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Abstract—Several methods for the mathematical notation, 
representation, and visualization of musical rhythm at the 
symbolic level are illustrated and compared in terms of their 
advantages and drawbacks, as well as their suitability for 
particular applications.  
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I.  INTRODUCTION 
To the uninitiated, music and mathematics may appear as 

antithetical activities, one expressing the emotions of the 
heart in a phenomenological world, and the other exploring 
the precise and rigorous structures of the Platonic universe. 
However, their intertwining relationship has a long history 
that in Europe goes back to Pythagoras of Samos, who in the 
6th Century B.C. developed a musical scale based on the 
numerical integer ratio 3:2 [29]. The origin of using a scale 
consisting of twelve fundamental tones, however, appears to 
originate two millennia earlier in China with Huang-Ti, the 
Yellow Emperor, circa 2700 B. C. [38]. The advent of music 
notation on the other hand, whether possessing greater or 
lesser mathematical structure, is more recent. Wulstan [35] 
traces music notation back to the Babylonians in 1300 B.C., 
and according to West [34] it goes back to at least 1800 B.C.  
In recent history there has been a renewed and energetic 
surge in the mathematical and computational aspects of 
music [14], [16], [19], [23]-[33]. 

Music notation exists at many levels of abstraction 
ranging from the most concrete continuous acoustic signal 
(usually a waveform) through the most abstract discrete 
symbolic notation [7], [9], [22], to the notation of emotion by 
means of facial expressions [20]. Some notation systems, 
such as Gongche notation, popular in ancient China, mark 
only the pitch of the notes, and not their duration [11]. Other 
notation systems use characters to indicate the finger 
positions for specific instruments, such as the Okinawan 
notation system for the samisen [37], and the guitar tablature 
notation in the West [6]. Composers have invented a variety 
of notation systems for specific purposes when they felt that 
traditional western notation did not serve their needs. For 
instance, the painter and composer Michael Poast made 
extensive use of color in his paintings that serve as scores for 
his compositions, and that stimulate musical expressiveness 

[8]. Nevertheless, due to space limitations we focus only on 
mathematical, and in particular geometric, methods for the 
symbolic notation of musical rhythm, and we provide a small 
sample of examples.  

II. MNEMONIC NOTATION 
It is well known that ordinary speech in any language 

possesses rhythm caused by the patterns of accents or 
stresses [39], [40]. Indeed, the employment of similar 
methods that use acoustic phonetic features of vowels and 
consonants appears independently in geographically distant 
cultures [12], [49], [50]. These systems are particularly 
useful for teaching rhythm, and have been an invaluable tool 
for transmitting rhythms in cultures based on oral traditions. 
For instance, the mnemonic system of syllables described in 
the Persian 13th Century book kit!b al-Adw!r [43] uses two 
syllables for the strong primary beats: ta and tan, for short 
and long beats, respectively. Similarly two additional 
syllables are used for secondary beats: na and nan, for short 
and long beats, respectively. Here the long beats last twice as 
long as the short beats. Using this system the clave rumba 
rhythm of Cuba is notated as: tanan tananan tanan tan 
tananan. Here the five beats of the clave rumba correspond 
to the five ta sounds at the beginnings of the words.  

III. MATHEMATICAL NOTATION 
A variety of mathematical methods exist that are used to 

notate a rhythmic or melodic sequence of tones. The simplest 
such method for rhythms is the binary sequence, in which a 
“1” is used to denote a sound, and a “0” to denote a silence 
or rest [1]. Here both symbols represent one unit of time. 
Thus the clave rumba is notated as [1001000100101000]. 
Such a representation has obvious advantages for processing 
rhythms by computer, but its iconic value is minimal. An 
improvement is the box-notation system, widely employed 
by ethnomusicologists, in which the two symbols used to 
denote sound and silence are highly dissimilar [17], [18]. 
One method employs “x” for sound and “-” for silence. The 
result is [x - - x - - - x - - x – x - - -] for the clave rumba. A 
second more graphical rendering of box notation actually 
uses boxes that are either empty (silence) or contain a 
symbol (sound). Different symbols may denote dissimilar 
sounds. For instance, Fig. 1 shows the acoustic phonetic 
mnemonic for the clave rumba embedded in box notation, 
where a black filled circle denotes a primary (strong) beat, a 
grey filled circle a secondary (weak) beat, and an empty box 
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a silence. The actual clave rumba pattern consists of only the 
five strong beats. 

 

     
Figure 1. Acoustic phonetic mnemonic and box-notation. 

 
The box-notation system has been generalized to handle 

several rhythms played simultaneously on different 
instruments as shown in Fig. 2. Here the white circle 
indicates that the hi-hat is played in the open position. This 
kind of notation is called drum tablature notation [1]. 
 

          
Figure 2. Drum tablature notation. 

