part of its repertoire [38]. 
 
Some attempts have been made to explain the psychological efficacy of certain well-known good 
rhythms such as the clave son using psychological principles of Gestalt perception, and then 
translating these principles to geometric properties [19], [21]. While it is no clear how to convert 
these principles to algorithms that will generate other “good” rhythms, the work in [19] comes 
closest to that discussed here. 
 
The structural approach to characterizing “good” rhythms, that is the main focus of this paper 
forms part of a broader and much more ambitious goal to identify universal “good” rhythms, that 
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is, rhythms that are considered “good” across all cultures and all time periods, and to explain their 
saliency, if possible using the language of mathematics. 
 
Throughout this paper rhythms are represented either as periodic binary sequences using box 
notation, or by mapping the period onto a circle of time [4], [43]. For example, Figure 1 (a) shows 
a sequence of 16 boxes all of which are filled with a black disk. Each box represents an equal unit 
of time, and if it is filled it is sounded, otherwise it is silent. In Figure 1 (a) all the boxes are filled, 
thus creating a rather humdrum uniform stream of sounds. In the words of Roe [27] “A sound 
uniformly continued, or uniformly repeated, is uninteresting.” Indeed, most musicologists would 
not even consider such a stream as a bona fide rhythm. Simha Arom calls such a pattern a metric 
continuum [18]. Figure 2 (right) shows the rhythm of Figure 1 (d) represented as a clock diagram. 
 
By this definition the entire family of rhythms is astronomically large. For example, even the 
rhythms consisting of only 16 boxes, 5 of which are filled, number 4,368. Of course many of these 
rhythms would not be considered “good.” Here the focus is on a much smaller subset of rhythms 
called timelines [20], [22], [23], [24]. For Kofi Agawu [20, p. 1] a timeline “also called bell 
pattern, bell rhythm, guideline, time keeper, topos, and phrasing referent—is a distinctly shaped 
and often memorable rhythmic figure of modest duration that is played as an ostinato throughout a 
given dance composition.” Agawu provides an in-depth analysis of timelines in both, cultural and 
structural contexts, focusing primarily on a timeline often called the “standard” pattern [20]. He 
also provides a top-down, hierarchical, four-step procedure for the generation of salient timelines, 
which reflects the African musical mind. The algorithms presented here, while purely 
mathematical in their execution, and thus quite different in process from Agawu’s cultural-
practice based approach, nevertheless yield timelines that may be readily obtained using his 4-step 
procedure, and thus both approaches are similar with respect to the end product. 
 
2. Reflection Rhythms 
 
One property of “good” rhythms in general, and timelines in particular, is that the mirror 
symmetry of a rhythm about some axis is equal to its complementary rhythm. Rhythms that have 
this property are called interlocking reflection rhythms. This section presents via examples, two 
simple rhythm generation methods that yield rhythms with this property: the paradiddle algorithm 
and the alternating-hands algorithm. 
 
Paradiddle Method: To illustrate this method consider a time span of 16 pulses, and refer to 
Figure 1. First, insert an onset at every pulse in the cycle of the rhythm, as in (a), where the label 
‘Right’ indicates the rhythm is played with the right hand, and the label ‘period’ indicates the 
length of the rhythm that repeats itself. If we denote by the symbols R and L the striking of the 
drum with the right and left hand respectively, then this rhythm repeats the R symbol 16 times. 
Next, transform this rhythm into a rhythm for two hands by alternating the onsets between the left 
and right hands, preferably each hand playing on a different drum, as in (b). The idea here is that 
the right and left hands should produce different sounds either in pitch or timbre so that the 
listener may perceive both the right-hand and left-hand rhythms simultaneously. Note that this 
operation doubles the length of the period of the rhythms played by each hand. The rhythm thus 
repeats the RL pattern 8 times. The next step in the process involves repeating the symbol R after 
one instance of the RLR pattern to obtain the string RLRR, as in (c). Note that this operation 
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doubles the period again to a length of 4. The final step involves alternating between the RLRR 
pattern and its mirror image LRLL, as in (d), to obtain the pattern RLRRLRLL. This operation 
again doubles the period of the rhythm making it have a time-span of 8 pulses. The rhythm heard 
on the right-hand drum has interval structure [2‐1‐2‐3] shown in polygon notation in Figure 2 
(right), with its mirror image complementary rhythm played on the left hand drum (left). Note that 
the rhythm [2‐1‐2‐3] is a deep rhythm [8], has the rhythmic oddity property [39], and when played 
backwards becomes [3‐2‐1‐2], which is the hand-clapping pattern in Elvis Presley’s Hound Dog. 
The complete rhythm played with both hands is known as the single paradiddle rhythm in 
rudimentary snare drum technique [5], [6]. A rhythm is deep if each duration realized by a pair of 
onsets occurs a unique number of times, and a rhythm has the rhythmic oddity property if no pair 
of its onsets partitions the rhythm into two half-cycles of equal duration. 
 

