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fixed. Furthermore, only one point will have an integral x-coordinate and thus achieve the
maximum aperture angle by the construction of Q. The adversary will ensure that this point
isfixed only after n-2 chainsarefixed. Therefore, Q(nlog(nvVn)) queries must be made before
the x-coordinate of the point with the maximum aperture angle is fixed.

On each floating chain, spaceisreserved for the ((mVn)j + K)th point, for 1 < k < m/n, at both
]-1/2 + k/(4m/n) and j+ 1/4 + k/(4m/n). The adversary responds to a query for x; as follows:
if x; is fixed, it reports (X;, -1/x;). Otherwise x; isin afloating chain and i = ((nVn)j + K) for
someinteger 1 < k <m/n. If thisisthe last floating chain, then the adversary fixes x; = j and
fixes al other floating points in that chain to their reserved spots before or after x; as needed
to preserve their order. If x; isnot in the last floating chain, then the adversary fixes either all
points of the floating chain before and including x; to their reserved spots less than j or all
pointsincluding x; and after to their spots greater than j, which ever causes fewer pointsto be
fixed. These actionsforceall but onefloating chain to be fixed before the algorithm discovers
which point isfixed to (j,-1/j) for some integer j and, thereby, finds out which aperture angle
achieves the maximum value of 172. Since the adversary ensures that Q(log(m/n)) steps are
required to fix each chain, this gives the bound of Q(n log(nvn)) queries. Q.E.D.

Notice that al computations can be performed in rational arithmetic with numerators and de-
nominators bounded by small polynomialsin n and m. Thus, the adversary can operate within the
standard unit-cost RAM model of computation with word length logarithmicinn + m.

6. Concluding Remarks

In this paper we considered the problem of computing the aperture angle of a camerathat is
allowed to travel in a convex region in the plane and is required to maintain some other convex
region withinitsfield of view at all times. We presented an O(n + m) time algorithm for computing
the minimum aperture angle with respect to a convex polygon Q when x is allowed to vary in P.
We also presented algorithms with complexities O(n log m), O(n + nlog (m/n)) and O(n + m) for
computing the maximum aperture angle. Finally, we established an Q(n+ nlog (nvn)) timelower
bound for the maximization problem and an Q(m+ n) lower bound for the minimization problem
thereby proving the optimality of our algorithms.
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The vertices oP are chosen on the hyperbgla -1/x for 3/2< x< n + 1/2 and polygoiQ
has vertices (0,08 = ((3%1) / 43, (i*-3) / 4) for integers Z i < n, and (Qn?). Thesey; are chosen
so that the following properties hold:

(1) the chain fronm, to g, is convex,

(2) the slope of the line containilggandg;. ; is positive for < i < n,

(3) the circle with diameter from the origindpis tangent ty = -1/ at a point orx =1,
(4) the ray from the point,¢1/i) through poing; intersectQ only at pointg;.

To verify (1) and (2), note that the slope of the line contaigjrondg; ; is greater thaif
but less thani2. Since this slope is positive and increasing witth) and (2) hold. To verify equa-
tion (3), observe that the equation of the line that bisects the origin and the pdifiX is given
by (y+ 1/21) / (x - i/2) =i2. The line normal ty=-Uxatx=iis y+ 14)/ (x-i) = 2. These two
lines intersect at the circle centerif(3) / 43, (i4-3) / 4) and the poing; is double this vector. As
a result, if (, -1/4) is a vertex oP, then the aperture angle, which is defined by the origirgand
has a local maximum af/2 at that vertex. Otherwise, aperture angles ugiage less tharm/'2, in
accordance with observation 2.1. Finally, (4) holds since the chairgfrtog,, is convex and the
slope of the line containing, ¢1/i) andg; is less than the slope of the line contairgnandg, 1

With this construction we can now prove the following lower bound by an adversary argu-
ment.

Theorem 5.4: The complexity of computing, (V) is Q(n log(m/n)) whenm is w(n).

Proof: Initially, the algorithm knows the polygdp, as described above, and knows that the ver-
tices ofP havex coordinates 3/2 Xonyn < Xonyn+1 <---<Xm < N+1/2 and lie on the curwe= -
1/x (The rather strange looking subscripts are chosen so as to make later index calculations
easier.) The algorithm discovers the exact pointl(x;) by a query to an adversary. Since
knowing thex coordinates is sufficient, we focus on these. We will showCk@atog(m/n))
queries are necessary. The previous section showed thitgQ(Vn)) were sufficient.

The adversary begins by fixing everg/)th point on the curveqpyn); =j- 1/2, for integers
2<j<n. The chain between two consecutive “fixed” points is said ftoagng since thex-
coordinates of the points in that chain are not yet fixed. Initially, there hfoating chains
and each chain containgn-1 points whose-coordinates are not fixed. We will say that a
floating chain idixed when all the points in that chain dmeed. We will show that the ad-
versary can ensure th&t(log(m/n)) queries are asked before all points in a floating chain are
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T,.1 obtained from the previous construction of Q. Now consider aninterval [T;_q, T;] onthis
edge of P. Since 8(X) is upwards unimodal in thisinterval it follows from lemma 2.6 that its
minimum value is determined by one of its end points. Therefore 6,,;,(V) is determined by
one of the tangent points T;. Recall that 6(T;) = W2 fori =0, 1, 2,..., n-1. Therefore, if any
algorithm does not inspect a diagonal d;, then an adversary can modify this diagonal so that
there exists a point on the x-axis that yields a global minimum less than 1v2. This modifica
tion may be accomplished by picking an arbitrary edge [qj_4, g;] of Q and increasing its slope
by asuitably small but positive amount without changing the position of g;_;, thus creating a
small open interval on the x-axis which lies in between and outside both circles C;_; and C;
in which 8(x) < 172 and where the global minimum is located. Q.E.D.

Theorem 5.3: The complexity of computing 8,,5,(V) is Q(n).

Proof: We construct polygon P such that no part of it lies above the x-axis and such that one of
its edges belonging to IB(P) lies flush with the x-axis and contains all the tangent points T,
T1, Tp,..., Ty.1 Obtained from the original construction of Q. Recall that the aperture angles at
all tangent points T; are each 1/2. Now consider the function 8(x) in therange of someinterval
[Ti.1, T;]. Since throughout thisinterval, Q behaves as the diagonal d; and [T;.;, Tj] isalso a
chord of C; that is not intersected by d, it follows from lemma 2.1 that 6(x) is upwards uni-
modal in this range and therefore contains a local maximum with a value greater than 172.
The exact value of the local maximum in the interval [T;_q, T;] is determined by the distance
between T;_; and T; which isalso the relative length of the chord [T;._4, Tj] of thecircle C;. We
can select every T; after Tp so that the local maximum for every interval isTv2 + €, where €
isafixed small positive number. If any algorithm does not inspect diagonal d; then an adver-
sary can move vertex g; further out along ri_; and make alocal maximum angle greater than
W2 + € (i.e., the global maximum) for some x ininterva [T;_q, Tj]. Q.E.D.

