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Background in musicology. A central problem in musicology is to develop classification 
algorithms that match the way human observers perceive musical rhythm similarity and pass on 
music forms as cultural knowledge. Rhythm similarity measures that have been investigated in 
the past fall into two categories: transformation methods and feature-based methods. In the 
former the similarity is measured by the amount of effort required to transform (morph, mutate) 
one rhythm into another. One of the most well know transformation measures is the edit 
distance, defined as the minimum number of mutations required to transform one rhythm to the 
other. The mutations here are insertions, deletions, and substitutions of symbols in a sequence. 
In the feature-based methods a set of pre-determined features is calculated for each rhythm, and 
similarity is measured by the degree to which the two sets of features match. Typical features 
measure properties of the inter-onset intervals present in a rhythm. For either approach, a 
measure of rhythm similarity is desired that is not only efficient to compute, but that agrees 
well with human perceptual judgments of rhythm similarity. 
Background in cultural evolutionary biology. Phylogenetic trees were originally conceived 
for the purposes of describing and visualizing evolutionary relationships that exist between 
members of a group of biological organisms.  However, more recently they have been applied 
to cultural objects as well, language being an early prime example. Phylogenetic tree 
construction approaches fall into two main categories: distance-based methods and “character”-
based methods. Distance methods assume that a distance matrix is available containing the 
distance between every pair of objects being studied. In character-based methods the input data 
are sets of binary and/or multistate characters, and the final observed distribution of characters 
is modeled as resulting from a set of inferred transition probabilities.  
Aims. By combining phylogenetic tools from cultural evolutionary biology with the cognitive 
and computational study of measures of rhythm similarity from musicology and music theory, 
this project aims to create a synergistic bridge between these two domains of knowledge.  
Main contribution. A feature-based approach to rhythm similarity is compared to a frequently 
used transformation method, using a family of rhythms of equal length. Distance matrices 
calculated from the rhythms are compared with ‘dissimilarity’ matrices obtained from human 
judgments using Mantel tests. Two different phylogenetic analysis techniques are also 
compared: a distance based method and a Bayesian approach. The results provide evidence 
from the music domain that supports the hypothesis that transformation methods are superior to 
feature-based methods for modeling more general human similarity judgments. 
Implications. Our results highlight the difficulty of modeling rhythm similarity by means of 
purely structural features collected from musicology and music theory, and imply that more 
attention should be devoted to the study of transformation methods. The methods explored 
here, standard in evolutionary biology and anthropology, provide novel tools for musicology 
and music theory that complement traditional historical and ethnographic accounts. 
 
Keywords: musical rhythm similarity measures, sequence transformation, structural features, phylogenetic 
analysis, distance matrices, Bayesian statistics, Mantel test, musicology. 
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1.  Introduction 
 
Defining and measuring similarity are central concerns in vast areas of scientific and 
artistic enquiry. Not surprisingly, these problems have been investigated extensively 
in a wide range of different disciplines, resulting in the exploration of a variety of 
approaches. Much of the literature deals with similarity in the context of visual 
perception of patterns in space. This paper on the other hand is concerned with the 
problem of measuring musical rhythm similarity, that is, auditory patterns in time. For 
this project rhythms are stripped to their barest representation as pure duration 
patterns without any form of accents or alternation of timbres (Rivière, 1993). 
Furthermore the representations of rhythms are symbolic, as in standard Western 
notation, and therefore they are exact, without any micro-timing variations.  
To clarify the main general approaches to measuring similarity in this context, 
consider the three well-known rhythms, bossa-nova, rumba, and son, illustrated using 
polygon notation in Figure 1. It is convenient to represent the rhythms as cyclic 
binary sequences on a clock diagram consisting of sixteen evenly spaced pulses. The 
sounded pulses (also called onsets) are marked with solid black circles, whereas the 
silent pulses are white. The rhythms start at pulse 0, and time flows in a clockwise 
direction. The adjacent onsets are connected with line segments to create convex 
polygons that aid visualization of the rhythmic features, and the sides of the polygons 
are labeled with numbers that indicate the durations of adjacent inter-onset-intervals 
(IOIs). 

 
Figure 1. Three rhythms represented in polygon notation on a cyclic clock. 
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In the first approach the rhythms are analyzed in terms of features that are present or 
absent in each rhythm. From a list of such features the similarity between two 
rhythms is measured by a function of the common and distinctive features that they 
possess. The table in Figure 2 lists, for example, four features that are present or 
absent in these three rhythms. The first feature indicates whether the rhythm has 
mirror symmetry about a line passing through two pulse positions. The bossa-nova 
and son are symmetric with respect to the pulse pairs (0, 8) and (3, 11), respectively. 
The meanings of the remaining three features are self-evident from their labels. In the 
absence of other information, these features would affirm that the son is more similar 
to the bossa-nova than to the rumba, since it shares two features with the former, and 
only one with the latter. This approach is knows as Tversky’s contrast model of 
similarity (Tversky, 1977). 

Features Son Bossa-Nova Rumba 
Mirror Symmetry Yes Yes No 
IOI Duration Equal to 2 Yes No Yes 
Adjacent IOIs of Equal Duration Yes Yes No 
3-4-3 Duration Pattern No Yes Yes 

Figure 2. Table of presence and absence of four features in the three rhythms of Figure 1. 

A second approach to measuring similarity makes a set of d measurements (variables, 
features) on the objects of study, thereby mapping the objects to points in a d-
dimensional feature space. Two objects are deemed similar in this scheme if the 
distance (according to some metric or more general measure) between their 
corresponding points in feature space is relatively small. An example of a 2-
dimensional feature space for the three rhythms of Figure 1 is pictured in Figure 3, 
where the horizontal axis measures the longest sequence of adjacent inter-onset 
intervals (in terms of the number of intervals) present in the rhythm, and the vertical 
axis indicates the duration of the rhythm’s shortest inter-onset interval. If the 
distances between these three points are measured with the Euclidean distance, for 
example, then the son would be considered to be more similar to the rumba than the 
bossa-nova, in contradiction with Tversky’s contrast model. This method belongs to 
the spatial approach of Shepard, who measured distances in a psychological space 
(Shepard, 1957). This approach has had a profound influence on the fields of 
automated pattern recognition and information retrieval, where all manner of 
analogous mathematical feature spaces and distance metrics are routinely employed 
(Duda, Hart & Stork, 2000; Nilsson, 1990). 
 

