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Abstract

Let [a,b] be a line segment with end points a, b and v a point at which a viewer
is located, all in R3. The aperture angle of [a,b] from point v, denoted by 0(v), is
the interior angle at v of the triangle A(a,b,v). Given a convex polyhedron P not
intersecting a given segment [a,b] we consider the problem of computing 6., (v) and
Ormin(v), the maximum and minimum values of §(v) as v varies over all points in P.
We obtain two characterizations of 6,4, (). Along the way we solve several interesting
special cases of the above problems and establish linear upper and lower bounds on
their complexity under several models of computation.

1 Introduction

Visibility plays an important role in the manufacturing industry in such problems as acces-
sibility analysis in machining [28], [23], [6] and visual inspection [22] as well as computer
graphics, robotics, computer vision, operations research and several other disciplines of com-
puting science and computer engineering [17], [21]. The traditional model of visibility inves-
tigated in computational geometry allows for a guard or camera to “see in all directions,”;
i.e., the aperture angle is idealized to be 360 degrees. More recently, computational geometry
research has begun investigating more realistic models of visibility where the aperture angle
(or field-of-view angle as it is called in robotics [7], [8]) is restricted to be some angle 6 less

*Research supported by NSERC Grant no. OGP0009293 and FCAR Grant no. 93-ER-0291.



than 360 degrees. For example, given a convex polygon in the plane and a camera with
aperture angle 0 situated outside the polygon, Teichman [24] computes a description of all
the points in the plane where a camera may be placed in such a way that the polygon lies
completely in the field of vision of a camera with aperture angle . A member z of a set of
points S is said to be #-wisible if a camera with aperture angle 6 can be placed on z in such
a way that no other member of S lies in the camera’s field of vision. Avis, et al. [1] obtained
optimal algorithms for finding all the #-visible points in a set S. Devroye and Toussaint [10]
investigate the cardinality of the #-visible points among a set of special points which are
the intersections of a set of random lines. Finally, in another variant of the problem Bose,
et al., [2] have shown that n cameras, each with its own fixed specified aperture angle not
exceeding 180 degrees, can be placed at n fixed locations in the plane to see the entire plane
if and only if the aperture angles sum to at least 360 degrees. All these results are restricted
to the plane.

The simplest problem of this kind is often found as a exercise in calculus texts and is
called the “picture-on-the-wall” problem (see for example [20], p. 427, problem # 20). In this
problem a picture hangs on the wall in a museum above the level of an observer’s eye. How
far from the wall should the observer stand to maximize the angle subtended at the observer’s
eye by the top and bottom of the picture? While this problem is easily solved with calculus,
an elegant solution that does not use calculus has been known for some time [16]. This same
solution holds for the more general problem where the picture may not be orthogonal to the
floor [27].

Bose, Hurtado-Diaz, Omana-Pulido and Toussaint [3], [4] considered a generalization of
the “picture-on-the-wall” problem, namely, the problem of computing the aperture angle of
a camera that is allowed to travel in a convex region in the plane and is required to maintain
some other convex region within its field of view at all times. More specifically, let P and @)
be two disjoint convex polygons in the plane with n and m vertices, respectively. Given a
point x in P, the aperture angle of x with respect to () is defined as the angle subtended by
the cone that: (1) contains @, (2) has apex at z, and (3) has its two rays emanating from z
tangent to (). They gave an O(n+ m) time algorithm for computing the minimum aperture
angle with respect to Q when x is allowed to vary in P. They also presented algorithms
with complexities O(n+m) and O(nlogm) for computing the maximum aperture angle with
respect to (). Thus, when m = o(nlogn) the first algorithm is faster than the second one.
However, if m = Q(nlog'tn), for any € > 0 the second one is faster. Finally, they proved an
Q(n) time lower bound for the maximization problem and an 2(n + m) time bound for the
minimization problem establishing the optimality of the algorithm for the latter problem.

In this paper we consider aperture angle optimization problems in 3 dimensions. Such
problems have a long history dating at least as far back as the mathematician Regiomon-
tanus (Johannes Muller) [11]. In 1471 Regiomontanus posed the following problem (now
known as Regiomontanus’ Maximum Problem). At what point of the earth’s surface does a
perpendicularly suspended rod appear longest? In other words, at what point is the aperture
angle at a maximum? A solution of this problem was published by Ad. Lorsch in vol. XXIII
of Zeitschrift fur Mathematik und Physik, assuming the earth is flat.