Note that for the Q(n) lower bound of the maximum aperture angle problem no assumptions
are made on the size of polygon P. When mis O(n) this proves that our algorithms with complex-
ities O(n + nlog(n/n)) and O(n + m) are optimal. However when mis w(n) this lower bound no
longer proves optimality. We will use asimilar but more complicated construction that proves an
Q(n + nlog(nVn)) lower bound for the B,,,(V) problem when mis w(n).

First we choose a suitable pair curves on which the m vertices of P and n vertices of Q will
lie. Then we pick the vertices of Q so that there are n local maxima of angle at most 172. Finally
an adversary reveals the vertices of P in response to queries in such away that log(m/n) queries
must be asked to determine the true angle of each local maximum.
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>
Fig. 13 Illustrating the Q(n) bounds on B,,(V) and 8,n(V).

from the fact that both angles ang(qy,, Tp, 1) and ang(q,, T4, ;) are V2. At the next iteration g, is
located on r; and above g, thus preserving convexity. When the (n + 1)st vertex islocated it is con-
nected to g, thus completing Q.

To summarize the inductive step assume we are given the above construction at step k. In oth-
er words, we constructed the tangent point T,, the ray ry, the vertex g, and the circle C with diam-
eter dy = [0, Q] and we want to insert vertex gy, 1. Accordingly, we pick apoint T, ; to the right
of T, on the x-axis. We find the intersection point z, ; of [q,, T,] with the circle C,. That such an
intersection point exists with the required property that z, , be left of T,, 1 follows from the fact
that circle Cy intersects the x-axis at both T, and T,_; and therefore the arc(Ty, q,) lies above the x-
axis. Next we construct ray ry,.; emanating at T ; and parallel to [z, q,] which createsthe desired
vertex g, 1 at itsintersection with ry, at a point above and to theright of g, and aboveray r,_;, thus
maintaining the convexity of Q.

We will now use Q to establish our first lower bounds.

Theorem 5.2: The complexity of computing 8,,(v) is Q(n).

Proof: We construct P to lie within the strip determined by 0 <y < 1/2 such that one of its edges
belonging to OB(P) is flush with the x-axis and contains all the tangent points Tg, T4, Ty, ...,
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as desired. Successively we pick points on the x-axis increasingly far from (0,1), lower the blade
and discard the paper below the cut. We also make one cut at y = 1. This leaves a convex but still
unbounded polygon (the shaded region in Fig. 12). To fix this we make one final cut along aline
through (0,1) and of sufficiently large but finite slope.

y-axis

\

N

0,1) >
X-axis

Fig. 12 lllustrating the con-
struction of polygon Q.

L et us consider the above ideain more detail. For smplicity assumethat Q hasn + 1 vertices
labelled qg, q4...., 0, iN counter-clockwise order. We begin by locating the last and first vertices of
Qatg,=(0,1) and qg = (2,1), respectively, and constructing the circle Cq of unit radius centered
at (1,1) (seeFig. 13). Let x = T be the point at which Cg is tangent to the x-axis. Let rg denote the
ray starting at Ty in the direction of . The next edge of Q, namely [gq, g;], ischosentolieonry,
To know where on rg to locate g, pick any point on the x-axis some finite distance to the right of
To and call it Tq. The line segment [q,,, T;] must intersect Cg at a point z; in the interior of the arc
of Co (measured in a counter-clockwise direction) given by arc(Tg, dg), with the property that z; is
smaller than T,. Next construct theray rq starting at T, in an upwards direction parallel to [z;, qg].
Since the line through [z;, qg] intersectsrg at gg, and z4 liesto the left of T4, ry must intersect ry at
some point to the right and above qg. We locate vertex g, at thisintersection point and cal [q, 9;]
the diagonal d, of Q. To finish the procedure that is to be iterated we construct a circle C; with
diameter d, that passes through the four points {q,, Tq, T4, d1}. That such acircle exists follows
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located in the upper semi-circle (see Fig. 11). These polygons have the property that every

07)

gl R \ Un

C

Pm P1
F)
Pm1 D,

Fig. 11 lllustrating theQ(m) lower bound 01®,(V).

edge of each of the two polygons can be extended by an arbitrarily large distance without in-
tersecting the interior of any other edge in either polygon. Therefore palyyas the ap-
pearance of a line segment to a vieweP.nn particular,Q behaves as if it were the edge

[0, a1]- Therefore, by lemma 2.8,,;,(v) must be realized by a vertex Bf Furthermore,

note that sinc®’s vertices are on the circl@and edged,, g;] is a chord of the same circle,

it follows that the aperture angle at each vertéXigfequal. If any algorithm does not inspect

a vertexp;, then an adversary can move it outward and make the smallest angle @gcur at
Q.E.D.

We turn now to the construction for tk¥n) bounds. First we construct a polygQrof n
vertices in the first quadrant B in such a way that the aperture angle fundigi contains(n)
local maxima. The general idea may be likened to cutting a convex polygon from a piece of paper
with an office paper cutter. With such a cutter one may slide the paper against a supporting border
in a direction orthogonal to the cutting blade, then lower the blade at the desired position. We will
fix the paper and move the cutter. In particular, we will rotate the cutter frame and translate the
blade before each cut. Assume that our original piece of paper consists of the first queRi?rant of
and refer to Fig. 12. Our paper cutter is anchored at the point (0,1) about which it is allowed to
rotate. Once a position of the cutter is fixed, the infinite blade may be translated as far from (0,1)
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5. Lower Bounds

In the previous two sections we described algorithms for compiggv) andd,,,(v). We
presented three algorithms for computthg,(v). Their running time complexities are Ot m),
O(n log m) and Ofi + nlog(m/n)). We also gave an algorithm for computig,(v) in O + m)
time.

In this section we show that the complexity of compulipg(v) is Q(max (m, n)). We also
show a time complexity d®(max, nlog(m/n))) for computing®,,ox(Vv). This proves the optimal-
ity of the algorithms to comput,,,(v) and6,,,(v). We begin by describing a construction that
provesQ(m) is a lower bound for computir§};,(v). Then we describe another construction that
showsQ(n) is a bound foB,,,(v) and which also affords a simple modification of it to establish
the same bound f@,,,(Vv). Finally, whemmis w(n), we establish af(n log(nv/n)) lower bound.
Our lower bounds rely on the fact that the polygons are given in the form of linear arrays, a very
natural representation.

Theorem 5.1: The complexity of computing,(v) is Q(m).