 
 

Figure 3.  A 2-dimensional feature space for the rhythms in Figure 1. 
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The two aforementioned approaches have been criticized on the grounds that their 
representations of the objects to be compared are arbitrary and over-simplistic (Hahn 
& Chater, 1997; Hahn & Chater, 1998a; Hahn & Chater, 1998b). The authors of these 
papers argue that complex patterns require structural representations that specify not 
just what features are to be used, but how they are interrelated.  
The third approach to measuring the similarity between two objects bypasses the 
creation of lists of features, and instead operates directly on the structure of the 
objects themselves. First a group of fundamental operations, also called edits or 
mutations, is established, by which small changes may be made to the structure of the 
objects under consideration. The distance between two objects is then defined to be 
the minimum number of such operations that must be made on one object in order to 
transform it to the other. In the case of the three rhythms in Figure 1, for instance, one 
of the simplest changes that may be made is to move an onset from one pulse position 
to either of its two adjacent neighboring positions. Such a change is called a swap, 
and the minimum number of swaps required to transform one rhythm to another is 
termed the swap distance between them (Toussaint, 2002; Toussaint, 2004; Lowrance 
& Wagner, 1975). From Figure 1 it may be observed that the son may be converted to 
the bossa-nova by swapping the onset at pulse 12 with the silent pulse 13, and to the 
rumba by swapping the onset at pulse 6 with the silent pulse 7. Thus in both cases the 
swap distance is 1, implying that by this reckoning the son is equally similar to the 
bossa-nova and the rumba, in contradiction to both the contrast model of Tversky and 
the feature-space model of Shepard.  
Transformation methods have been used extensively to measure the similarity 
between symbol sequences in a variety of areas such as text processing (Lowrance & 
Wagner, 1975), computational linguistics (Wieling, 2007), bioinformatics (Gusfield, 
1997; Sankoff & Kruskal, 1999), musicology, (Crawford, Iliipoulos, & Raman, 1997-
98), and music information retrieval (Typke, Veltkamp & Wiering, 2004). 
Furthermore, recent experiments in the visual domain have shown that distances 
based on transformations have a strong impact on similarity judgements, and indeed 
challenge the feature-based methods (Hahn, Chater, & Richardson, 2003; Hodgetts, 
Hahn, & Chater, 2009). Although in the music domain there is evidence that the edit 
distance (also known as the Levenshtein distance), a transformation method popular 
in music information retrieval applications, is a good predictor of human perceptual 
judgments (Toussaint, Malcolm & Brown, 2010a), no previous comparisons with 
feature-based methods have been reported. Here a feature-based approach to 
measuring musical rhythm similarity is compared to the edit-distance (which is more 
powerful than the swap distance). These two methods are compared to each other 
with respect to human judgments of perceived similarity by means of two different 
phylogenetic analysis techniques: a distance based method and a Bayesian approach. 
While these techniques are standard in the field of evolutionary biology, the 
procedures are novel in the area of music perception, and it is hoped their introduction 
here will showcase their applicability. Furthermore, the results obtained add evidence 
from the aural domain to that already collected from the visual domain, to support the 
hypothesis that transformation methods may be superior to feature-based methods for 
modeling human perception of similarity. 

 
2. The Feature-Based Approach 
 
A feature-based approach to similarity poses several problems outright. First among 
these is the fact that there are an infinite number of possible features. For example, 
one feature might be: the rhythm contains less than six onsets. A second feature might 
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be: the rhythm contains less than seven onsets. Furthermore, the number seven may 
be replaced with any integer greater than seven to generate an infinite number of 
additional features. How many features should be chosen? Once a number has been 
decided upon, which features should be selected from this distinguished set? Even for 
visual patterns selecting the variables that produce grouping by similarity can be 
difficult (Olson & Attneave, 1970). One of the goals of the project described here is 
not to determine what features produce similarity grouping, a formidable task, but 
rather the much more modest one of determining if the structural features that are 
commonly used in musicology and music theory to categorize and characterize 
musical rhythms do produce significant similarity groupings. In this section fourteen 
features are described that measure a variety of structures of cyclic rhythms, and that 
were chosen on the basis of concepts considered important in theories of musical 
rhythm or properties of rhythm used in the classification of music styles. 
 
1st. Number of pulses is an even number 
 
The number of pulses in the cycle of a musical rhythm is a feature that distinguishes 
music from different parts of the world (Toussaint, 2005). For instance, much folk 
dance music of Rumania has cycles of 5, 7, and 9 pulses (Proca-Ciortera, 1969), 
whereas much drum music from Sub-Saharan Africa uses cycles with 12, 16 and 24 
pulses (Arom, 2004). Therefore rhythms may be usefully categorized as having cycles 
containing an odd or even number of pulses. 
 
2nd. Number of onsets is an even number 
 
The parity of the number of onsets in a rhythm does not appear to be as important 
musically as the parity of the number of pulses, and for large numbers of onsets in a 
cycle the parity may not have much relevance in categorization or perception. Often, 
adding decorative onsets does not markedly change the perception of the rhythm, 
although the effect may depend on where in the cycle the onset is added. However, 
when the number of onsets is small, rhythms with an odd number of onsets sound 
sufficiently different from those with an even number, to warrant the inclusion of this 
feature in the set investigated. For example, for the special rhythms with 12 and 16 
pulses, there is a marked preference for 5 and 7 onsets, respectively (Toussaint, 
2003). 
 
3rd. Number of onsets is greater than half the number of pulses 
 
The number of notes in a phrase of music, referred to as the phrase density (also note 
density), has been used as a rhythmic feature in the systematic statistical analysis of 
music (Cerulo, 1998), and has been found to be a highly reliable predictor of melodic 
coherence (Brown, Towsey, Wright, & Deiderich, 2001). The number of tones per 
second, called the rhythmic activity, has also been used as a rhythmic feature in 
comparisons with perceived similarity of melodies (Eerola, Järvinen, Louhivuori, & 
Toiviainen, 2001). If the timespans or phrase-lengths of the rhythms are normalized 
for time, then the rhythmic activity and phrase density are equivalent features. The 
phrase density of a rhythm is closely related to its rhythmicity: the number of 
transitions between a note and a pause (Van Den Broek & Todd, 2009-10). This 
number is a measure of the rhythm’s isochrony. A rhythm may contain many or few 
onsets relative to the number of pulses in its periodic cycle. The former will be called 
dense, and the latter sparse. A rhythmically important boundary value to distinguish 
between dense and sparse rhythms is half the number of pulses (almost half if the 
number of pulses is odd). The most popular rhythm timelines composed of twelve and 
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sixteen pulses have 7 and 5 onsets, respectively, close to one half their pulse numbers 
(Toussaint, 2002; Toussaint, 2003). Figure 4 shows a sparse rhythm (the tresillo) 
popular in Cuba (left) and a dense Tuareg rhythm from Lybia (right) (Toussaint, 
2005). In general, sparse rhythms sound quite different from dense rhythms. 
 

                  
Figure 4. A sparse rhythm (left) and a dense rhythm (right). 