Here we consider generalizations of Regiomontanus’ maximum problem and the problems
considered in [3] and [4] to three dimensions. In particular, let P be a convex polyhedron
in R®. Let [a,b] be a line segment with end points a, b and v a point at which a viewer
is located, also in R®. The aperture angle of [a,b] from point v, denoted by #(v), is the
interior angle at v of the triangle A(a, b, ). Given a polyhedron P not intersecting a given
segment [a, b] we consider the problem of computing 6,,,.,(v) and 6, (v), the maximum and
minimum values of #(v) as v varies over all points in P. We obtain two characterizations
of Omaz(v). Along the way we solve several interesting special cases of the above problems
and establish linear upper and lower bounds on their complexity under several models of
computation.

2 Viewing a segment from a plane

Let [a,b] be a line segment and v a point at which a viewer is located in R3. Let the length
of [a,b] be | and denote the distance between v and the end-points of [a,b] by I/, and [,
respectively. Then, by the law of cosines the aperture angle is given by:

1,2+ 1,% — l2>

0 = arccos ( ST

In this planar-constraint version of the problem we are interested in determining the
maximum aperture angle 6,,,,(v) where v varies over the entire xy-plane. This version of
the problem is not interesting for 6, (v). Trivially, 0,,,,(v) is equal to zero and occurs
at the intersection of the xy-plane with the line through [a, b] as well as points at infinity.
Therefore we restrict our attention to the computation of 6,,,,(v). Furthermore, if [a, b]
intersects the zy-plane then 6,,,,(v) is equal to 7 and occurs at such an intersection point.
Therefore, without loss of generality, we assume the segment [a, b] lies above the zy-plane.
Let the end points of segment [a, b] have coordinates a = (ay, as, az) and b = (by, b, b3) and
let the point v on the zy-plane have coordinates v = (v, v,). Then 6(a, b, v) is given by the
above equation where:

lo = /(a1 — )2 + (az — v2)? + (a3)?

b= /(b = 10)? + (b2 — 1) + (bs)?

and

[ = \/(al — b))%+ (a2 — b2)? + (a3 — b3)?

For a fixed segment [a,b] in general position (neither vertical nor horizontal) and v
restricted to the zy-plane Fig. 1 illustrates the aperture angle function 6(v(z,y)) as a function
of the z and y coordinates of the viewer. In general the function looks like a “volcano” with
a “crater” that reduces down to a point where the line through [a,b] intersects the zy-
plane. Furthermore, the top of the crater is not level but tilted in the direction of the
line segment. Since this function contains a singularity it is difficult to obtain approximate
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Figure 1: Illustrating the aperture angle function as a function of x and y for a non-vertical,
non-horizaontal line segment.

solutions with constrained numerical optimization methods since these techniques require
the function to be twice differentiable [13], [18]. Fortunately as in the two dimensional
version of this problem [3], [4] we can obtain (without calculus) a simple characterization
of the solution that allows us to compute it efficiently without having to resort to iterative
numerical methods.

Consider first the special case when [a, b] is vertical, i.e., parallel to the z-axis. Construct
any plane through [a,b|, say H. This plane is orthogonal to the zy-plane and intersects it
at a line Ly. On this line Ly we have that 6,,,,(v) is realized at two points 11 * and 1p*
determined by the points of tangency where the two circles passing through a and b are
tangent to Ly [3], [4]. Let c¢ denote the vertical projection point of the line through [a, b]
on the zy-plane. Let r* denote the distance from ¢ to vi*, i.e., r*= d(c,n*) = d(c, ™),
where d denotes Euclidean distance. By symmetry this observation holds for all planes H.
Therefore we have the following proposition.

Proposition 2.1 Assume [a, b] is vertical and that its projection on the xy-plane is the point
c. Then Opaz(v) has an infinite number of solutions which are characterized by the circle on
the xy-plane centered at ¢ with radius equal to r*.