Proof: We create two convex polygons, the vertices of which lie on the unit Cicdatered at
the origin. FoiP we choose vertices on the lower semi-circl€pivhereag)’s vertices are
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Fig. 10 lllustrating that the min-
imum aperture angle on P with

respect to Q may be realized by
non-vertex points of P.

Ps

Therefore 8,,,(v) isrealized by avertex of afacef; of F(P) that lies on OB(P). But these ver-
tices are precisely either the vertices of P or the intersection points that the rays extended
from Q, and Q,, make with OB(P). Q.E.D.

Theorem 4.2: 6,,,(v) can be computed in O(n + m) time.

Proof: Asinthe proof of theorem 3.3, we compute an extended outer chain EOB(P) by inserting
dummy verticesin OB(P) where the rays of the extended edges from Q, and Q, meet OB(P).
For each edge in EOB(P) the aperture angle is determined by a single diagonal of Q. From
corollary 2.2 it follows that a candidate solution is determined for each edge of EOB(P) by
one of its end points. The correctness of this procedure isimmediate from lemma 4.1. The
computational tools are the same as those used in the proof of theorem 3.3 and O(n + m) time
suffices. Q.E.D.
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4. The Case of Two Convex Polygons. The Minimization Problem

We assume as before that [py, po,..., Pyl IS represented by an array in clockwise order@md
[01, Op,---, Oyl IS represented by an array in counterclockwise orderv betthe point irP where
the viewer (camera) is located. The minimum aperture angle with resggotvr all locationy
in P is denoted bW,y (V).

Problem: Given two disjoint convex polygorsandQ in the plane withim andn vertices, respec-
tively, find 6,,,(V).

Before we characterize the solution point®ifor 6,;,(v) we recall the characterization for
the Polygon-to-Segment minimization problem presented in lemma 2.6. In that problem, because
the solution is trivially zero when the line through the segment that is viewed intersects the poly-
gonP, it was assumed that the line does not intefBeBecause of this assumption the points in
P where the aperture angle reaches a minimum lie on verti€B(B). On the other hand, in the
general problem considered here this characterization is no longer valid. It suffices to consider a
configuration such as that illustrated in Fig. 10 whers thin and wide wittOB(P) a single seg-
ment p,, pJ andQ is thin and tall “pointing” towards the central region @f, pg. In such an
exampleBy,in(V) is realized by a pointin the interior of p,, p] and not by eithep, or ps. Never-
theless, we now show that in general the solution can only occur at a finite number of locations in
OB(P), and that these may be searched efficiently.

Lemmad4.l: 6,,,(V) is realized by a point 0@B(P) that is either a vertex @B(P) or an inter-
section point oOB(P) with a line that is colinear with an edgef

Proof: The two separating tangentsfandQ partition the plane into four wedges. M(P)
denote the wedge that contaidsTherefore the solution must lie W(P). Now partition
W(P) into a convex subdivision as follows. For each vegier Q, (except the last vertex of
Q) construct the infinite half ray in the directiondpf; and denote it byay(q;, g+ 1). Sim-
ilarly, for each vertexj; in chainQy, (except the last vertex @) constructay(g. 1, o). Fi-
nally, construct rays from the first and last verticeQ9&ndQy, along the common and sep-
arating tangents & andQ and in the direction d®. This arrangement of rays induces a sub-
division of W(P) and hence dP. Denote the resulting subdivision®by F(P). Each facé;
of F(P) is a convex polygon with the property that the aperture angle of anyvaaifitis
determined by one and the same diagon&),&fayd;. Therefore, for each fadeof F(P) we
have an instance of th#®lygon-to-Segment problem and by lemma 2.6 the solution to sub-
problemf; is determined bDB(f;) with respect tal,. If the solution to a subproblefndoes
not lie inOB(P) then the same argument used in the proof of lemma 2.6 shows that a smaller
aperture angle exists @B(P).
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Using Jensen’s inequality and equation (1) above we have:
T, (n,m) <O(logm+ n + nlog (m/n))

= O(n+nlog (m/n))

Thus the total time taken to compute all #ie is O + n log(m/n)). In the same way, alll
the intersection pointg from the seB can be computed in ®¢ nlog(n/n)) time. Finally,
the two sets can be merged imPifme as shown in the proof of theorem 3.4.

Merging the two ordered sets creates a partR@) of chainlB(P). Every pair of consecu-

tive intersection points._; andry in R(P) forms a convex polygonal chaiy(P) which is a

subset of B(P). If the chain has less then 3 edges, the solution can be found in constant time.
Otherwise a binary search can be used to find a candidate aperture angle Ry{fad¢h-

nally, the maximum of all these candidates is chosen as the maximum aperture angle. The
correctness of this procedure follows from corollary 2.1 and lemmas 2.1-2.4.

We now analyze the complexity of computing the maximum aperture anglg.reeresent
the number of edges in chd®(P).

Note that:
Z c,sm (2)

Furthermore, the total time taken to find the maximum aperture angle equals:

O%n +nlog (m/n) + Zmax{ 1,logc,} E

which, by Jensen’s inequality and equation (2) is no greater than:
O(n+nlog (m/n))

Q.E.D.
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theright of the edgej at which a1 occurs, i.e. g, ison edgej + w;, ;. The strategy used to
find &1 is quite simple. We first check to seeif a;,; occurs on edge j, then we check edge
j+1, edge j+2, edge j+4 and so on. In short, we verify edges j+2' (t = 0,...) until we find the
first edge j+2° which either contains, or isto theright of, a;, 1. Thisimplies that a;, ; occurs
on one of the edges in the chain from j+251to j+25. If s> 1 then we apply binary search on
this chain to find edge j+w; . .

L et us analyze the complexity of the search procedure. In thefirst step, we find the edgej+2°.
If &, occurs on edges j, j+1, or j+2, we expend a constant amount of time to find it. If it
occurs beyond edge j+2, then we expend O(log s) time. Therefore, this step takes time
max{ O(1), O(log s)}.

If s> 1, then in the second step, we apply a binary search on the chain from j+251 to j+25.
The binary search takes time O(log s). Note that for s> 1, we have that wi, ; < 25< 2w, ;.
Therefore, the total time used to find ;1 is max{ O(1), O(log s)} which in turn equals
max{ O(1), O(log Wi 1)}

We now analyze the time T(n,m) taken to compute all the intersection points g from the set
A. First, finding a; takes O(log m) time. To find every subsequent a; takes time equal to
max{ O(1), O(log W)}

Note that

Y wism (1)
i=2

Therefore, the total time T(n,m) equals:
n
O(logm + z max{ 1, logw.} )
i=2

< O(logm + 1+ z logw;)

w,<2,1=2...n w,=21=2...n

<O(logm+n+ logw;)

w,22,1=2...n
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Theorem 3.4: 6,,5(V) can be computed in ®(og m) time.