 
 

Fig. 1: Constructing a single paradiddle reflection rhythm. 

 

 

Figure 2: The left and right hand patterns of the single paradiddle drum rhythm. 

 
For a second example of this method of generating good rhythms consider the construction of a 
ternary rhythm with 6 onsets and 12 pulses. This time we start with a rhythm consisting of 24 
onsets and 24 pulses as shown in Figure 3 (a). As in the previous example this rhythm is first 



 6 

decomposed into its alternating right and left hand onsets as in (b). The next step shown in (c) is 
the only step in this process that changes. Instead of repeating the symbol R after the RLR 
pattern, now it is repeated after the RLRLR pattern to create an RLRLRR pattern of period 6. 
The final step (d) is the same as before: the RLRLRR pattern is alternated with its mirror image 
LRLRLL to create a rhythm with period 12. The rhythm played with the right hand, shown in 
polygon notation in Figure 4, has inter-onset-interval vector [2‐2‐1‐2‐2‐3], which has the rhythmic 
oddity property, is a deep rhythm, and is the guataca (metal hoe blade) timeline used in Cuban 
batá drumming [45: p. 35]. The entire rhythm played with both hands is called the double 
paradiddle in rudimentary snare drum technique [5], [6]. 
 

 
 

Fig. 3: Constructing a double paradiddle reflection rhythm. 

 

Fig. 4: The left and right hand patterns of the double paradiddle drum rhythm. 

 
For the third example that illustrates this method let us generate a rhythm with 8 onsets and 16 
pulses. The process for the first two steps is the same as before, but this time start with 32 pulses, 
as shown in Figure 5 (a) and (b). The change comes again in step (c) where instead of repeating 
the symbol R after the RLRLR pattern, now it is repeated after the RLRLRLR pattern to create 
an RLRLRLRR pattern with period 8. The final step (d) is the same as before: the RLRLRLRR 
pattern is alternated with its mirror image LRLRLRLL to create a rhythm with period 16. The 
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rhythm played with the right hand, shown in polygon notation in Figure 6, has inter-onset-interval 
vector [2‐2‐2‐1‐2‐2‐2‐3], which is a deep rhythm as may be seen from its interval histogram in 
Figure 6. This rhythm also has the rhythmic oddity property. The entire rhythm played with both 
hands is called the triple paradiddle in rudimentary snare drum technique [5], [6]. 
 

 
 

Fig. 5: Constructing a triple paradiddle reflection rhythm. 

 

 
 

Fig. 6: The left and right hand patterns of the triple paradiddle drum 
rhythm, and their interval content histogram. 

 
Alternating-Hands Approach: Whereas the paradiddle method described above puts an onset on 
every pulse, and then creates a pattern by breaking the alternation between the right and left hands 
by repeating an onset with the same hand, the alternating-hands approach maintains the alternation 
of right and left hands throughout the execution of the rhythm, generating a new rhythm by 
transforming a (usually simpler) seed rhythm. Several different transformation rules may be 
applied here. To illustrate one such method consider the simple 4-pulse pattern [x x x .] shown in 
Figure 7 (a). This rhythm is a universally used pattern dating back to at least the ars antiqua, 
associated with prosody, and known as the short-short-long pattern. It is also a pattern used in the 
Baiaó rhythm of Brazil, a drum rhythm in South Indian classical music, and the polos rhythm of 
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Bali. The second step of the algorithm decomposes this cyclic pattern into alternating right-hand 
and left-hand strokes as shown in (b). Finally, this rhythm is alternated with its mirror image, 
creating with the right-hand an 8-pulse rhythm that has inter-onset-interval vector [2‐3‐3], as 
shown in (c). At the same time the left hand is playing a reflected (mirror image) and translated 
version of this rhythm. The rhythms in (b) and (c) are typical rhythms played with the metal 
double castanets (see Figure 8) in the Gnawa trance music of North Africa found mainly in 
Morocco and Algeria. One pair of castanets is used in each hand to produce a loud and distinctive 
metallic clapping sound. 
 