In order to simplify visualization and discussion as well as proofs, it is instructive to
examine the locus of points in space that have the same fixed aperture angle #. With this
in mind let us turn first to the simpler situation in R2. Subsequently we will generalize the
concepts to R3. Consider then a line segment [a,b] in R? and refer to Fig. 2. Construct
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Figure 2: Illustrating the locus of constant aperture angle for a segment in the plane.

any circle C' through a and b with some fixed diameter, diam(C), greater than d(a,b). Then
[a,b] is a chord of C and it partitions C into two arcs. Denote the large and small arcs by
Cr, and Cj, respectively. All points v on C; have the same aperture angle #,. Similarly, all
points v on (', have the same aperture angle 8. Now construct the reflection of C' about a
line through [a, b] and denote the resulting circle by C’. It follows that [a, b] splits C' into a
large arc €}, and a small arc C7. Furthermore, by symmetry, all points v on C, U C}, have
the same aperture angle 6, and all points v on C; U C} have the same aperture angle 6.
Let D and D’ denote the discs determined by C and C’, respectively. Also we define DN D’
when 6 > /2, DU D' when 6 < 7/2 and D when 6 = 7/2, as the lune of segment [a, b].
Furthermore, if we need to distinguish between lunes that have § > 7/2 and 0 < 7/2 then
we shall use the term acute lune when 6 > 7/2 and obtuse lune when § < 7/2. We then
have the following propositions.

Proposition 2.2 When diam(C) # d(a,b) the locus of points in R? of constant aperture
angle greater than m/2 are determined by the boundary of D N D'. The locus of points of
constant aperture angle less than w/2 are determined by the boundary of D U D'. When
diam(C) = d(a, b) this locus is C itself.

Proposition 2.3 The locus of points in R? of constant aperture angle 0 consists of an open
line segment (a,b) when 6 = 7, the boundary of a continuously growing acute lune as 6 is
decreased from w to /2, the boundary of a continuously growing obtuse lune as 0 is decreased
from /2 towards zero, and the union of points at infinity and the line through [a,b] less the
closed segment [a,b] when 0 equals zero. Furthermore, whenever 61 < 0y then the lune for 6,
contains the lune for 0,.

We will call such loci for different fixed values of  the iso-aperture-angle contours (IAA
contours). Fig. 3 illustrates a line segment and some of its iso-aperture-angle contours. Such
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Figure 3: Illustrating the iso-aperture angle contours for a line segment in the plane.

a figure will be referred to as an IAA-diagram. The IAA-diagram visually characterizes the
aperture angle function constrained to lie along a specified line. For example, consider a line
parallel to [a, b] such as L; in Fig. 4. The maximum aperture angle 6,,,,(L;) determined by
[a, b] for a viewer on L, is uniquely determined by point z1, i.e., the point on L; corresponding
to the orthogonal projection of the midpoint of [a, b] onto L;. Alternately, we can view it as
the first point of contact of the growing lune as it grows from a line segment to an infinite lune.
Furthermore, the TAA-diagram and Proposition 2.3 imply that 6(v) is a unimodal function
as v travels along L;. Consider a line not intersecting [a, b] and orthogonal to it, such as
Ly in Fig. 4. The maximum aperture angle 6,,,,(Ls) is determined by two points zo and
x3, those points where (simultaneously) the obtuse lune makes contact with Lo as it grows.
Furthermore, the IAA-diagram and Proposition 2.3 imply that 6(v) is a bimodal function as
v travels along L,. Finally, consider a line not intersecting [a, b] and neither orthogonal nor
parallel to it such as L3 in Fig. 4. Then the maximum aperture angle 6,,,,(Ls) is determined
by a unique point x4, again, the first point of contact of the growing lune with Ls. A second
(smaller) local maximum will always occur at x5, the point where another portion of the
boundary of the lune at z4 later (in the growing process) becomes tangent to L3 as it grows
into a sufficiently large obtuse lune. The TAA-diagram not only effectively expresses the
bimodality of §(v) as v travels along L3 but it also shows that the larger local maximum
occurs on the portion of L3 that makes an angle, at the intersection point of the extension
of [a,b] with Lz, which is less than 7 /2.

We now generalize these ideas to three dimensions. Consider then a line segment [a, b]
in R® . For any plane H containing [a,b] the IAA-contours on H must look like those
illustrated in Fig. 3. Therefore the loci of constant aperture angle are IAA-surfaces in R3
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Figure 4: Illustrating how the iso-aperture-angle diagram of a line segment characterizes the
aperture-angle function of a view-point travelling along a line.

and are obtained by revolving the TAA-contours, on a plane H containing [a, b], about an
axis which is the line containing [a,b]. We will refer to the solid of revolution obtained by
revolving a lune about the line containing [a, b] as a lunoid. Furthermore, if the lune is acute
the resulting solid will be called a pointed lunoid and if the lune is obtuse the resulting solid
will be called a toroidal lunoid. We therefore have the following proposition.