Proof: Consider the partitioR(P) obtained by merging the two ordered getndB. Every pair
of consecutive intersection poirrg; andr, in R(P) forms a convex polygonal chaiy(P)
which is a subset dB(P). For each such chain its maximum aperture angle is determined by
a single diagonal d. Therefore we may use binary search to find a candidate aperture angle
for R(P) for eachk. The correctness of this procedure follows from corollary 2.1 and lemmas
2.1-2.4.

Consider now the complexity. We may use the algorithm of Chazelle and Dobkin [CD87] to
determine all the intersection points (bps andb,’s) that form the setd andB, respective-

ly. Since there are at masintersections and each one is found in Off9dime, the seté

andB are found in Qf log m) time. We now show how to mergeandB in O(n) time.

Let the edges dfB(P) be numbered 1, 2,k in clockwise order. When computing eagh
andby, we associate with the intersection point a pointer to the label of the edB{(€)bn
which the intersection point occurs. For exampley ibccurs on edgd then we store edge

5 with a; and so on. Now we can nger setsA andB in O(n) time since the sorted order of
the intersection pointsiea,’s andoy's) is known and the labels of the edges on which these
intersections occur is known. Thus, we avoid looking at the whole WB@hand only con-
centrate on the edges which contain intersection points.

Finally, computing a candidate aperture angleRgP) for eachk takes O(logm) time for
the binary search. Since there are at mosj €{ndidates to be computed, finding the max-
imum takes Qf log m) time. Q.E.D.

The above algorithm can in fact be improved ta ®f log (n/n)) time. The improvement is
based on a method of finding timersection points (tha's andb,’s) that form the setd andB
in a more efficient manner. We outline this method below.

Theorem 3.5: 8,,5(V) can be computed in ®¢ n log(m/n)) time.

Proof: We first show how to find all intersection poirgtsfrom the sef in O(n + n log(nm/n))
time. The points from s& can be found in the same way. We number the edd&gR)f=
1, 2...,, kin clockwise order.

In O(logm) time using the algorithm of Chazelle and Dobkin [CD87] we find the pdge-
taininga;. Since the chaiA is convex, they's occur in sorted order on the chHagP). We
find theg;'s in order of their occurrence.

Given thaty, occurs on edgg we show how to find, . Letw;, 1 be the number of edges to
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Q n vertices

ag

P mvertices

Fig. 9 lllustrating the partition of the boundary of P into regions (edges)
where the aperture angle is determined by a single diagonal of Q.

be found by advancing either one edge on IB(P) or one extended edge of Q,, whichever
comesfirst. Therefore with this alternating traversal of the edges of 1B(P) and Q the set A of
al the intersection points generated by Q, can be found and inserted in IB(P) in O(n + m)
time. Subsequently, in the same way the set B of all the intersection points generated by Qy,
on IB(P) can be found and inserted in O(n + m) time. Therefore the extended chain EIB(P)
can befound in O(n + m) time. Furthermore, as we advance along edges of P to find the next
intersection point of an extended edge of Q4 (similarly for Qp) we insert pointers from these
edges of EIB(P) to their tangent vertices of Q. Therefore, for each edge of EIB(P) we can sub-
sequently find the candidate diagonal of Q that determinesits aperture angle in constant time
per candidate. Finally for each such diagonal-edge pair candidate we may compute a candi-
date maximal aperture angle also in constant time per candidate. Therefore the overal pro-
cedure takes O(n + m) time. Q.E.D.

In the above O(n + m) time procedure the chain EIB(P) is obtained by merging the two
ordered sets A and B (that jointly form R(P)) with the chain IB(P) in O(n + m) time, and subse-
quently computing O(n + m) candidates for 8,,,,(V), each in constant time. We may obtain a diffe-
rent upper bound on the problem by computing only O(n) candidates for 8,,,(Vv), €ach in time
O(log m), as we now show.
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the edges of Q that belong to 1B(Q) and OB(Q) divides the boundary of Q into two chains that we
denote by Q4 and Q,,. We denote by A the ordered set of intersection points between the extended
edges of Q4 and IB(P), and by a the intersection of the k-th extended edge from Q, with IB(P).
These vertices are illustrated by black circlesin Fig. 9. Analogously B is the ordered set of inter-
section points between the extended edges of Q, and IB(P), and by denotes the intersection of the
k-th extended edge from Q,, with IB(P). These vertices are illustrated by white circlesin Fig. 9.
Finally, the original vertices of P are illustrated by grey circlesin Fig. 9. Let the partition of the
boundary of P obtained by merging the two ordered sets A and B be denoted by R(P) and the re-
sulting merged intersection points by rg, r,..., rs. Every pair of consecutive intersection pointsry.
1 and ry in the merged set forms a piece of the boundary of P and is denoted by R, (P). Note that
these resulting polygonal chains are convex with respect to Q. Furthermore, for every such convex
chain the aperture angle is defined by one and the same diagonal of Q. More precisely, with argu-
ments similar to those of lemma 2.8 we can establish the following result.

Lemma3.2: For every polygonal chain R(P) . IB(P) inthe partition of bd(P), there aretwo ver-
tices gy [ Q4 and g U Qy, such that for every point x [ R (P), the aperture angle 8(x) with respect

to Q isgiven by ang(gs X o).
Therefore lemma 2.5 is applicable to each chain R (P), where the diagonal playstherole that
the segment ab playsin lemma 2.5.

Theorem 3.3: 6,,5(V) can be computed in O(n + m) time.

Proof: Let EIB(P) denote the extended inner boundary of P with respect to Q, obtained by in-
serting dummy vertices in IB(P) where the extended edges of Q intersect 1B(P). The polyg-
onal chain EIB(P) is convex with respect to Q and contains O(n + m) edges. For each such
edge we find the vertices of Q that admit tangent raysto Q from any point on the edge. These
vertices yield a candidate diagonal of Q for each such edge in question. We then compute a
candidate maximal aperture angle with respect to Q for that edge by computing the maximum
aperture angle for the candidate diagonal. Finally, we select the candidate with a maximum
value as 6,,,,(V). The correctness of this procedure follows from corollary 2.1 and lemmas
3.1and 3.2.