4th. First onset is not on first pulse (anacrusis) 
 
In European common practice music the most accented onset (the main downbeat) 
occurs at pulse 0, the start of the rhythmic cycle (Lezcano, 1991; Temperley, 2010). 
On the other hand, in much of Sub-Saharan African music this onset is often missing 
from the rhythm (Chemillier & Truchet, 2003). This property is called the silent down 
beat or anacrusis, a feature that is present in some flamenco metric patterns of 
Southern Spain (Guastavino, et al., 2009), and absent in traditional Korean music 
(Howard, 1992). Figure 5 shows two Afro-Cuban rhythms with anacrusis: the reverse 
clave son (left) and the guaguancó (right). The property of anacrusis affects the 
perception of a rhythm or melody. In the words of Justin London (London, 2009), 
“When a melody begins with an anacrusis, rhythmic grouping structure and meter are 
out of phase.” Although none of the rhythms in the data used for the present 
experiments have anacrusis, the feature was included for future experiments that will 
incorporate rhythms that have this property. 

                    
Figure 5. Two Afro-Cuban rhythms exhibiting anacrusis: the 2-3 clave son (left) and the 
guaguancó (right). 
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5th. Evenness 
 
A property that has received a great deal of attention in music theory in both the pitch 
and time domains is the concept of maximal evenness (Domínguez, Clampitt, & Noll, 
2009; Amiot, 2007; Clough & Douthett, 1991). Intuitively speaking, a rhythm is 
maximally even if the onsets are distributed within the cycle as evenly as possible. A 
regular isochronous rhythm is perfectly even. If the number of onsets in a maximally 
even rhythm divides without remainder into the number of pulses, then the rhythm is 
always perfectly even. There are several different characterizations of maximally 
even sets. One of these states that a rhythm is maximally even if, and only if, the sum 
of all the pair-wise straight-line distances between the corresponding points on the 
circle is maximized (Toussaint, 2005a). The ancient Euclidean algorithm for 
determining the greatest common divisor of two numbers may also be used to 
generate maximally even rhythms (Toussaint, 2005b). Figure 6 (left) shows a 
maximally even rhythm used in samba music with seven onsets in a sixteen-pulse 
cycle. The two methods described above are relatively complicated. A much simpler 
algorithm for generating maximally even rhythms with k onsets in a cycle of n pulses 
constructs a regular polygon of k sides on the circle containing n lattice points, and 
then snaps (moves) all the vertices of the regular polygon that do not lie on a lattice 
point to their nearest clockwise lattice point. For example, consider the case when n = 
16 and k = 7. The locations of the vertices of a regular 7-sided polygon (heptagon) 
may be obtained by dividing 16 by 7 yielding an inter-point distance of 2.286 to 
obtain the regular heptagon with vertices at locations 0, 2.268, 4.536, 6.804, 9.072, 
11.34, and 13.608. Rounding up these numbers that are not integers to their nearest 
clockwise integer yields 0, 3, 5, 7, 10, 12, and 14, with resulting inter-onset interval 
pattern 3-2-2-3-2-2-2, which is a rotation of the rhythm in Figure 6 (left) with interval 
pattern 2-3-2-2-3-2-2. All rotations of a maximally even pattern are of course also 
maximally even. 
If each polygon vertex is permitted to be snapped in either direction (clockwise or 
counterclockwise) then a larger set of rhythms is generated called almost maximally 
even (Toussaint, 2011). The seven-onset rhythm in the center of Figure 6, a binary 
version of the ternary standard pattern (Agawu, 2006) is not maximally even, but is 
almost maximally even. Finally, the rhythm on the right is neither maximally even 
nor almost maximally even. Accordingly, the evenness feature takes on the value 2 if 
the rhythm is maximally even, 1 if it is almost maximally even, and 0 otherwise. 
Symmetry in music, especially mirror (reflective) symmetry, has played a key role in 
the aesthetics, analysis, and compositional practice of music (Kempf, 1996; Dean, 
Byron, & Bailes, 2009-10; Porter, 1970; Wilson, 1986; Liebermann & Liebermann, 
1990; Herrero, 2010). Indeed, Simha Arom has suggested that symmetry might be 
one of the universals of music (Arom, 2001). Wilfrid Hodges documents the variety 
of symmetries in music that have been used extensively by composers during the past 
seven centuries (Hodges, 2003). The features numbered 6 through 9 measure four 
types of mirror symmetry. 
 
6th. Vertical mirror symmetry 
7th. Horizontal mirror symmetry                                                                                                                                                                                                                           
8th. Positively skewed mirror symmetry 
9th. Negatively skewed mirror symmetry 
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Figure 6. Maximally even rhythm (left) almost maximally even rhythm (center), and non-
maximally even rhythm (right). 

                 

                 
Figure 7. The four types of symmetry: vertical (upper left), horizontal (upper right), positively 
skewed (lower left), and negatively skewed (lower right). 
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These four types of symmetry are illustrated in Figure 7. Although these features are 
easy to interpret visually, the more relevant issue in the present context is what they 
mean musically to a listener. Musically, a 16-pulse timeline in 4/4 time has four 
fundamental beats at pulses 0, 4, 8, and 12, and hence the vertical and horizontal 
symmetries reflect this metrical division of time. Equally important in much 
contemporary and traditional world music is the breaking of symmetry present in 
rhythms (Feldman, 1981). For example, the asymmetric aksak rhythms form a 
distinctive feature of Balkan folkloric rhythms (Fracile, 2003), as do the asymmetric 
timeline bell patterns in West African music (Magill & Pressing, 1997).  The 
positively and negatively skewed axes of symmetry measure the presence of this type 
of asymmetry. Whether it is possible for the visual symmetries of polygons to be 
perceived by listeners when the corresponding rhythms are realized acoustically 
remains an interesting topic for future research. 
 
10th. Antipodality 
 
A rhythm has the antipodal property if when represented on a circle it contains two 
onsets that lie diametrically opposite each other. For instance, the door-knock rhythm 
in Figure 8 (left) has this property because there are onsets at pulses 4 and 12, which 
determine a diameter of the circle. On the other hand, the clave son (right) does not 
have this property. A rhythm with this property places emphasis on the division of the 
time-span of the rhythm cycle into two half cycles of equal duration, and thus creates 
some regularity. A rhythm that does not possess this property is said to have the 
rhythmic oddity property, a terminology introduced by Simha Arom (Arom, 2004; 
Chemillier & Truchet, 2003). The antipodality feature takes on three values: 0 if there 
is no antipodal pair, 1 of there is exactly one antipodal pair, and 2 if the rhythm 
admits more than one antipodal pair. The number of antipodal pairs, or the amount of 
rhythmic oddity that a rhythm possesses has been used to categorize Sub-Saharan 
African timelines (Toussaint, 2005). Note that this feature is not binary. It was felt 
that more discrimination information would be captured by making the feature take 
on three values. 

                     
Figure 8. A rhythm with the antipodal property (left) and one without (right). 