Proposition 2.4 The locus of points in R?® of constant aperture angle  consists of an open
line segment (a,b) when 0 = m, the surface of a continuously growing pointed lunoid as 6
is decreased from m to m/2, the surface of a continuously growing toroidal lunoid as 6 is
decreased from /2 towards zero, and the union of points at infinity and the line through
[a,b] less the closed segment [a,b] when 0 equals zero. Furthermore, whenever 6, < 0y then
the lunoid for 0, contains the lunoid for 5.

Proposition 2.4 and the TAA-diagram afford simple proofs of several properties of the
aperture angle function in R3. For example, if [a, b] is orthogonal to and not intersecting
a plane H in R3, as the lunoid grows the first contact with H occurs simultaneously at a
circle whose center is the orthogonal projection of [a,b] onto H. Therefore we have a crisp
and more direct visual verification of Proposition 2.1. The above observations imply the
following lemmas the proofs of which are straightforward and therefore omitted.
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Lemma 2.5 Let [a,b] be parallel to the xy-plane (and above it) and v a viewing point on
the xy-plane. Then 04, (v) occurs at a unique point v* which is the orthogonal projection
of the mid-point of [a,b] onto the xy-plane.

Lemma 2.6 Let [a,b] be non-vertical (not parallel to the z-axis) and not horizontal (not
parallel to the xy-plane). Let ¢ denote the point of intersection of the xy-plane with the line
containing [a,b]. Then O, (V) occurs at the unique point v* which is the point of tangency
of the circle (determined by a, b, and v*) with the zy-plane such that (1) the circle also lies
in the vertical plane containing |a,b] and (2) the angle at ¢ of triangle A(v*,c,a) is less than
/2.

In the following lemma as in the rest of the paper we assume in our computational
complexity discussion (unless otherwise specified) that our model is the extended standard
real RAM (Random Access Machine) [19]. In this model we allow the computation of £’th
roots and trigonometric functions in constant time. From lemma 2.6 it follows that we may
convert this three-dimensional problem to a two-dimensional problem by finding the plane
through [a, b] orthogonal to the zy-plane and solving the problem on this plane with the
technique of [3]. Since both steps are O(1) the lemma follows.

Lemma 2.7 Let [a,b] be a line segment above the xy-plane. Then the point v* on the
xy-plane that yields O, (V) may be computed in O(1) time.

3 Viewing a segment from a line

Let [a, b] be a line segment and L be a line not intersecting [a,b] in R3 on which the viewer
is constrained to patrol. In this constrained version of the problem we are interested in
determining the maximum aperture angle 6,,,,(v) where v varies over the entire line L. This
version of the problem is, like the problem where the viewer is constrained to roam a plane,
also not interesting for 6,,;,(v). Trivially, 0, (v) is also equal to zero and occurs at the
points on L at infinity. Therefore when the viewer is allowed to move over the entire range
of the line we restrict our attention to the computation of 6,,,,(v). To make the problem
of computing 6,,;,(v) interesting and in order to eventually solve the general problem when
the viewer is constrained to move in a given convex polyhedron, we constrain the viewer to
move on a given interval on the line L. First we investigate the 6,4, (v) problem.

3.1 Computing 0,,,,(v)

When [a, b] and L are coplanar this problem reduces to the planar problem considered in [3]
and [4]. There, a very simple characterization of ,,,,(v) was employed to find the solution.
Given three points {a, b, v} (the two end points of the segment [a, b] and the view point v on
L), let us denote the unique circle that they determine by Cy, and let us call it the aperture
circle. As can be seen from Fig. 4, the point on L that yields 6,,,,(v) is determined by the
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Figure 5: The largest aperture angle of a segment [a,b] from a line L is not necessarily
determined by the smallest aperture circle tangent to L.

smallest (there are two of them) aperture circle Cyp, that intersects L. Furthermore, the
solution is realized by the point of intersection. This point may be computed by solving the
roots of a quadratic equation and can thus be done in O(1) time with an extension of the
basic real RAM model of computation that also allows square root finding as a primitive.
One may wonder if this same elegant characterization also holds for the three dimensional
problem considered here. It turns out that this is not the case as we now demonstrate.