Consider now the complexity. Using the rotating calipers [To83], we may find the common
and separating tangent points of support between P and Q in O(n + m) time. Alternately, we
may use the algorithm of Rohnert [Ro86] and accomplish the same task in O(log n + log m)
time if desired. Therefore the chains IB(P) and the Q4 and Qj, sub-chains of OB%(Q) may be
found within the same time complexity. The first intersection point a; that the first extended
segment of Q4 makes with IB(P) may be found in O(log m) time using the algorithm of Cha-
zelle and Dobkin [CD87]. Due to convexity each subsequent intersection point ay, ag... can
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3. The Case of Two Convex Polygons: The M aximization Problem

We now have the tools to solve the general problem where the object that must be kept in the field
of view is one convex polygon Q, and the region where the camera is allowed to roam is another
convex polygon P. We assumethat P =[py, py,..., Pyl 1S represented by an array in clockwise order
and Q = [q4, 9p,..., Oy] IS represented by an array in counterclockwise order, in order to simplify
notation. Let v bethe pointin P wherethe viewer (camera) islocated. The maximum aperture angle
with respect to Q over all locationsvin P will be denoted by 6,,,,,(V). Let OBY(Q) denotethe portion
of the boundary of Q not containing OB(Q) together with end points ¢; and ¢;. Note that OB%(Q)
could be the entire boundary of Q (see Fig. 8).

Problem: Given two digoint convex polygons P and Q in the plane with m and n vertices, respec-
tively, find 8,g(V).

Lemma3.1l: 6,5(V) isreaized by apoint v on IB(P).

Proof: The proof issimilar to that of lemma 2.2.

Fig. 8

Given that the maximum aperture angle is reached at a point on I1B(P), we define a partition
of IB(P), similar to the partition of the line in the Line-to-Polygon problem. For every edge e of
OB%(Q) - I1B(Q), extend e until it intersects P (refer to Fig. 9). The resulting intersection points de-
termine the desired partition. Notice that the extension of the edges of 1B(Q) and OB(Q) do not in-
tersect P and therefore we need only consider the extension of edgesin OB%(Q) - 1B(Q). Removing
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As a consequence of lemma 2.8 the aperture angle furi¢kpwith respect t@Q is piece-
wise defined ovek. For every interval,, the problem is reduced to the Line-to-Segment problem,
where the segmedy, is determined by the diagonal @fspanning the two vertices that define the
intervall,. Therefore, to find the maximum (respectively, minimum), we simply compute candi-
dates for the maximum (respectively, minimum) for every interval and choose, as the global max-
imum (respectively, minimum), the maximum (respectively, minimum) of all the candidates.

The algorithm to compute the maximum aperture angle is given below. Recall that for every
intervally = [ry, 1] in the partition described above, there are two vertigésQ, andg; [ Qy
that determine a diagond| of Q, such that for every point[] I, the aperture anglé(x) with re-
spect taQ is given byang(ggs X ¢;). To compute the minimum, simply find the minimum in step 3
and change the direction of the inequality in step 4.

Algorithm Line-to-Polygon

Input: A convex polygor® with n vertices and a line that does not interse@
Output: A pointx in L for which the aperture angB¢x), with respect t@, is maximum.

Begin
Step 1.- Find the partititon ot into intervald, I4,..., I,.
Step 2.- For every interval, find the diagonati, such that the aperture angle function
with respect t@ andd, coincide ovet,.
Step 3.- For everyintervall, find x [ 1), such that the aperture angle, with respedj to
IS a maximum ovel;.
Step 4.- Exit with x; is such thab(x;) = 6(x) for allj =0, 1,...n.
End

Theorem 2.1: Algorithm Line-to-Polygon finds in Of) time a poink [J L, such tha@(x) is a max-
imum with respect tQ.

Proof: Step 1 can be done ini@¢ime by first scanning the polygon’s edges, extending the edg-
es to rays in the appropriate direction, and intersecting the resulting rays with theTllme
process is then repeated by scanning in the opposite direction. Finally, due to convexity, the
two resulting sorted lists of intersection pointsLocen be merged i®(n) time. By lemma
2.8, step 2 may be performed innP{ime. To compute each poixtin step 3 O(1) time suf-
fices by corollary 2.1 and since there are)dtervals, step 3 can be done imX{me. Thus
Algorithm Line-to-Polygon takes Off) time to find gpointx in L for which the aperture angle
B(x), with respect t@®, is a maximumQ.E.D.
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Mer1 = 8 X L

Fig. 7 (b)

If req = & (i. € r,q istheintersection point of L with the extension of the edge (g, G+1) of
Qp) then for interval Iy, 1, 8(X) is given by ang(gs X 1), for al x Ol 1 (see Fig. 7 (c)).

Fig. 7 (c)

Thus by induction the lemma follows. Q.E.D.
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The following lemma provides the link between the Line-to-Segment problem and the Line-
to-Polygon problem by reducing the latter to afamily of instances of the former.

Lemma2.8: Forevery interval I, = [ry, I +1] in the partition, there are two vertices g5 [ Q, and
o U Qy, that determine adiagonal dy of Q, such that for every point x [I I, the aperture angle 6(x)
with respect to Q is given by ang(ds X o).

Proof:  Sinceqy, and g, are the highest and lowest points of Q, respectively, then we have that for
al x O 1g= (-0, r1], 8(X) isgiven by ang(g, X q), (see Fig. 7 (a)).

Oh

Qa

(%) qa

Fig. 7 (8

Suppose that for interval I = [ry, 1], 0(X) isgiven by ang(gsx ;) for al x O 1. Note that
If reer = ag (i €. req isthe intersection point of L with the extension of the edge (g, 0s+1) Of
Q) then for interval 1,1, 6(X) is given by ang(qs4 1 X ¢), for al x O 1, 1 (see Fig. 7 (b)).
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To find the minimum aperture angle with respect to ab, we evaluate 6(x) at the end points of
every edge in OB(P) and select the global minimum. The algorithm to compute the minimum ap-
erture angleis presented below.

Algorithm Polygon-to-Segment-Min

Input: A segment ab and a convex polygon P that does not intersect ab.
Output: A point z [I P for which 6(2), with respect to ab, is minimum over P.

Begin
Step 1. Determine the chain OB(P).
Step 2. For every edge e of OB(P) determine the minimum over e.
Step 3. Exit with z= 7z such that 6(z) = 8(z) for al j # 1.

End

Lemma2.7: Algorithm Polygon-to-Segment-Min findsin O(n) time apoint z J P, such that 6(2)
is minimum with respect to the segment ab.

Proof: Step 1 can be donein O(log n) time using binary search asin lemma 2.5 [CD87]. By cor-
ollary 2.2, for every edge e of OB(P) determining the minimum over etakes O(1) time. Thus,
the global minimum over P can be found in O(n) time. Q.E.D.

The Line-to-Polygon Problem

We now take afinal step towards the general problem and consider a simplification we refer
to asthe Line-to-Polygon Problem, where the object that must be kept in the field of view isa con-
vex polygon Q, but the region where the camerais alowed to roam isaline L.

Problem: Given a convex polygon Q and aline L, find apoint x [J L such that the aperture angle
B(x) is amaximum.