 
11th. Off-Beatness 
 
Consider the 16-pulse cycle pictured in Figure 9 (left). The number sixteen may be 
evenly divided (without remainder) by only three numbers that are smaller than 
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sixteen and greater than one, namely 8, 4, and 2. These are the only possible regular 
rhythms that may be embedded in the 16-pulse cycle, and they occupy all the pulses 
other than 1, 3, 5, 7, 9, 11, 13, and 15. These are all the numbers that are relatively 
prime to 16, and therefore indicate the positions in the cycle where the presence of an 
onset would be considered to be off the beat in the context of music that uses regular 
rhythms. Onsets at these positions may thus be considered to possess a kind of 
syncopation that may be called off-beatness (Toussaint, 2005). The off-beatness 
measure of a rhythm is the sum of the number of onsets it contains that lie on these 
off-beat positions. For example, the clave son rhythm in the center has an off-beatness 
value of one due to its onset at pulse 3, whereas the clave rumba on the right has an 
off-beatness value of two by virtue of its onsets at pulses 3 and 7. The off-beatness 
feature takes on three values: 0 if there are no off-beats, 1 if the number of off-beat 
onsets is one or two, and 2 if there are more than two off-beats. It has been shown 
empirically that the off-beatness measure is closely related to several mathematical 
measures of syncopation as well as human judgments of meter complexity (Thul & 
Toussaint, 2008a). Furthermore, syncopation has been demonstrated to be a highly 
reliable predictor of melodic coherence (Brown, Towsey, Wright, & Deiderich, 
2001), thus motivating the use of the off-beatness feature. Note that this feature is 
also not binary. It was also felt that more discrimination information would be 
captured by making this feature take on three values. 

 
Figure 9. The off-beat positions (left), a rhythm with off-beatness = 1 (center) and one with 
off-beatness = 2 (right). 
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12th. Hemiola property 
 
Hemiola is the name given to a property that characterizes the metric patterns of some 
Sub-Saharan African, Afro-Cuban, and flamenco music of southern Spain. The 
traditional African hemiola (Brandel, 1959) has the metric pattern [3-3-2-2-2] shown 
in Figure 10. In this form it divides the 12-pulse cycle into two half-cycles of six 
pulses each, and then divides the first half-cycle into two equal 3-pulse intervals, and 
the second half-cycle into three equal 2-pulse intervals. This property may be 
generalized to rhythms with time-spans of cardinalities other than twelve, as long as 
the two half-cycles of the rhythm admit divisions into regular rhythms having 
intervals of different lengths, such as the two examples illustrated in Figure 11. 

 
Figure 10. The traditional African style hemiola.!

                     
Figure 11. Generalized Hemiola property with 3 onsets (left) and 6 onsets (right).!

 
13th. Toggle property 
 
A popular hand-drumming technique strikes the drum on all the pulses of a rhythm 
very gently, alternating with the right and left hands. The rhythm emerges from 
accenting in some way those pulses where onsets should occur. Consider the two 
rhythms in Figure 12, where each pulse is labeled with the letters R and L to denote 
striking the drum with the right and left hands, respectively. The clave son (left) has a 
hand-pattern given by RLRRR, whereas the samba variant (right) has the hand-
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pattern RLRLR. A rhythm has the toggle property if the hand-pattern cycle contains 
only one transition from R to L and one from L to R (Toussaint, 2010). In other 
words, toggle rhythms are those cyclic rhythms that when played by alternating the 
hands on each pulse, have their onsets divided into two consecutive sets, such that the 
first set is played consecutively with one hand, and subsequently the second set is 
played consecutively with the other hand. Playing this way feels as if one hand 
responds to a question posed by the other hand, analogous to the customary call-and-
response method of singing existent in much of Sub-Saharan Africa. Thus the clave 
son has the toggle property, whereas the samba variant does not. An alternate 
geometrical interpretation is possible when the rhythms are represented on a circle, as 
in Figure 12. A rhythm has the toggle property if, and only if, there exists a straight 
line that separates the R onsets from the L onsets. The clave son rhythm on the left 
admits a separating line determined by pulses 1 and 5. On the other hand, for the 
samba variant on the right no separation line exists. Most of the rhythmic timelines 
used in Sub-Saharan music are distinguished by having this property (Rahn, 1987; 
Rahn, 1996). Note that the toggle property is weakly related to the off-beatness 
property. In a 16-pulse timespan the odd-numbered pulses become off-beat positions. 
Therefore a rhythm with the toggle property is guaranteed to have some off-beat 
onsets. However, the converse is not true, as the rhythm in Figure 12 (right) shows: it 
has two off-beat onsets at pulses 3 and 9, and yet it does not have the toggle property. 
 

                   
 

Figure 12.  Rhythm with the toggle property (left) and without (right). 

 
14th. Balanced rhythms 
 
A rhythm is balanced if every line that passes through the center of the circle 
partitions the onsets of the rhythm into two sets with cardinalities that differ by at 
most one (Jiang, 2008). Consider the two rhythms in Figure 13. The clave son rhythm 
on the left is balanced. The vertical line through pulses 0 and 8 leaves two onsets on 
each side, and the line through pulses 1 and 9 separates two onsets from three. 
However, no line leaves one side with four or five onsets. On the other hand, the 
famous door-knock rhythm on the right contains a line through pulses 0 and 8 that has 
four onsets on one side and two on the other, and therefore it is not balanced. The 
property of being balanced arises in the context of the theory of maximally even sets 
(Clough & Douthett, 1991). A property of musical chords studied by Douthett and 
Entringer (Clough & Douthett, 1991, note 15 on p. 40) maximizes the sum of the 
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pair-wise arc lengths between the chord’s pitches represented as points on a circle. It 
turns out that this sum is maximized if, and only if, the set of points is balanced 
(Jiang, 2008). The property of being balanced generalizes and relaxes the definition 
of maximal evenness. However, a balanced rhythm may be far from maximally even. 
Therefore a balanced rhythm tends to have its onsets either almost evenly distributed 
along the circle or clustered into two groups located diametrically opposite each 
other.  

                    
Figure 13. A balanced rhythm (left) and an unbalanced one (right). 

 
That the fourteen features described above have proved to be useful for discourse on 
the theory of musical rhythm, as well as for the classification of musical rhythms in 
ethnomusicology, is not sufficient reason to believe that they are relevant for 
characterizing rhythm similarity. Indeed, for any one of these fourteen features the 
reader can easily construct examples of rhythms that sound different, but have the 
same value of the feature. The question investigated in this study is whether by using 
all fourteen features together, the rhythms in the resulting 14-dimensional feature 
space, exhibit similarity groupings that correlate with human perception. 
 
3. Calculating Rhythm Dissimilarity in Feature Space 
 
Given a set of features such as the fourteen features of the cyclic rhythms described in 
the preceding section, any rhythm may be represented by a feature vector, in this case 
a 14-dimensional vector of feature values. In general, given two N-dimensional 
feature vectors such as X = (X1, X2, …, XN) and Y = (Y1, Y2, …, YN) obtained by 
calculating N feature values for each of the rhythms, the dissimilarity between the 
rhythms may be measured by any of a large variety of metrics or more general 
measures (Polansky, 1996). Perhaps the most well-known and frequently used metrics 
are two special cases of the Minkowski p-metrics: the Euclidean distance (p = 2) and 
the city-block distance (also Manhattan metric with p = 1) (Tenney & Polansky, 
1980). The Euclidean distance between X and Y is given by the formula: 
 

d2(X,Y) = (!X1 - Y1!
2  + !X2 - Y2!