Let the line L be the y-axis and let the segment [a,b] lie parallel to the z-axis with
coordinates a = (1,0,¢) and b = (—1,0,¢), where € is a very small positive constant, i.e.,
€ < 1 (refer to Fig. 5). Then there are two smallest aperture circles intersecting L, one is Cypg
where g lies on the positive y-axis and the other is C,py where ¢’ lies on the negative y-axis
symmetrically opposite to g. Both of these aperture circles are close to the circle with [a, b]
as diameter and have aperture angles at g and ¢’ close to 90 degrees. The maximum aperture
angle 6,,,,.(v) however is close to 180 degrees, occurs at the origin O and is determined by
the aperture circle Cypo which is much larger than either Cgpy or Copyr.

Nevertheless, we show in this section that by introducing additional constraints on the
aperture circles, two different more complex characterizations are possible that allow us
to efficiently compute 6,4.(v) in O(1) time with more powerful extensions of the basic



real RAM. To set the stage we begin by examining a couple of special cases where the
characterization is straight forward and a solution can be obtained with only square roots
added to the basic real RAM. It is assumed without loss of generality that L lies in the
zy-plane and [a, b] lies above this plane.

The first special case occurs when L is parallel to [a,b]. Indeed, this is a special case
of the planar problem considered in [3] and [4]. A different and more interesting special
case is when [a, b] is orthogonal to the zy-plane as in the following lemma which is an easy
consequence of the way in which the toroidal lunoid grows. We therefore state the lemma
without proof.

Lemma 3.1 Let [a,b] be orthogonal to, and at some fized distance above, the xy-plane such
that the line through [a,b] does not intersect L. Then if [a,b] is sufficiently far from L, 0(v)
is unimodal and the point on L that realizes 0,4, (V) occurs at the unique point v* which is
the point of intersection of L with the vertical plane through [a,b] that is orthogonal to L.
If [a,b] is sufficiently near L, 6(v) is bimodal and the two points on L that realize 0,4, (V)
occur at the points of intersection of L with the contact circle that the toroidal lunoid (as it
grows) determines when it first makes contact with the xy-plane.

Note that C(d(a)) can be obtained by solving the planar problem on any plane containing
[a,b], and therefore the solution point »* may be computed with square roots as the only
primitive added to the basic real RAM.

We now describe our first characterization of the solution for 6,,,,(~) when L and [a, b]
are in arbitrary disjoint position in R3. For a viewpoint v we define the aperture plane as
the plane determined by points {a, b, v} and denote by c the center of the aperture circle
Cabu-

Lemma 3.2 0,,,,(v) is determined by the point v* in L that yields the smallest aperture
circle with the property that segment [c,v*| is orthogonal to L.

Proof: We first show that the aperture circle corresponding to 6,,,,.(v) belongs to the family
of aperture circles that exhibits the orthogonality property. Then we show that the smallest
of these yields 6., (v). Recall that the solution point v* is determined by the first point of
contact of the growing lunoid of [a, b] with L. Denote this lunoid by LUNOID(a, b, v*). Let
Hgr(v*) denote the supporting tangent plane to LUNOID(a, b, v*) at v*. By lemma 2.6 the
aperture plane at v* is orthogonal to the supporting tangent plane Hgr(v*) and contains the
aperture circle determined by v*. Furthermore this aperture circle is tangent to Her(v*).
Therefore segment [c, v*] is orthogonal to Hsr(v*). But Hgr(v*) consists of all lines in R?
that are tangent to LUNOID(a, b, v*) at v*. Therefore [c, v*] is orthogonal to L.

Now we show that for any configuration of [a,b] and L no more than three aperture
circles satisfy the orthogonality property and the smallest of these yields 0., (v). First it
is useful to distinguish between two classes of aperture circles. Consider a toroidal lunoid
T and its convex hull CH(T). We call a point p on bd(T') a convex boundary point if p lies
on bd(CH(T)). Otherwise we call p a saddle boundary point. We also distinguish between

10



two types of contact points between a line and a toroidal lunoid. We say that a line L is
globally tangent to a toroidal lunoid 7" if L intersects T" and no point of L lies in the interior
of T. On the other hand, we say that a line L is locally tangent to 7" at a point z, if there
exists a sufficiently small, but positive, real number € such that the intersection of L with a
sphere of radius € centered at x yields a line segment s such that either no point of s lies in
the interior of 7' or no point of s lies in the exterior of T". In other words, a line L that is
locally tangent to T at x does not properly cross the boundary of 7" in a local neighborhood
of z but it may do so at other points. A line that is globally tangent to 7" does not properly
cross the boundary of 7" at any point.