To simplify the notation, assume that no edge of Q isparallel to the line L. Also assume that
the polygon and the line do not intersect. Without loss of generality assume L isthe x-axis, and let
0 bethevertex of Q with the highest y coordinate and g be the vertex with the lowest y coordinate.
Thus the boundary of Q is decomposed into two chains: a left chain Q4 = {dy, dn+1,---, O} and a
right chain Q, = {q, g+1,---- On} - We partition L by extending every edge of Q, until it intersects
L at apoint & and every edge of Q, until itintersects L at apoint b;. Finally we merge the ordered
setsA={ay, ay,..., 8.} and B={bq, b,,..., b} (subindex addition isdone modulo n) to obtain an
ordered set R={rq, Ip,..., r,}. The partition of L consists of theintervals|ly = [ry, r1] k=1, 2,...,
n-1 together with two unbounded intervals | = (-0, r{] and I, = [r},, +o0).
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L et the common tangents of P and ab be tangentsat { a, p,} and {b, pg} respectively (seeFig.
6). If the common tangents are colinear with edges of P then let p, and pg be the end points of these
edgesthat are furthest from a and b, respectively. We assume that L(a, b) does not intersect int(P),
since otherwise the minimum aperture angle is determined by any point the intersection of P and
L(a, b). Define the outer boundary of P with respect to segment ab, denoted by OB(P), asthein-
tersection of P with the boundary of the convex hull of P union ab. Thus the end points of OB(P)
are p, and ps. Note that p, and ps may coincide.

Lemma 2.6: Any point xin P where the aperture angle reaches the minimum value lieson aver-
tex of the chain OB(P).

Proof: (by contradiction) Let usassumethat x is apoint where the minimum is attained and such
that it isnot contained in OB(P). Let 6(x) = ang(a x b) and refer to Fig. 6. Consider the cone(x)
that defines the aperture angle 8(x). Thelines L(x, a) and L(x, b) partition the plane into four
wedges. Two wedges that share only a point are called opposite wedges. The union of two
opposite wedges is called a double wedge. Let W denote the wedge that does not contain ab
but is part of the double wedge that contains ab. By construction, the intersection of int(\W)
and OB(P) exists. Let y be apoint in thisintersection and translate cone(x) so that x coincides
withy. The new (trandlated) cone has an angle at y equal to what it had at x and it contains
abinitsinterior. However, the bounding rays are no longer tangent to ab and can be rotated
in the directions of the end points of ab in order to become tangent. Therefore 8(y) < 6(x), a
contradiction. Thisestablishesthat the solution lieson OB(P). That it must also lieon avertex
of OB(P) follows from corollary 2.2. Q.E.D.

Fig. 6
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An algorithm to find the maximum aperture angle follows directly from the above
discussion and is presented below. We assume in this paper that the vertices of the polygons are
stored in arrays.

Algorithm Polygon-to-Segment-Max

Input: A convex polygon P with n vertices and a segment ab such that L(a, b) does not inter-
sect P.
Output: A point x [ P for which 6(x), with respect to ab, is a maximum over P.

Begin
Step 1.- Compute the chain I1B(P).
Step 2.- Determine the point x, where the circle C through a and b is tangent to P, by
using binary search over IB(P).
Step 3.- Exit with x.
End

Lemma25: Algorithm Polygon-to-Segment-Max findsin O(log n) time apoint x [1 P, such that
B(x) isamaximum with respect to the segment ab.

Proof: Step 1 can bedonein O(log n) time using binary search, since the slope of aline segment
connecting a point outside a convex polygon to a point that travels along the boundary of the
polygon, defines abimodal function [CD87]. Consider an edge [p;, pi+1] in IB(P) and theline
L(pi, Pj+1)- Let zbethe point on L(p;, pj+1) that realizes the maximum aperture angle for seg-
ment ab. From lemma2.4 it followsthat the solution for P liesin[p;, pj+1] if zliesin[p;, Pj+1].
if zlieson ray(p;+1, p;) beyond p; then the solution for P lies on the sub-chain of IB(P) clock-
wise of pj, and if zlies on ray(p;, pj+1) beyond p;.; then the solution lies on the sub-chain of
IB(P) counter-clockwise of p;.1.Therefore we may use binary search on IB(P) to find the so-
lution segment of P where the aperture angle is a maximum. Once this solution segment is
identified, the circle through ab and tangent to the solution segment can be found in constant
time. Therefore the complexity of step 2 is bounded by O(log n). Q.E.D.

We now turn our attention to the minimization version of the Polygon-to-Segment problem.
Before presenting acharacterization of the solution to this problem, we first define some additional
geometric concepts.

Definition: A lineL isacommon tangent of P and ab if: (1) it istangent to P and ab, and (2) it
leaves P and ab in one of the closed halfplanes defined by L.
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spect to ab is the aperture angle over the interval | = [p;, pi+1] U L(p;, pi+1) With respect to
ab. Note also that L(p;, p;+1) doesnot intersect ab. Assume without |oss of generality that seg-
ment ab lies above L(p;, pj+1), that the intersection point t between L(a, b) and L(p;, pj+1) IS
to the left (in the sense of smaller ordinate) of theinterval |, and that a lies between b and t.
If the intersection point isto the right of | the argument is symmetric. We assume the config-
uration has been rotated so that no edge of the polygon is vertical. (refer to Figs. 5a and 5b
for illustrations).

Since the edge (p;, pj+1) iSin IB(P), theline L(p;, pj+1) intersectsthe circle C at two points z;
and z,, such that z; # z, and both points lie outside I. When traversing the circle C in coun-
terclockwise direction from point a, we define the order as a, z;, z,, b. Thus, there are two
possible arrangements of points over L(p;, pj+1). One of themis (t, pi+1, P, Z1, Zp) Which oc-
cursif [p;, pi+1] iS more counter-clockwise of x on IB(P) (refer to Fig. 5.8). The other order
is (t, 21, Zp, Pi+1, P;) Which occurs when [p;, pj+1] is more clockwise of x on IB(P) (refer to
Fig. 5.b).

The maximum aperture angle from L(p;, pj+1) With respect to segment ab must occur at a
point y [I [z, Z,] since any point outside C that is on the interval (t, o) of L(p;, pj+1), hasa
smaller aperture angle than z; and z,, by observation 2.1. Since [z;, 2] U, we havey O I.
Therefore, by lemma 2.1 if the sequence of pointson L(p;, pj+1) iS (t, Pi+1, Pi,» Z1, Z) then the
function B(x) isstrictly increasing over |, and if the sequenceis(t, z;, z, pj+1, P;) thenfunction
0(x) is strictly decreasing over |. Thus if the maximum aperture angle occurs at a vertex, the
lemmanholds. If, however, the maximum occurs at apoint x in theinterior of an edge (py.1,Pk).
we have not yet established that the function isunimodal on that interval. But, in this case the
unimodality follows from lemma 2.1. Q.E.D.