 
 

Fig. 7: Constructing the [2‐3‐3] reflection rhythm using the alternation method. 

 

 
 

Fig. 8: Moroccan krakebs (metal double castanets). (© Yang Liu, 2009) 

Figures 9, 10, and 11, illustrate how this alternating-hands method generates three of the most well 
known timelines used in World Music: the bossa-nova, the columbia, and the clave son, 
respectively. The French percussionist and teacher Vincent Manuelle explored a similar idea to 
develop a theory of clave rhythms. For further information about these timelines the reader is 
referred to [2]-[4], [37], [42]. 
 



 9 

 
 

Fig. 9: Constructing the bossa-nova necklace timeline with the alternation method. 

 

 
 

Fig. 10: Constructing the columbia timeline with the alternation method. 
 

 
 

Fig. 11: Constructing the clave son with the alternation method.

3. Toggle Rhythms 
 
In the alternating hands method described in the preceding section, the right and left hands 
continually take turns striking the instrument, much as the feet do on the ground while we walk, 
except that, depending on the method employed, the durations between consecutive right and left 
handed strokes may vary. For example, in the rhythm of Figure 7 (c) the duration between the first 
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(right) and second (left) onsets is one pulse, but the duration between the third (right) and fourth (left) 
onsets lasts two pulses. In the method described in this section the rhythm emerges from the process 
of accenting the proper onsets with each hand while maintaining all the durations between left and 
right handed strokes equal to one pulse. In other words some strokes may be louder than others, or 
they may differ in timbre, or tonality. Indeed, the soft sounds may even be so muted that they are 
inaudible, or the hand may stop just before coming into contact with the instrument. The important 
point is that the motion of the hands consists of a continuous mechanical pendular alternation of the 
right and left hands such that all durations between adjacent pulses are equal. In other words, the 
downward motions of the hands realize all the pulses of the rhythm. 
 
Toggle rhythms are those cyclic rhythms that when played using the alternating hands method, have 
their onsets divided into two consecutive sets, such that the first set is played consecutively with one 
hand, and subsequently the second set is played consecutively with the other hand. Thus, playing this 
way feels as if one hand responds to a question posed by the other hand, analogous to the customary 
call-and-response method of singing existent in much of Sub-Saharan Africa. The most pleasing and 
interesting results with this method are obtained when the left and right hands strike drums that are 
tuned differently, so that they produce sounds of distinct tone or timbre. However, even on a single 
drum the left and right hands will almost always produce distinct sounds, since they strike the drum 
skin at different locations, and thus the effect will still be audible and operative. However, even if all 
the accented strokes sound the same, the system yields good timelines. Indeed, timelines by their 
usual definition have the property that they do not contain accents, that is, all their onsets sound the 
same. 
 
The motion of the right and left hands in this method of playing may be conveniently described with 
a notation such as RLRLRLRLRLRLRLRL, which indicates all the pulses present in the rhythmic 
cycle, as well as which pulses are struck with which hand, R standing for the right hand which strikes 
on even-numbered pulses, and L for the left hand which strikes on odd-numbered pulses. The rhythm 
that emerges from this pattern may be notated using a bold face font for the accented onsets. For 
example, one possible toggle rhythm with this pattern is RLRLRLRLRLRLRLRL.  By 
accenting the four right-hand and three left-hand strokes, the rhythm that emerges in the form of the 
accented onsets may be described in box notation as  [x  .  x  .  x  .  x  .  .  x  .  x  .  x  .  .]. Note that in this 
example every pair of consecutive onsets played with the right hand (or left) is separated by one 
silent pulse. Note also that the transitions between the right-hand strokes and the left-hand strokes are 
separated by an interval of two silent pulses. Toggle rhythms that have this property will be called 
smooth toggle rhythms because this transition is smooth. On the other hand a pattern such as 
RLRLRLRLRLRLRLRL, which may be expressed in box notation by [x . x . x . x . x x . x . x . x], 
has no silent pulses between the transition of left-hand and right-hand pulses. This transition is abrupt 
or sharp, and so toggle rhythms with this property are termed sharp toggle rhythms. 
 