2 +…+ !XN - YN!
2)1/2. 

 
This distance measure imposes a particular function for combining the values of the N 
features to obtain a measure.  In the absence of prior knowledge about the nature of 
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the inter-relationships that may exist between the different features, Tenney & 
Polansky (1980) argue in favor of using the city-block distance (also called the L1 
norm) given by the simpler sum of the absolute values of the differences of each 
coordinate, that is:  
 

d1(X,Y) = !X1 - Y1!+ !X2 - Y2!+…+ !XN - YN!. 
 
This is the metric that we used in the calculation of the feature-based distance matrix. 
As an example, consider the cinquillo-variant and tango-congo rhythms in Figure 15. 
The reader may verify that the 14 preceding features calculated on these rhythms give 
rise to the feature vectors:  
 
                                X = (cinquillo-variant) = (1 1 1 0 1 0 0 0 1 2 2 0 0 0) and  
                                      Y = (tango-congo)        = (1 0 0 0 0 0 0 0 0 1 1 0 1 1).  
 

Then the L1 distance between X and Y is given by 
 
                           d1(X,Y) = (0 + 1 + 1 + 0 + 1 + 0 + 0 + 0 + 1 + 1 + 1 + 0 + 1 + 1) = 8. 
 
4. The Transformational Approach 
 
One of the most popular distance measures used for measuring music similarity in 
music information retrieval applications is the edit (also Levenshtein) distance (Orpen 
& Huron, 1992; Smith, McNab, & Witten, 2008). Previous experiments have been 
reported suggesting that the edit distance correlates highly with human perceptual 
judgments, even in the absence of metric priming (Toussaint, Campbell, & Brown, 
2010a), and that it is superior in this regard to the more constrained swap distance 
described in the introduction (Toussaint, Campbell, & Brown, 2010b). For these 
reasons the edit distance was chosen as a good representative of transformation 
methods to be compared to the feature based approach. 
The edit distance is based on three simple mutation operations that may be performed 
on a rhythm, that alter the rhythm by either changing a symbol, changing the overall 
duration of the rhythm (longer or shorter), or both. Given two sequences of symbols, 
the edit distance is defined as the minimum number of substitutions, insertions, and 
deletions, necessary to transform one sequence to the other. The edit distance may be 
calculated using dynamic programming which has a computational complexity 
proportional to the product of the lengths (number of symbols) of the two sequences 
being compared. For binary sequences an insertion adds a '1' or a '0' somewhere in the 
sequence, making it one bit longer. A deletion removes either a '1' or a '0' somewhere 
in the sequence making it one bit shorter. A substitution replaces a '1' by a '0' or a '0' 
by a '1' leaving the length of the sequence unchanged. Each of these three operations 
has one unit of cost. More formally then the edit distance between two binary 
sequences is the smallest cost of converting one binary sequence to the other using 
these three operations. Since each operation has unit cost, the edit distance is simply 
the value that minimizes the sum of the cardinalities of the three operations. Figure 14 
illustrates the result of the edit distance computation on a binary example in which the 
symbols are onsets and rests, represented as filled and empty squares, respectively, 
each of which has unit time duration. Such a representation will also be referred to 
here as binary onset-rest coding. The Figure shows how the edit distance converts the 
cinquillo rhythm (21212) to the habanera rhythm (3122) with only two operations, 
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yielding an edit distance of 2. First note that there are of course many sets of 
operations that convert one rhythm to the other. For example, three substitutions will 
do the job: change pulses 3 and 6 of rhythm 21212 from rests to onsets, and pulse 6 
from onset to rest. However, the transformation may be accomplished with only 2 
operations. First delete the onset at pulse 7 to convert the 8-pulse rhythm 21212 to the 
7-pulse rhythm 2122. Then insert a rest between pulses 2 and 3 to convert the 7-pulse 
rhythm to the 8-pulse habanera rhythm 3122. Note that an insertion operation is quite 
powerful, and can, as this case illustrates, simultaneously translate five pulses into 
their correct alignment. Thus adding/deleting an onset at one position may have a 
much stronger effect than doing so at a different position. 

 

 
 

Figure 14. Calculation of the edit distance between the cinquillo rhythm (21212) and the 
habanera rhythm (3122). 