L(P;, Pi+1)
L(pi, Pi+1)

L(a, b)

Fig.5(a) Fig. 5 (b)



Fig. 4

Theinitial problemisnow reduced to that of finding apoint x (1 1B(P) such that 6(x) isamax-
imum with respect to ab. The following result shows that the function 8(x) has a unique maximum
point.

Lemma 2.3: The maximum aperture angleis reached at a unique point x [J IB(P).

Proof: Consider the infinite radius circle through ab that does not contain P. Consider the con-
tinuous transformation of this circle as its center travels along the perpendicular bisector of
segment ab. By lemma 2.1 the maximum aperture angleis reached at the point wherethecir-
clefirst touches P. But acircletangent to aconvex polygon intersects the polygon at aunique
point. Q.E.D.

Lemmas 2.2 and 2.3 establish the existence of a unique global maximum over I1B(P). How-
ever, thisin itself does not preclude the existence of other possible local maxima. Fortunately, we
are able to show that 8(x) is an upwards unimodal function over IB(P), acrucial property that we
will exploit subsequently for obtaining efficient algorithms.

Lemma 2.4: The function 8(x) with respect to the segment ab is upwards unimodal over IB(P).

Proof: Let C bethecirclethat containsa and b, tangent to P and let x be the point at which tan-
gency occurs. The point X, where the maximum aperture angle is reached, can liein the inte-
rior of an edge or on a vertex of the polygon P, but by lemma 2.2 it must liein IB(P). For
every edge (pj, pi+1) [ IB(P) that does not contain x in its interior let L(p;, pj+1) be theline
passing through (p;, p;+1)- Notice that the aperture angle defined over edge (p;, p+1) with re-



asmin{d(a, X) | x 0 P} and d isthe euclidean distance). Thus, L(a, b) divides the convex polygon
P into two convex polygons P, and P,, where L(a, b) does not intersect the interior of either and
IB(P) is partitioned into I1B(P,) and IB(P,). Furthermore, the solution to our problem for P will be
the maximum of the two solutions obtained for the two problems on P, and P, separately since on
L(a, b) the maximum aperture angleis zero. Therefore, to solve the Polygon-to-Segment problem,
we may assume that L(a, b) does not intersect int(P).

Fig. 3

Lemma2.2: A pointx [] P wherethe aperture angle reaches the maximum valuelieson the chain
IB(P).

Proof: (by contradiction) Let x be the point that maximizes the aperture angle and let it not be
contained in IB(P). Let the supporting rays from x be denoted by ray(x, a) and ray(x, b), let
cone(x) denote the unbounded region of the plane determined by ray(x, a) and ray(x, b) that
contains segment ab, and refer to Figure 4. It suffices to demonstrate that 1B(P) intersects
int(cone(x)), for then triangle abx must contain apoint y of IB(P) initsinterior for which 6(y)
> 0(X), a contradiction. Therefore assume IB(P) does not intersect int(cone(x)). Let cand d
be the end points of 1B(P) such that d lies on the critical separating tangent through end point
b of segment ab and c lies on the critical separating tangent through end point a of segment
ab. Let ray(d, b) denotetheray starting at d in adirection away from b and let ray(c, a) denote
theray starting at ¢ in direction away from a. Since I B(P) does not intersect int(cone(x)), the
cone(x) can intersect at most one of ray(d, b), ray(c, a). Without loss of generality, assume
cone(X) intersects ray(d, b). This implies that point b lies in ext(cone(x)), a contradiction.
Q.E.D.



Lemma 2.1 can also be establishedxfar[t,+) in a similar way.
The following corollaries are immediate consequences of lemma 2.1.

Corollary 2.1: Let| be a closed interval containedlimand lety andy’ be the points where the two
circles througta andb are tangent th. The maximum aperture angle, ovewith respect ta@b is
reached at eithgrory’ or at an end point df.

Corollary 2.2: Let| be a closed interval contained.ithat does not contain pointfThen the min-
imum aperture angle, overwith respect t@b is reached at an end pointlof

We now take a step closer to the general problem and consider a simplification we refer to as
the Polygon-to-Segment Problem, where the object that must be kept in the field of view is still a
segmentb but the region where the camera is allowed to roam is a convex pétygon

The Polygon-to-Segment Problem

Problem: Find a poink in a convex polygoP such thaf(x) is a maximum with respect to a given
segmentb that does not intersekt

In order to present the solution to this problem, we first define some geometric concepts re-
lated to the solution. Unless stated otherwise, we assume throughout the paper that the vertices of
the polygon are given in counterclockwise order (refer to Figure 3).

Definition:  Aline L is acritical separating line of support of P andab if it (1) separate® from
ab, and (2) it is tangent to bothandab.

Let the critical separating lines of supporPadndab be tangent atf, a} and {p;, b} respec-
tively (see Fig. 3). If these lines are colinear with edgé tifen letp; andp; be the end points of
these edges that are furthest fraandb, respectively. These lines partition the boundafy ioto
two chains. They also partition the plane into four regions (or cones), two of which are empty, one
of which contain® and the otheab. Denote the region containifgoy Re. Now, the line segment
pip; partitionsRp into a triangle and an unbounded region. The chgimity,..., p;) contained in
the triangle (possibly consisting of a single vertex) is referred to asriéreboundary of P with
respect to ab, and is denoted bi8(P). The complementary chain is denoted B{P)°. Note that
p; andp; are assumed to be contained in H&P) and the complemehB(P)C.

Letint(P), ext(P) andbd(P) denote the interior, exterior and boundary, respectively, of poly-
gon P. If lineL(a, b) passing throughb intersectsnt(P), the chairlB(P) is contained in the trian-
gle (i, ¢, pj), wherep; andp; are the two tangent points as defined abovecasithe extreme point
of the segmerdb that is closer t® (using the definition of distance from a paatb a polygorP
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of the line containing the segment ab and the line L. Observe that the minimization problem istriv-
ial since the aperture angle of t with respect to ab is zero. The point where the aperture angleisa
maximum, however, lies in either of the open sets (-, t) or (t, ). Let B(x) denote the aperture-
anglefunction (i.e. the aperture angle from a point x on L, thereal line, with respect to agiven line
segment ab, as x varies from -0 to +00).

Lemma2.1: If xisconstrainedtotheinterval (-0, t], then the function 8(x) reachesits maximum
at the point y O (-0, t] where the circle through a, b and y is tangent to L. Furthermore, 6(X) is up-
wards unimodal in (-, t].

Proof: Let Cbethecirclethrough aand b that istangent to L at apoint y [I(-o0, t]. For all points
x [(-00, t] with x £y, 6(y) > 8(x) by Observation 2.1. Thus, we have established that y yields
amaximum. We will now show that the function 6(x) is upwards unimodal. We consider two
cases depending on whether or not the center of C lies on the same side of the line through
abasy.