Figure 12 illustrates an algorithm for generating a family of smooth toggle rhythms, by starting with 
the simplest smooth toggle rhythm that acts as a seed pattern. This seed pattern shown in (a) consists 
of a cycle of 8 pulses with two right-hand onsets at pulses 0 and 2, and one left-hand onset at pulse 5. 
This rhythm has an inter-onset-interval structure given by [2‐3‐3], and is used in the traditional music 
of several cultures: it is the bell rhythm used in the Nandon Bawaa music of the Dagarti people of 
Ghana [31], as well as a rhythm found in Namibia and Bulgaria [32]. From this seed pattern we may 
create new longer rhythms by repeatedly cutting the rhythm in half, and inserting a copy of the left-
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right transition segment in between the resulting two pieces, as illustrated in Figure 13. The top of 
Figure 13 shows the 8-pulse seed rhythm with the left-right transition segment shaded. The middle 
shows the original rhythm cut into two equal duration pieces. Note that the cut is made at the 
midpoint that separates the right-hand strokes from the left-hand strokes, which in this case happens 
between pulses 3 and 4. The bottom shows the final 12-pulse rhythm obtained by splicing the three 
pieces together, which is the rhythm shown in Figure 12 (b). This process may be iterated by 
repeatedly inserting the shaded 4-pulse transition segment into the preceding rhythm in the same 
manner. In this way we may generate the remaining rhythms shown in Figure 12, as well as longer 
ones if desired. However, a cycle of 24 pulses is almost always long enough to serve as a timeline. 
 
The rhythm in Figure 12 (b) with inter-onset interval structure [2‐2‐3‐2‐3], is the Fume-Fume bell 
pattern popular in West Africa [22], [23], and is also used in the former Yugoslavia [33]. The rhythm 
in (c) with inter-onset interval structure [2‐2‐2‐3‐2‐2‐3] is a hand-clapping timeline pattern from 
Ghana [21]. The rhythm in (e) consisting of 11 onsets among 24 pulses, is perhaps the longest 
existing smooth toggle timeline, and is played by the Aka pygmies of Central Africa [32]. 
 

 
 

Figure 12: One method for generating smooth toggle rhythms. 
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Fig. 13: Splicing a smooth toggle rhythm by inserting the right-left transition 
segment (shaded). 

 
A similar approach may be used to generate a family of sharp toggle rhythms, as illustrated in 
Figures 14 and 15. Figure 14 shows a collection of six sharp toggle rhythms ranging in time spans 
from four to twenty-four pulses, in increments of four pulses. The top of Figure 15 shows the shaded 
4-pulse right-left transition segment that must be inserted into a sharp toggle rhythm to create a new 
longer sharp toggle rhythm. The remainder of the figure details how the splicing may be done on the 
sharp toggle rhythm of Figure 14 (b). Note that here the cut made between the right-hand strokes and 
the left-hand strokes occurs between pulses 4 and 5, and partitions the rhythm into two unequal 
pieces: one with five pulses and three onsets, and the other with three pulses and two onsets. The 
resulting new rhythm timeline at the bottom of Figure 15 is the 7-onset 12-pulse timeline of Figure 
14 (c). This is the so-called standard pattern used widely in Sub-Saharan Africa [22]-[24], [28]-[32]. 
Of course, another simple method of generating sharp toggle rhythms, if one already has the smooth 
toggle rhythms to begin with, is to convert a smooth version to a sharp version by adding at the 
appropriate places, one onset to the patterns of each hand. For example, the smooth toggle rhythm of 
Figure 12 (b) may be converted to the sharp toggle rhythm of Figure 14 (c) by adding one right-hand 
onset at pulse number 6, and one left-hand onset at pulse number 11. 
 
One of the longest sharp toggle rhythms is the bobanji timeline played on a metal bell by the Aka 
Pygmies of Central Africa [32]; it has 13 onsets in a cycle of 24 pulses. A rotation of this timeline is 
shown in Figure 14 (f). The bobanji timeline is actually started on the 4th onset at pulse number 6. 
 
The methods described in the preceding for composing smooth and sharp toggle rhythm timelines 
generate rhythms with the property that the first set of onsets played with the right hand has one more 
onset than the second set played with the left hand. This property may be easily reversed. Another set 
of rhythms may be determined by first interchanging the onsets played with each hand, and then 
playing the rhythms thus obtained in reverse order. For example such a transformation applied to the 
sharp toggle rhythm of Figure 14 (c) yields the rhythm RLRLRLRLRLRL . This is equivalent to 
starting the rhythm of Figure 14 (c) on the second onset, which in turn represents a rotation of the 
rhythm in a counterclockwise direction by a duration interval of two pulses. Indeed, a larger family 
of rhythms is obtained by considering all rotations of the timelines listed in Figures 12 and 14. 
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Fig. 14: A method for generating sharp toggle rhythms. 