 
5. Phylogenetic Analyses Methods 
 
Distance Methods 
Phylogenetic trees were originally conceived for applications in evolutionary biology 
for the purposes of describing and visualizing evolutionary relationships that exist 
between members of a group of biological organisms (Carrizo, 2004). However, more 
recently phylogenetic methods have been applied to a wide variety of cultural objects 
as well, including textiles, stone tools, variants of the Canterbury tales, and Christian 
denominations. (Barbrook et al. 1998; Hage et. al., 1998; Mace, Holden, & Shennan, 
2005; Collard et al. 2006; Matthews 2012). Taken as a whole, these cultural 
phylogenetic studies have demonstrated quantitatively similar levels of decent 
processes as are found in biological systems (Collard et al. 2006). We see no reason a 
priori why musical study would be uniquely uninformed by phylogenetic analysis, 
although only most recently have such methods been applied to the domain of music 
(Toussaint, 2003; Toussaint, Campbell & Brown, 2010a and 2010b). 
The bioinformatics and computational biology literatures are filled with a wide 
variety of different approaches for constructing phylogenetic trees, that fall into two 
main categories: distance-based methods and “character”-based methods. Distance 
methods assume that a distance (or dissimilarity) matrix is available containing the 
distance between every pair of objects being studied, in our case musical rhythms. 
From these distance matrices algorithms invariably construct phylogenetic trees in 
such a way that the minimum distance between every pair of rhythms, measured 
along the branches in the tree (geodesic distances), approximates as closely as 
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possible the corresponding distance entry in the distance matrix. In our analyses we 
used a popular method called BioNJ (Saitou and Nei, 1987; Gascuel, 1997) embedded 
in the software package SplitsTree-4 (Huson, 1998; Huson & Bryant, 2006). Because 
the construction of phylogenetic trees in the plane necessarily involves approximating 
the distances in most cases, a quantitative test of the original distance matrices 
themselves is more accurate. The Mantel test is such a test. It belongs to the family of 
permutation tests for measuring the association between two distance matrices (Dietz, 
1983; Hage et al., 1998), and is designed to be used in situations where the elements 
in the matrix are not independent, as is the case in the matrices analyzed here. We 
used the Mantel test software package made available by Eric Bonnet and Yves Van 
de Peer, with 10,000 repetitions (Bonnet & Van de Peer, 2002). 
The methodology used in the study reported here is reminiscent of those previously 
applied in the music pitch domain by Quinn (2001), and Mavromatis and Williamson 
(1999a, 1999b). They applied traditional cluster analysis methods to compare a 
variety of measures of similarity between musical chords. Our study focuses on 
rhythms rather than chords, and uses phylogenetic analysis in lieu of cluster analysis. 
Character Methods 
Character-based methods of phylogenetic inference do not start with a pairwise 
distance matrix; rather, their input data are vectors of binary, multistate, or combined 
binary and multistate characters (binary onset-rest coding). Biologists then search 
through a series of statistical models that calculate the likelihood of the observed data 
distributions based on models that include parameters such as the rate of change 
between alternate states and the variation across characters in the rates of change. 
(Felsenstein, 2004). We applied Bayesian methods for character-based phylogenetic 
inference, as these methods allow for robust yet conservative inferences by 
conditioning across uncertainty of the parameter estimations of the underlying 
transition probabilities (Huelsenbeck & Ronquist, 2001). These character based 
methods are preferable to many distance methods in that distance methods tend to 
waste data in the conversion of the actual observations into pairwise distances. The 
methods we use do not presume that characters change in concert with any other 
characters in the matrix, and the methods strive to find the rate parameters and tree 
structure that best explain the observed data distribution. The resultant trees constitute 
hypotheses for which rhythms are more related to others by cultural descent. More 
detailed descriptions of the MCMC methodology may be found in the papers by 
Tierney (1994) and Mau et al. (1999). 
Monte Carlo Markov Chain Inference of the Maximum Likelihood Trees 
We used the Bayesian Markov-chain Monte Carlo (MCMC) based software MrBayes 
V 3 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) to infer the 
maximum likelihood trees from the two alternate data sets, one being comprised of 
the 14 rhythmic features and the other a binary data set that coded each pulse of a 
rhythm as an onset (state 1) or a rest (state 0). We considered the state labels to be 
arbitrary designations analogous to the typical anatomical data used in phylogenetic 
analyses (Lewis, 2001). For each data set, we used the harmonic mean of MCMC 
searches to construct Bayes factor comparisons of alternative models for how 
transitions would occur between states at each character (Kass & Raftery, 1995). The 
Bayes factor is the ratio of the a posteriori probabilities of the competing hypotheses 
(given the data), or equivalently, the product of the a priori probability ratio and the 
likelihood ratio. Unlike the edit distance, the phylogenetic analysis does not allow 
states to shift or split from one character to another in the binary data set that coded 
each rhythm as a string of onsets and rests. Rather, the phylogenetic analysis yields 
estimates a set of transition rates between 0 and 1 within a single character position. 
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The Bayesian search proceeds via a series of proposals that randomly modify one 
aspect of the evolutionary model. This may be an aspect of tree topology, branch 
length, or rate of character evolution.  The software then calculates the posterior 
probability of this proposal, and accepts or rejects it in proportion to its probability 
compared to the probability of the proposal currently in the working memory. Thus, 
the accepted proposals form a “chain” of proposals each with somewhat different 
parameter values and tree shapes. One then records proposals infrequently (every 100 
or 1000 or more proposals) to a saved file. The distribution of these saved proposals 
represents the posterior distribution of trees and parameters. 
The early proposals of an MCMC are typically much less likely than later ones 
because they are drawn from completely random locations in parameter space. Thus, 
these early proposals are typically discarded as the ‘burn-in’ period of the MCMC 
analysis. We assessed the appropriate sampling frequency and burn-in by visual 
inspection of the chain outputs to look for autocorrelation of the likelihoods and 
stationarity of the likelihood values. As sampling frequency decreases, one must run 
more ‘generations’ of an MCMC in order to adequately sample parameter space. We 
also examined the potential scale reduction factor (PSRF), a heuristic index that 
approaches 1 as multiple chains converge on the same parameter space. 
For each data set, we ran three analyses for different models of character evolution. 
One model allowed for a single transition rate among the alternative states at each 
character. This rate was symmetric (i.e. 0 ! 1 changes equaled 1 ! 0 changes) and 
identical across characters. The other two models added parameters to relax these 
constraints on character change. One model, allowed for asymmetric transitions 
between character states according to a beta distribution (Lewis, 2001), while the 
other used a gamma distribution to allow for variation across the different characters 
such that some could evolve more quickly than others. 
We compared the trees output by the best character models for each data set to the 
trees generated by the BioNJ algorithm applied to the matrices of the edit, feature, and 
listening experiment distances.  We quantified these comparisons by calculating the 
partition metric, which is a standard measure of tree similarity that corresponds to 
twice the number of differing bipartitions specified by internal branches of a 
phylogeny (Penny and Hendy 1985). We assessed significance of the partition metrics 
by comparing the observed values to the null distribution obtained by generating 1000 
random tree topologies. These analyses were performed with the R statistical software 
and the “ape” package. 

 
6. The Rhythm Data 
 
The data used in the experiments consisted of the nine rhythms, expressed in circular 
and polygon notation in Figure 15, taken from Mario Rey’s ethnographic study of 
Cuban art music (Rey, 2006). Mario Rey classified the seven rhythms in Figure 15 
(other than 2-3-3 and 3-2-3), which represent some of the most frequently used Afro-
Cuban rhythms, into two groups: the cinquillo and cinquillo-variant derived from the 
contradanza, and the tresillo, tango-congo and conga derived from the habanera. The 
tresillo may be derived from the habanera by substituting the third onset for a rest, 
the tango-congo by substituting the last onset for a rest, and the conga by substituting 
the two last onsets for rests. On the other hand the cinquillo may be derived from the 
contradanza by substituting the fourth onset of the contradanza for a rest, and the 
cinquillo-variant may be obtained by substituting the fourth onset for a rest, and 
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substituting the rest at pulse 7 for an onset. Of course, these transformations are not 
necessarily those made by the edit distance calculations. Rey also suggested that the 
habanera and contradanza rhythms were the ancestral rhythms in their respective 
groups. The rhythms 2-3-3 and 3-2-3 were added to the data out of curiosity because 
they are rotations of the tresillo and are used in traditional music all over the world.  
In a previous investigation the edit distance confirmed the two-group categorization 
of Rey’s ethnographic study, and provided evidence that the habanera serves as a 
prototype for this collection of rhythms, thus supporting Rey’s assertion that one 
group derives from the habanera (Toussaint, Campbell, & Brown, 2010a).  However, 
no support was found for the claim that the contradanza played an ancestral role. 

 

 
 
 

Figure 15. The nine rhythms used in the experiments. 
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7. Listening Experiments 
 
For completeness, the details of the listening experiments reported previously 
(Toussaint, Campbell, and Brown, 2010a), showing that the edit distance is a good 
predictor on human perceptual judgments, are briefly described below. 