Consider a line segment [a,b] and some view point v in space as well as the resulting
LUNOID(a,b,v) and assume the lunoid is toroidal. A property of all lunoids is that every
point p on bd(LUNOID(a, b, v)) other than a and b admits a line L(p) that is locally tangent
to the lunoid at p. This implies that every such point p on bd(LUNOID(a, b, v)) admits an
aperture circle Cgp, such that the segment [c, p] is orthogonal to L(p), where c is the center
of aperture circle Cypp.

Let p be a point on bd(LUNOID(a, b)) as it grows. If L is locally tangent to LUNOID(a, b)
at p and p is a convex point we call L a convex tangent line and if p is a saddle point we
call L a saddle tangent line. Now consider the LUNOID(a, b) as it grows from [a, b] without
bound. Depending on the configuration of [a,b] and L we have either one orthogonal aper-
ture circle or three of them. Case (1) occurs when the growing LUNOID(a, b) first touches L.
Therefore it is determined by a convex point and L is a global tangent line of LUNOID(q, b),
i.e., L does not intersect the interior of the lunoid. In case (2) we have two sub-cases: in
sub-case 2.1 we have two convex and one saddle tangent lines and in sub-case 2.2 we have
one convex and two saddle tangent lines. Case 2.1 can happen when L is orthogonal to [a, b].
Case 2.2 can happen when the first tangent line is convex but as the LUNOID(a, b) grows, L
enters the region outside LUNOID(a, b) but interior to C H(LUNOID(a, b)). These cases are
illustrated in Fig. 6. Since the convex aperture circles are smaller because they are detected
before the saddle circles and since 6,4, (v) is determined by a convex circle, the solution is
determined by the smallest of these three circles. [

The characterization of the solution provided by lemma 3.2 allows us to compute 6,4, (V)
in constant time if the basic real RAM is extended to allow the computation of cube roots and
trigonometric functions as primitives, as we now demonstrate. We will show that the three
aperture circles discussed above can be obtained from the roots of a cubic equation which can
be derived from the constraints of the problem imposed by the characterization. Expressions
for computing these roots may be obtained from Cardano’s formulas and, depending on the
configuration of [a, b] and L, can sometimes be represented as algebraic functions of nested
radicals and in some cases trigonometric functions [26], [14].

Lemma 3.3 Let [a,b] be a line segment and L be a line not intersecting [a,b] in R3. Then
the point v* on L that realizes Opmar(v), as well as the corresponding value of Opar(v), may
be computed in O(1) time under the extended real RAM model of computation.
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Figure 6: Illustrating the three types of aperture circles that exhibit the orthogonality prop-
erty.

Proof: Without loss of generality assume that the line L is the z-axis and refer to Fig 7.
From lemma 3.2 it follows that we wish to find the value of the z-coordinate of the viewpoint
v* on L such that the aperture circle C' with center o, determined by the three points
a = (a1, as,a3), b= (b1, be,b3) and v = (z,0,0), where v is a variable, is as small as possible
with the constraint that the segment [o,x] be orthogonal to the z-axis. Let o = (h,k,1)
denote the coordinates of the center of aperture circle C. Since a and b are points on C' it
follows that the Euclidean distance d(o,a) = d(o,b). This constraint leads to the following
equation:

(h — b1)2 + (k — b2)2 + (l — b3)2 = (h — CL1)2 + (k' — 0,2)2 + (l — a3)2

Similarly, since b and v are points on C' it follows that the Euclidean distance d(o,b) =
d(o,v) and, by substituting v = («,0,0) for v = (v1, v2, v3), this constraint leads to:

(h—01)* + (k= bo)® + (1 — b3)* = (h — z)* + (k)* + (I)?