 

 
 

Fig. 15: Splicing a sharp toggle rhythm by inserting the right-left transition segment (shaded). 
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Since rhythm timelines are repeated throughout a piece, and are thus cyclic it is natural to represent 
toggle timelines using two concentric circles as pictured in Figure 16, where the outer and inner 
circles mark the right-hand and left-hand onsets, respectively, of a rotation of the standard pattern of 
Figure 14 (c). Since the rhythm has seven onsets, seven different timelines may be obtained by 
starting the cycle at any of the seven onsets. Indeed all such rhythms are used as timelines in different 
parts of Sub-Saharan Africa [3], [20], [22], [37]. For a second example consider the smooth toggle 
rhythm of Figure 12 (c) with 7 onsets and 16 pulses. When started on the third onset it is a timeline 
played with the wooden clave sticks in a version of the Brazilian samba [44: p. 64]. 

 
Fig. 16: A double-circle portrayal of a toggle rhythm: the right-hand and left-

hand onsets are contained on the outer and inner circles, respectively, 
fusing together to yield the standard pattern [20]. 

 

The representation of cyclic rhythms on a circle permits an alternate definition of toggle rhythms 
based on the notion of linear separability in geometry. A rhythm (set of integer points on the circle) is 
a toggle rhythm if there exists a straight line that separates the left-hand onsets (on odd-numbered 
pulses) from the right-hand onsets (on even-numbered pulses). The rhythm in Figure 4, for example, 
is a toggle rhythm because there exists a line passing through two points: one being the midpoint 
between pulses 4 and 5, and another the midpoint between pulses 0 and 11, that leaves all the right-
hand pulses on one side of this line, and the left-hand pulses on the other side. Note that although the 
two circles in Figure 4 are drawn as having different sizes for the sake of visualization, they should 
be considered as one and the same circle for this definition to remain valid. 
 
Finally it should be noted that all the toggle rhythms considered heretofore have the property that the 
number of right-hand onsets differs by one from the number of left-hand onsets. This is not a 
requirement for a rhythm to belong to the toggle family. The clave son shown in circular toggle 
notation in Figure 17 (left) has only one of its five onsets played with the left hand, and yet it is a 
toggle rhythm since it admits a line that separates this onset from all the others, such as for example 
the line through pulses 1 and 5. On the other hand, the bossa-nova rhythm timeline of Figure 17 
(right) with three right-hand onsets and two left-hand onsets is not a toggle rhythm since it does not 
admit any line that separates the onsets at pulses 3 and 13 from the other three. 
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Fig. 17: The clave son (left) and the bossa-nova clave (right) in circular toggle notation. 

 
4. Conclusion 
 
If the right-hand and left-hand patterns of the sharp toggle rhythms of Figure 14 are combined into a 
single sequence then the timelines obtained bear a close resemblance to Kubik’s pyramid of West and 
Central African asymmetric time-line patterns [24]. Kubik describes the structural relationships 
between some common African timeline patterns using the trapezoidal shape pictured in Figure 18. 
The pyramid is built from the top down starting with the 5-onset, 8-pulse rhythm in (a), which is 
partitioned into two pieces of 5 and 3 pulses given by [x x  .  x  .] and  [x x  .], respectively. The next 
rhythm is constructed by inserting the pattern [x  .]  at the leftmost end of both parts to obtain the 
rhythm in (b). This approach is continued to create the rhythms in (c), (d), and (e). Note that putting 
together the left and right hand patterns in Figure 14, the rhythms in (b) - (f) are rotations of the five 
rhythms listed in Kubik’s pyramid structure of Figure 18. For example, the 7-onset, 12-pulse rhythm 
in Figure 18 (b) is the same as that in Figure 14 (c) when started on the 6th onset on pulse number 9. 
 
 

 
 

Fig. 18: Kubik’s pyramid of West and Central African asymmetric time-line patterns [24]. 
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The systematic methods presented here for generating and classifying good rhythm timelines within 
the broad context of designing tools for composition, and fitness functions for genetic algorithms, fall 
under the general umbrella that includes structural and generative methods for the analysis of the 
rhythm timelines of West and Central Africa in a cultural context advocated by ethnomusicologists 
and music theorists such as Agawu [20], [28], Anku [34]-[36], [43], Arom [18], [32]-[33], Kubik 
[24], Locke [40]-[41], Pressing [21], and Rahn [22]-[23]. It is hoped that the structural properties of 
the rhythm timelines explored here, their mathematical formulations, and the algorithms used to 
generate these rhythms, will help in the quest to determine a characterization of what makes a “good” 
rhythm good. 
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