 Participants 
Sixteen participants (8 males and 8 females) took part in the listening tests, and 
ranged in age from 18 to 57 (mean age = 29.5). Eight participants were 2009-2010 
Radcliffe Fellows at the Radcliffe Institute for Advanced Study at Harvard 
University, and eight were undergraduate students at Harvard University majoring in 
music. Each participant was paid $10 for his/her participation. The Radcliffe Fellows 
represented a variety of academic disciplines. The sixteen participants had an average 
of 9.1 years of musical training. Some of the Radcliffe Fellows had no musical 
training. 

Apparatus 
The participants listened to the rhythms using either Sennheiser, model PXC 250, or 
SONY, model MDR-NC7, noise-cancelling headphones (NoiseGuardTM). These 
headphones were connected to a MacBook Pro laptop Apple computer which 
displayed the graphical user interface of the Sonic Mapper software developed by 
Gary P. Scavone using Qt for the user interface and RtAudio for audio output 
(Scavone, Lakatos, & Harbke, 2002). The Sonic Mapper software offers a variety of 
experimental methods for comparing acoustic inputs. In these experiments the 
pairwise comparison method was used. 

Stimulus materials 
In order to create sound samples that resembled the binary symbolic notated rhythms 
as closely as possible, the sound samples (created using Apple Garageband), were 
entered exactly in MIDI format.  Each onset triggered an identical clinical click, 
which resembled the sound of a pair of wooden claves. Each rhythm was repeated 
four times in succession at a tempo of 200 pulses per minute, resulting in a sound 
sample that lasted for 8 seconds. 

Procedure 
Before the start of the experiment each participant filled out a form with some 
biographical data, and read some instructions that told the participants that they would 
be hearing 36 pairs of rhythms, and that they would be asked to compare them using a 
pseudo-continuous sliding scale from 1 (most dissimilar on the left) to 10 (most 
similar on the right). The SonicMapper program presented each pair of rhythms only 
once in a randomized order. Furthermore, all the rhythm pairs were also presented in 
different random orders to each participant. The entire listening test took between 20 
and 30 minutes. The participants were not trained to judge the range of variability of 
the rhythms, and they were not primed with an underlying meter.  
The scores obtained from each participant were subsequently subtracted from ten in 
order to convert them to dissimilarities rather than similarities, a requirement of the 
input format for the phylogenetic analysis software package used. Finally, for each 
pair of rhythms compared, the median distance across all the participants was used in 
the Phylogenetic analyses and Mantel tests. 
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8. Results 
 
Results from the Distance-based Method 
 
The feature vectors obtained from the fourteen features computed for each of the nine 
rhythms of Figure 15 are shown in Figure 16. 
 

 
 

Figure 16.  The 14-dimensional feature vectors for each of the nine rhythms of Figure 15. 

The dissimilarity matrices obtained from the listening experiments with human 
subjects, the L1 metric (city-block distance) in 14-dimensional feature space, and the 
edit distance, are shown in Figures 17, 18, and 19, respectively. The bottom rows in 
the tables, labeled TOTAL, list for each rhythm the sum of its dissimilarities to all the 
other rhythms. The corresponding phylogenetic trees for these three matrices appear 
in Figures 20, 21, and 22, respectively. 
In Figure 17 the rhythm most similar to all the others (one of the definitions of a 
prototype) is the tresillo, with a lowest TOTAL score of 30.72. The habanera on the 
other hand, with a score of 34.36, comes in second as a candidate for prototype. The 
term prototype is used here to refer to a good exemplar or a highly representative 
instance of a category as is done by Rosch (1975) and MacLaury (1991). 
The phylogenetic tree in Figure 20 computed from the matrix obtained from the 
human similarity judgments of Figure 17 separates the contradanza, cinquillo, and 
cinquillo-variant group from the remaining rhythms, in agreement with Rey’s 
classification (Rey, 2006). A detailed description of the listening tests and their 
results appears in Toussaint, Campbell, & Brown, (2011). The results varied 
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considerably among subjects, with standard deviations ranging from 1.35 to 2.26, 
with an average of 1.7. 
Concerning the L1 metric (city-block distance) matrix computed with the 14 features, 
there are some marked differences between the tree from the listening experiments 
(Figure 20) and that generated by the 14 rhythmic features (Figure 21). Furthermore, 
the Mantel test performed on the corresponding two matrices used to infer the trees 
gave a very low correlation coefficient of r = 0.181 with a p-value of 0.138 (one-
tailed test). In spite of these overall poor results, the feature-based method yielded one 
local agreement with the listening results: the tresillo and rhythm 2-3-3 are clustered 
together on both trees. Furthermore, the feature-based method yields the habanera as 
the prototype, with a TOTAL score of 35. 
The tree in Figure 22 obtained from the edit distance matrix, like the tree resulting 
from the listening tests, separates the contradanza, cinquillo, and cinquillo-variant 
group from the remaining rhythms, in agreement with Rey’s classification (Rey, 
2006), and exhibits several additional local similarities with the tree shown in Figure 
20. Compared to the result for the features, the Mantel test calculated on the edit 
distances and the scores from the listening experiments gave a much higher 
correlation coefficient of r = 0.594 with a p value of 0.0002 (one-tailed test). The edit 
distance also yields the habanera as a prime candidate for the best prototype, with a 
TOTAL score of 16 (tied with the tresillo and cinquillo). 
Results from MCMC Inference of the Maximum Likelihood Trees 
The onset-rest and feature trees with the highest posterior probabilities are shown in 
Figures 23 and 24, respectively. Because we considered all tree topologies to have 
equal prior probabilities (before the analysis), these trees with the highest posterior 
probabilities are also estimates of the maximum likelihood trees for the data. For the 
feature data set, visual inspection of the chain likelihoods and the PSRF diagnostic 
(potential scale reduction factor) lead us to use six independent runs each of 
5,000,000 generations, sampled every 1000 generations. The chains from the binary 
onset/rest coding data appear less autocorrelated, so we used 100,000 generations 
with a sampling frequency of 100. In both cases we used burn-in values of 100, 
thereby discarding the first 100 saved proposals from the posterior draws. 
The maximum likelihood tree from the binary onset/rest coded rhythms shown in 
Figure 23, agrees with the edit-distance tree (Figure 22) and the listening test tree 
(Figure 20), in separating the contradanza, cinquillo, and cinquillo-variant group 
from the remaining rhythms, again in agreement with Rey’s classification (Rey, 
2006). It also agrees in clustering the habanera and tango-congo together. Indeed, 
this tree was most similar to the BioNJ tree inferred from the edit distances (partition 
metric = 6). This similarity was significant as only 4 of 1000 random tree topologies 
had partition metrics equal to or less than 6 (p = 0.004). The binary rhythm tree was 
also significantly similar to the tree inferred from the listening experiments (partition 
metric = 8, p = 0.036). However, the binary rhythm tree was not significantly similar 
to the tree inferred from the feature-based distances (partition metric = 10, p = 0.221) 
The maximum likelihood tree from the features of the rhythms was not similar to 
either the edit distance tree or to the tree from listening experiments (partition metric 
= 14, p = 1.000).  In fact, the feature tree was as different from the edit distance and 
listening experiment trees as it was from the most different of the random trees in our 
null distribution. The maximum likelihood feature tree was similar, however, to the 
tree inferred from the matrix of feature distances (partition metric = 6, p < 0.001). 
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Figure 17. The dissimilarity matrix obtained from the listening experiments. 