The constraint that the segment [0, z] be orthogonal to the z-axis implies h = z. Sub-
stituting A = x in the two above equations, expanding terms and rearranging leads to two
linear equations in the three unknowns, &, [ and z (linear because all the quadratic terms
are present in both sides of both equations and they cancel each other out). Solving this
system of equations for £ and [/ as a function of x yields the following two equations:
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Figure 7: Computing the location of 6,,,,(v) on line L.

k(x) = (—%) {((137;[)3)3:2 + (a1bs — asby)x + (

1b2]?as — ||a2||2b3)}

2

and

_ _ ,
Ha) = A {wﬁ + (aghy — a1be)x + (1[62]"az — laz|l bZ)}

2

where A = az(ag — by) — ag(az — b3) # 0, if and only if a, b and L are non-coplanar. If a,
b and L are coplanar, a condition that we test at the beginning, then the solution is found
by the simpler methods of [3], [4].

There are still an infinite number of locations in space for o that satisfy the above three
constraints as Fig 7 illustrates. These locations are determined by the line orthogonal to
and through the center of the circle determined by a, b and x. To make sure o is the center
of the aperture circle determined by a, b and v we make sure that the four points a, b, v and
o are co-planar. We do this by invoking the co-planarity determinant equation:
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a; a9 dag 1

b b b 1 9 Qs 1 a; Qa9 as
det hl ]j 13 1 = —xdet bQ b3 1 + det bl bQ b3 =0
s 0 0 1 kol 1 h k 1

Substituting the equations for k£ and [ as a function of z in the above determinant
equation, setting h = z, expanding and rearranging terms yields the following cubic equation
in z:

3
Az® + §B$2 + (C1+Co)z+ D=0

where:
_ (a3 —b3)? | (ag — by)?
A= 2 * 2
B = ((1,3 — bg)(albg — blag) -+ ((J/Q — bg)(albg — b1a2)
as — b
01 = ((a163 — b1a3)2 + (||b2||20,3 — ||a2||2b3) %)
as — b
Cy = ((a1b2 — b1a2)” + (|Iba]la2 — l|az||*b2) %)
and,

1b2]2a3 — |laz||*bs) (1b2l|?az — ||azl|?b2)
2 2

There are three aperture circles that satisfy the above four constraints and the tangent
points on the z-axis of these circles are given by the three roots of the above cubic equation.
The smallest circle will in turn lead to the maximum aperture angle. Computational formu-
las for these roots were derived by Cardano (also known as Cardan’s formulas) and involve
either nested radicals with square and cube roots or trigonometric functions, depending on
whether D is positive or negative. The expressions are lengthy and involved functions of
A, B, (', (5, and D and will not be reproduced here as they can be found in Uspensky’s
book [26]. By substituting the above expressions for A, B, C;, C3, and D into Cardan’s
formulas the three roots may be computed. Therefore the appropriately extended RAM will
find the location of 6,4, (v) in O(1) time. Furthermore if the RAM is also afforded inverse
trigonometric functions then the actual value of 6,,,,(v) may also be computed in constant
time. [

D= (a1b3 — b1a3)2( + (albg — b1a2)2

We now describe our second characterization of the solution for 6,,,,(v) when L and [a, b]
are in arbitrary disjoint position in R3. The first characterization presented above involved
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four constraints that must be satisfied by the aperture circle. The second characterization
involves minimizing the radius of a sphere subject to three constraints. This characterization
has no computational advantage over the previous one because, as we shall see, it leads
to computing the roots of exactly the same cubic equation. However, it is in a sense a
more natural generalization of the two-dimensional characterization to three dimensions
and, together, the two characterizations provide a deeper understanding of the problem.

Lemma 3.4 0,,,,(v) is determined by the point v* in L that is the point of tangency of L
with the smallest sphere S containing a and b on its boundary.

Proof: First observe the fact that given a circle C, of radius r, the smallest sphere S that
can contain C), on its boundary must have radius at least as large as r. Furthermore, if the
radius of S equals r then C) is a great circle of S.

From lemma 3.2 we have that the point v* on L that maximizes 0(v) is determined by a
circle C' with center o such that C contains a and b, C intersects L at v*, and the segment
[0,v*] is orthogonal to L. Let the sphere S, be the sphere determined by the aperture cir-
cle C that determines v* and such that C' is a great circle of S.. Therefore the sphere S,
contains a, b and v*. Furthermore, since o is the center of the great circle C' it must also be
the center of S.. Therefore S, is tangent to L. Finally, S. must be the smallest such sphere
because a smaller sphere would imply that there exists an aperture circle smaller than C, a
contradiction. n

Let us examine the method of computing 6,,,,(v) that is suggested by lemma 3.4. Let
S be the sphere in question with center o = (h, k,[). The equation of a sphere is then given
by:

(x—h)?+@y—k)?+(z-0>=r?