 
A more compact numerical notation system that favors 

certain algebraic approaches to analysis and composition, 
codifies the inter-onset intervals themselves using numbers 
to obtain an interval vector [2]. In this notation the clave 
rumba rhythm of Fig. 1 is coded as the 5-dimensional vector 
[3,4,3,2,4]. One drawback of this scheme however, is that 
rhythms containing different numbers of onsets yield vectors 
in spaces of different dimensionalities that complicate certain 
kinds of analyses. 

IV. GEOMETRIC NOTATION 
In the early Twentieth Century in New York city, Joseph 

Schillinger became famous for developing a detailed and 
comprehensive mathematical methodology for analyzing, 
teaching, and composing music  [4], [5], [41]. In his work he 
made extensive use of geometric methods. His approach to 
the notation of melodies in music is illustrated in Fig. 3, 
which shows a fragment of Haydn’s Symphony No. 47 in G. 
In this diagram the width of each column corresponds to the 
duration of the shortest note employed, and the height 
indicates the pitch in semitones. 

              
Figure 3. A Haydn piece in Schillinger music notation. 

 
Schillinger also employed a geometric notation restricted 

to pure rhythm without pitch information. For this purpose 
he used a rectilinear curve as a function of time, the height of 
which alternates between two levels from the upper level to 
the lower level (and vice versa) at the locations of the 

occurrences of the note onsets. For example, the regular 4-
beat, 16-pulse rhythm with intervals [4444], and the clave 
son with intervals [33424] are described by the two curves 
shown in Fig. 4 (top and bottom, respectively). 
 

 
Figure 4. The clave son (bottom) in Schillinger rhythm notation. 

 
One approach to geometrically visualizing the interval 

vector of a rhythm is by means of spectral notation [3]. 
Consider the clave rumba with interval vector [34324]. In 
spectral notation this vector is converted to a graph in which 
the vertical axis marks the durations of the inter-onset 
intervals, and the horizontal axis marks the onset number 
(index), as illustrated in Fig. 5. The upper envelope of this 
graph clearly highlights the pattern of variation among the 
inter-onset intervals as the rhythm unfolds in time.  

 
Figure 5. The clave rumba in spectral notation. 

 
In spectral notation, at every onset one may readily 

observe whether the subsequent inter-onset interval is greater, 
smaller, or remains equal. More careful observation reveals 
the exact magnitude of these changes. However, from the 
psychological perceptual perspective, humans have more 
difficulty perceiving the quantitative aspects of these changes 
than their qualitative counterparts. For practical purposes the 
qualitative changes suffice. These qualitative changes are 
referred to as the rhythmic contour in the music theory 
literature [46], [47], [48]. Rhythmic contours are usually 
notated with the three symbols “+”, “-“, and “0”, which for a 
given inter-onset interval denote, respectively, that the 
interval in question is greater, smaller, or has the same 
duration as the previous interval. Thus in contour notation 
the clave rumba is given by the sequence [+ - - + -], whereas 
the clave son yields the contour [0 + - + -]. 

One drawback of spectral notation is that the time 
information along the horizontal axis is lost. To make up for 
this deficiency, in 1988 Gustafson introduced what he called 
TEDAS notation, an acronym that stands for Temporal 
Elements Displayed As Squares [3]. In this simple but 
original and effective system the durations of the inter-onset 
intervals are, as in spectral notation, displayed along the 
vertical axis, but they are also displayed along the horizontal 
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axis. Therefore each inter-onset interval becomes a square, 
and the rhythm is displayed as a sequence of squares. For a 
concrete example consider the Manchu rhythm with interval 
vector [443122]. In TEDAS notation this rhythm becomes 
the graph shown in Fig. 6. This notation not only highlights 
the rhythmic contour of the rhythm, but it maintains its 
temporal accuracy, and also affords a natural way to measure 
rhythmic similarity [51]. 

 

 
Figure 6. A 6-onset Manchu rhythm in TEDAS notation. 

 
In 2002 Hoffman-Engl independently proposed a 

notation for rhythms that is almost identical to Gustsfson’s 
TEDAS notation [10]. His chronotonic notation is illustrated 
in Fig. 7 with the clave rumba rhythm. Recall that the clave 
rumba has interval vector [34324]. In chronotonic notation 
the rhythm is displayed as a curve that connects a set of 
points with line segments. One point occurs at every pulse 
position in time, and its height is equal to the duration of the 
inter-onset interval to which it corresponds. Thus there are 3 
points at height 3, followed by 4 points at height 4, followed 
by 3 points at height 3, and so on. Hoffman-Engl defined a 
rhythmic similarity measure based on this notation, and 
reported experimental results that showed the measure was 
correlated with human judgments of rhythm similarity. 

 
Figure 7. The clave rumba in chronotonic notation. 