 

 
 

Figure 18. The L1 distance matrix computed with the 14 features. 

 

 
 

Figure 19. The edit distance matrix. 
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Figure 20. The phylogenetic tree computed from the dissimilarity matrix obtained from the 
human similarity judgments. 

 
 
 

 
 

Figure 21. The phylogenetic tree computed from the L1-distance matrix using the 14-
dimensional feature vectors. 
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Figure 22. The phylogenetic tree computed from the edit-distance matrix. 

 
 

Figure 23. The maximum posterior probability trees for the binary onset-rest coding of the 
rhythms. 

 

 
 

Figure 24. The maximum posterior probability trees for the features of the rhythms. 
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9. Discussion 
 
Two very different implementations of comparing rhythms based on transformations 
(BioNJ and Bayesian character evolution) are much better at recovering human 
judgments and Rey’s ethnographic account (Rey, 2006) than are the same algorithms 
applied to comparisons of rhythms based on features. What the edit distance and the 
Bayesian analysis of the binary onset/rest codes have in common is that they both 
model the transformation of one rhythm into exactly another rhythm. In this sense 
they are both ‘transformational’ even though they imply different underlying 
mechanisms of how these transformations occur. Their congruences with the listening 
experiments and with Rey’s ethno-musicological account suggest that 
transformational similarity and difference (conversion of one sequence into another) 
are most salient to individuals and to cultural processes. 
The lack of congruence of the feature-based methods (either BioNJ or Bayesian) with 
the listening experiments and Rey’s ethnographic account suggests that features of 
rhythms are of little importance to human cognition. The listening experiments 
indicate that people are either not attentive to mathematical features such as evenness 
or symmetry, or else they are incapable of recognizing when such features are similar 
or different.  To the extent that Rey’s ethnographic account of culturally related 
rhythms is accurate, it makes sense that features would also be unimportant in 
rhythmic evolution since the learners of the rhythms either pay no attention to or 
cannot process the features.  
In spite of the overall lack of congruence of either of the two feature-based methods 
(BioNJ or Bayesian) with Rey’s ethnographic account, the feature-based distance 
method using the L1-distance does manage to single out the habanera as the rhythm 
from which all the others are derived, with a TOTAL score of 35 (Figure 18), thus 
adding a twist to Rey’s account. 
Although the results provide significant insights into the processes by which human 
judgments and rhythmic evolution may occur, the transformational approach provides 
limited ability to reconstruct deep ethno-historical lineages of rhythms. We found 
very low statistical support for the tree topologies depicted, and phylogeneticists 
would regard these trees as undifferentiated polytomies due to this low support. This 
does not invalidate the present findings because our focus is on how the optimal trees 
compare to human similarity judgments and cultural processes that are known from 
data sets that are completely independent of the inference of the phylogenetics trees 
(that is, our listening experiments and Rey’s ethonographic account). The question of 
the appropriateness of the application of phylogenetic tools from biology to other 
domains such as cultural evolution in general and musical rhythm in particular, has 
already been discussed in the literature. While it is true that in this paper the trees are 
used mainly for the purpose of visualizing the structural relationships between the 
rhythms, in previous research we have found evidence in similar applications of 
phylogenetic trees to rhythms from other cultures such as flamenco meters (Diaz-
Bañez, et. al., 2004), North Indian talas (Thul & Toussaint, 2008b), and Arabic 
rhythms (Toussaint, Campbell, & Brown, 2011), that the central prototypes do play 
an ancestral role in the evolution of those rhythms. Other researchers have also found 
that the phylogenetic tools used in biology are applicable to cultural evolution as well. 
See for example the paper on the evolution of carpet designs by Collard, & Tehrani 
(2005), and the study of cultural inheritance versus diffusion of religious violence 
(Matthews, Edmonds, Wildman, & Nunn, 2012). 
Additionally, the incongruence of feature-based approaches means that rhythm 
phylogenetic studies will have difficulty extending beyond comparisons where 
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different rhythms can be placed (e.g. by expansion or contraction of the timespan of 
the rhythmic cycle) on the same scale. When one rhythm is not evenly divisibly by 
another, it is much more difficult to line up the binary strings of onsets and rests in a 
preliminary hypothesis of which character states are transitioning to others. This is 
required of transformational techniques. Features, on the other hand, can be calculated 
on and compared for any set of rhythms that differ in both their number of onsets as 
well as their number of pulses, but our results suggest that features of rhythms, play 
no role in human rhythmic judgments or cultural processes. However, these 
conclusions should be taken with a grain of salt, since they are based on only one 
family of nine rhythms. Further experiments with other data sets are required to make 
firmer conclusions on this issue. 
It is also worth emphasizing that the conclusions offered here may apply only to 
structural features such as those considered in this study. For such features there is a 
clear distinction between feature-based and transformation-based measures of 
similarity. By contrast, for descriptions of rhythms based on simpler local features, 
the distinction between the two approaches may become blurred. A concrete rather 
extreme example will clarify this point. Consider a rhythm in binary sequence 
notation such as the clave son [x . . x . . x . . . x . x . . .] consisting of sixteen pulses 
with five onsets and eleven rests. This rhythm may be viewed as a point in the 5-
dimensional onset-feature-space, consisting of five local duration features. Each 
feature is an onset characterized by the time elapsed between the start of the rhythm 
and the time the onset is heard. In other words, the feature vector of this rhythm is 
given by [0, 3, 6, 10, 12]. Compare this rhythm to another rhythm [x . x . . . . . x . x . . 
. x .] with feature vector [0, 2, 8, 10, 14]. Computing the L1-distance between these 
two feature vectors yields the calculation (0 + 1 + 2 + 0 + 2) = 5. The transformation 
method described in the introduction that transforms one rhythm to another by means 
of the minimum number of swaps between adjacent onsets and rests yields a swap 
distance also equal to 5. Clearly, although this feature-based method appears 
superficially to be different from this transformation method, the two are merely 
alternate implementations of the same underlying measure, and thus in this case both 
methods will yield the same results. 
Finally it is worth pointing out that the features selected in this study were not chosen 
on the basis of their lack of correlation, but because they were important in music 
theory. It would be interesting to determine how correlated these theoretical features 
are for rhythms used in practice. Some features, such as the toggle and off-beatness 
properties are probably correlated. Better results could conceivably be obtained using 
a totally different set of uncorrelated features. However, such an investigation was 
beyond the scope of this study, and is left for future research. 
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