Case 1: The center of C lieson the same side of ab asy. Let X4, X, (-0, t] with the property
that x; <X, <y and refer to Fig. 2. Sincethe circle Cistangent to L at y, when C isenlarged
continuously with the constraint that it passthrough a and b, the growing circlefirst intersects
X, and subsequently x;. Therefore the circle through a, b and x, is smaller than the circle
through a, b and x;. But since the chord ab is the same length in both circles, the angleit in-
ducesissmaller in the larger circle. Therefore 8(x1) < 6(xy).

Case 2: The center of C lies on the side of ab not containing y. A similar argument holds
where the circle first shrinks continuously until ab defines its diameter, after which it grows
continuoudly. It followsthat 6(x) isstrictly increasing in (-co, y]. Similar arguments show that
0(x) isstrictly decreasing in [y, t]. Therefore 6(x) is upwards unimodal in the interval (-oo, t].
Q.E.D.

Fig. 2




2. Geometric Preliminaries

In this section, we develop some geometric tools and solve several special cases of the gen-
eral problems that will be used subsequently to solve the general problems. The model of compu-
tation used for the algorithms is the extended real RAM (for details refer to [PS88]). We begin with
a few basic observations from Euclidean geometryalletandx be points on a circl€. Lety be
a point in the open halfplane (defined by the line throaigindb) that contain. Let ang(abc)
denote the angle &tin triangleabc.

Observation 2.1: If y lies in the exterior of circl€ thenang(ayb) < ang(axb) (refer to Fig. 1 (a))
Observation 2.2: If y lies on the circl€ thenang(ayb) = ang(axb) (refer to Fig. 1 (b))

Observation 2.3: If y lies in the interior of circl€ thenang(ayb) > ang(axb) (refer to Fig. 1 (c))

a a a
Cc c c
b b b
y
y X X X
Fig. 1 (a) Fig. 1 (b) Fig. 1 (c)

The first simplification of the general problems will be referred to a4t itheto-Segment
Problem, where the convex polygdp (the object that must be kept in the field of view) is replaced
by a segmenab and the convex polygoR (the region where the camera is allowed to roam) is
replaced by a liné. Note that this is precisely the “picture-on-the-wall” problem for which a so-
lution is known [Ni81], [VG80]. These authors however only give characterizations of the solu-
tion. On the other hand, motivated by the desire to obtain efficient algorithms, we will also char-
acterize the aperture-angle function itself.

The Line-to-Segment Problem

Problem: Given a segmerab and a line. that does not interseab, find a pointx [ L such that
the angleaxb is a maximum.

Without loss of generality assume the lines thex-axis. When the segmealb is parallel to
the lineL, the solution poink must lie at the perpendicular projection of the midpoiraiodnL.
Thus, we can turn our attention to the case whlkeiis not parallel. Let be the intersection point
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of visibility investigated in computational geometry allows for a guard or camera to “see in all di-
rections,” i.e., thapertureangleis idealized to be 360 degrees. More recently, computational geo-
metry research has begun investigating more realistic models of visibility where the aperture angle
(or field-of-view angle as it is called in robotics [CDGP], [C0o88]) is restricted to be somefangle
less than 360 degrees. For example, given a convex polygon and a camera with apert@re angle
situated outside the polygon, Teichman [Te89] computes a description of all the points in space
where a camera may be placed in such a way that the polygon lies completely in the field of vision
of a camera with aperture an@leA membeix of a set of pointSis said to b@&-visible if a camera

with aperture angl@ can be placed oxin such a way that no other membedies in the cam-

era’s field of vision. Avis, et al. [ABD93] obtained optimal algorithms for finding albBtvesible

points in such a set. Devroye and Toussaint [DT93] investigate the cardinality @Visible

points among a set of special points which are the intersections of a set of random lines. Finally, in
another variant of the problem Bose, et al., [BGL93] have showm tteaheras, each with speci-

fied aperture angle not exceeding 180 degrees, can be pladecedtiocations in the plane to see

the entire plane if and only if the aperture angles sum to at least 360 degrees.

The simplest of these types of problems is often found as a exercise in calculus texts and
called the “picture-on-the-wall” problem (see for example [Sc60], p. 427, problem # 20). In this
problem a picture hangs on the wall in a museum above the level of an observer’'s eye. How far
from the wall should the observer stand to maximize the angle at the observer’s eye determined by
the top and bottom of the picture? While this problem is easily solved with calculus, an elegant
solution that does not use calculus has been known for some time [Ni81]. This same solution holds
for the more general problem where the picture may not be orthogonal to the floor [VG80].

In this paper we consider a generalization of the “picture-on-the-wall” problem, namely, the
problem of computing the aperture angle of a camera that is allowed to travel in a convex region
in the plane and is required to maintain some other convex region within its field of view at all
times. More specifically, leP andQ be two disjoint convex polygons in the plane witandm
vertices, respectively. Given a poxin P, theaperture angle of x with respect t® is defined as
the angle of the cone that: (1) contdih42) has apex a and (3) has its two rays emanating from
X tangent td. We present an @@ m) time algorithm for computing thainimum aperture angle
with respect t@Q whenx is allowed to vary ifP. We also present algorithms with complexities O(
log m), O(n + nlog (m/n)) and Of + m) for computing the maximum aperture angle with respect
to Q whenx is allowed to vary iP. Finally, we establish a®@(n + nlog (m/n)) time lower bound
for the maximization problem and &{m+ n) bound for the minimization problem thereby prov-
ing the optimality of our algorithms.
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ABSTRACT

Let P andQ be two disjoint convex polygons in the plane witlandn vertices, re-
spectively. Given a pointin P, theaperture angleof x with respect t® is defined

as the angle of the cone that: (1) cont&@n§2) has apex at and (3) has its two rays
emanating fronx tangent td. We present algorithms with complexitiesn@gg m),

O(n + nlog (m/n) and Of + m) for computing the maximum aperture angle with
respect t@) whenx is allowed to vary if?. To compute the minimum aperture angle
we modify the latter algorithm obtaining @n + m) algorithm. Finally, we establish

an Q(n + nlog (m/n)) time lower bound for the maximization problem and¥m

+ n) bound for the minimization problem thereby proving the optimality of our algo-
rithms.

Keywords: aperture-angle, convexity, unimodality, discrete optimization, algo-
rithms, complexity, computational geometry, robotics, visibility.

1. Introduction

Visibility plays an important role in the manufacturing industry in such problems as accessi-

bility analysis in machining [ABP93], [W094], [TWG92], [CW92] and visual inspection [SR90]
as well as computer graphics, robotics, computer vision, operations research and several other dis-
ciplines of computing science and computer engineering [O’R87], [Sh92]. The traditional model
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