 
A natural way to notate cyclic rhythms that repeat over 

and over during a piece of music is by means of a circular 
diagram (also called a clock diagram). One of the earliest 
such methods was used by Safi al-Din in Thirteenth Century 
Bagdad in his book kit!b al-Adw!r  [42], [43]. An example 
of the clave rumba expressed in his notation is illustrated in 
Fig. 8. The outer circle marks off the sixteen pulses in the 
cycle with equally spaced small black dots. The inner circle 
is reserved for identifying the rhythm (in this case rumba). 
The sixteen pulses are separated into groups (feet) by small 
white circles connected with line segments to the interior 
circle that help to visualize the temporal structure of the 
rhythm. An arrow marks the start of the rhythm as well as 
the direction of the flow of time (counter-clockwise). Thus 

the inter-onset intervals marked are [34324]. The rumba 
clave consists of the five beats occurring at the first pulses of 
each of these intervals. 

 
Figure 8. The clave rumba in ancient Persian notation. 

 
Variants of circular notation have been rediscovered 

several times by different researchers. The typical 
contemporary employment of circular notation uses a 
“clock” diagram (also referred to as necklace notation) in 
which all the equally spaced pulses in the cycle are marked 
and numbered, the onsets of the rhythm are highlighted, and 
time flows in the clockwise direction [1]. In another variant 
(polygon notation) the onsets are connected with line 
segments to create a convex polygon [17], [18], [52].  Three 
examples of Manchu rhythms [36] in polygon notation are 
illustrated in Fig. 9, where black circles indicate main (strong) 
beats and grey circles indicate secondary (weak) beats. More 
recently, Benadon [45] has extended this notation by making 
the radial distance of a beat proportional to its duration, and 
has found it useful for the study of expressive timing. 
 

 
 

Figure 9. Examples of Manchu rhythms [36] in polygon notation. 
 

Symmetry is an important feature of music in general and 
rhythm in particular [15], [21]. Polygon notation provides an 
effective means of visualizing the various symmetries that 
may be present in cyclic rhythms. Consider for example the 
three Manchu rhythms pictured in Fig. 9. The rhythm on the 
left has mirror symmetry about the line through pulses 4 and 
12, and the center rhythm about the line through pulses 2 and 
10. The three strong beats in the center rhythm have mirror 
symmetry about the line through pulses 0 and 8. The rhythm 
on the right on the other hand possesses no mirror symmetry. 

V. REPRESENTATION 
The word notation suggests that it facilitates the reading 

of music by a performer. However, an aspect of music may 
be displayed in ways that usefully illustrate some important 
property of music, and that may in fact impede its readability 
during performance. Such renderings of musical properties 
are perhaps better described by the word representation. In 
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any case, the interdependence of notation and representation 
systems, and the musical information they provide has been 
well documented. Cohen and Katz are careful to emphasize 
that “no system of notation nor any kind of preservation of 
musical information, be it the most highly developed, is truly 
comprehensive” [13]. One of the most well-known and 
studied representations of rhythms displays a rhythm’s full 
interval content in the form of a histogram. It is common to 
find music information retrieval systems that calculate global 
features of this histogram to characterize and classify 
rhythms. Consider the six-onset Manchu rhythm shown in 
Fig. 10 (left). The six adjacent inter-onset intervals are 
[443122]. In addition to these there are nine other non-
adjacent inter-onset intervals indicated by line segments. The 
histogram of all fifteen intervals is shown on the right.  

   
Figure 10. All the intervals of a Manchu rhythm and its histogram. 

 
In a cyclic rhythm that lasts approximately a couple of 

seconds, all the pair-wise inter-onset intervals are perceived 
by the human mind. Therefore the interval content histogram 
provides instant information concerning the number and 
durations of these intervals. For instance, examination of the 
histogram in Fig. 10 reveals that apart from the four intervals 
of duration 4, the rest of the histogram is quite flat, indicating 
that the irregular aspects of this Manchu rhythm are 
embedded on a regular rhythmic framework consisting of 
beats at pulses 0, 4, 8, and 12. This representation has a 
severe drawback however. Consider the two 6-onset rhythms 
in 12-pulse cycles pictured in Fig. 11 (left and center). The 
two rhythms are different in the most significant way 
possible: one is neither a rotation nor a mirror image of a 
rotation of the other, i.e., geometrically the two polygons are 
not congruent. This is clear from the fact that in the rhythm 
on the left the two intervals of duration 1 are separated by 
two intervals of duration 2, whereas in the rhythm in the 
center they are separated by one interval of duration 2. Yet, 
surprisingly, both rhythms have exactly the same inter-onset 
interval histogram shown on the right. Technically these two 
rhythms are termed homometric. Therefore any features 
calculated on the histogram of these two rhythms will fail to 
distinguish between them. One might hope that this 
disconcerting example is a rare anomaly that one can safely 
ignore in most real-life applications. Unfortunately this is not 
the case. Any two non-congruent complementary rhythms 
with k onsets and n pulses such that k = n/2 are homometric. 
This result is known as the hexachordal theorem [53]. 
Surprisingly, this theorem has surfaced independently in both 
the music theory and crystallography literatures, where 
several proofs of the theorem have been published [44]. One 

of the simplest and most elegant elementary proofs of this 
theorem is an induction proof due to Iglesias [54]. 

 
Figure 11. Two non-congruent homometric rhythms. 
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