We know that the sphere S must pass through the three points a, b and v. These three
constraints yield the following three constraint equations:

(ay — h)* + (ag — k)* + (azg — 1)? = r?
(by — h)* + (by — k) + (by — 1)? = 1

K2+ 12 =72

The third equation requires [o, v] to be orthogonal to L. The reader may verify that there
are still an infinite number of spheres that satisfy the above three constraints. Furthermore
the third constraint that the segment [0, 7] be orthogonal to L does not imply the resulting
sphere is tangent to L, the last requirement of the lemma. Observe however that the only
way to make a sphere that intersects L be tangent to L is to make it the smallest such
sphere. Lemma 3.4 then implies we can find 6,,,,(v) by minimizing r? subject to the three
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constraints described above. Now minimizing 72 is the same as minimizing k2 + I2. Since
h = x the first two constraints yield a pair of linear equations in z, k£ and [. These can be
solved as before for k and [ as functions of x and substituted in 72 = k?+1? yielding a function
r?(x). To minimize r%(z) we may take the derivative and set it equal to zero. When this is
done we obtain the same cubic equation that was obtained from the first characterization
using the co-planarity condition of points a, b, ¥ and o. The three roots correspond to the
three possibly distinct and locally minimal spheres that a line segment admits such that the
sphere is tangent to a given line. In the first characterization of the solution of 6,4, (v) the
three corresponding aperture circles are the three great circles of the three respective spheres
that are obtained in the second characterization.

3.2 Computing 6,,;,(v)

In order to solve the problem of computing 6,,;,(~) when the viewer is allowed to move in
a given convex polyhedron, we will need a solution to a special case of the above problem
in which we constrain the viewer to move on a given interval [c, d] on the line L. From the
previous lemmas concerning the computation of 6,,,,(~) we know that depending on the
configuration of the segment [a, b] and the line L in R3, the function §(v), as v traverses L,
is either unimodal or bimodal. Furthermore, these two situations correspond, respectively,
to the cases when the cubic equation that yields 6,4, () as one of its roots, has either one or
three real roots. When the equation has one real root it corresponds to the maximum of the
unimodal function. When the equation has three real roots, two of them correspond to the
two local maxima of the bimodal function and the third corresponds to the local minimum
lying in between the two local maxima on L. These observations point the way to using the
same cubic equation for solving the problem of computing 6,,;,(v). If we have one real root
the function is unimodal on L and in this case 6,,,,(v) is realized by one of the end-points
of the constraint interval [c,d]. Hence all we need to do is compute the aperture angle at
points ¢ and d and select the smaller of the two values. If on the other hand we have three
real roots then let 75 denote the point on L (root) that lies in between the two other points
(roots) 71 and r3. The points r; and r3 correspond to the local maxima and r, to the local
minimum. We test to determine if 75 lies in the interior of segment [c, d]. If it does not then
we compute the aperture angle at points ¢ and d and select the smaller of the two values
as before. If ry lies in the interior of segment [c, d] then we compute the aperture angle at
points ¢, d and r, and select the smaller of the three values. We have therefore proved the
following lemma under the extended RAM model of computation that allows square and
cube roots as well as trigonometric and inverse trigonometric functions.

Lemma 3.5 The point v* on L that realizes O, (v), as well as the corresponding value of
Omin (V), may be computed in O(1) time.
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4 Viewing a segment from a convex polygon

Let P be a convex polygon in R? not intersecting [a,b]. Furthermore, assume that P lies
on the zy-plane and that [a, b] lies above the zy-plane. It is also assumed that the polygon
is stored in an array. Here we are interested in determining 6,,,,(v) and 6,,;,(v) where v
varies over the polygon P. We consider two versions of the problem: (1) v varies over the
entire polygon P including its interior and (2) v varies only over the boundary of polygon
P. Problems (1) and (2) correspond to optimization problems of 6(v) with linear inequality
and linear equalily constraints, respectively.

First we prove a basic lemma which concerns the determination of whether a given point
lies in the interior of a given n-vertex convex polygon in O(logn) time. It is well known
that given a convex n-vertex polygon stored in an array, it is possible to construct from it a
data structure, in O(n) time and space, such that subsequently point inclusion queries can
be determined in O(logn) time. Two such data structures are the star-decomposition [19]
and the balanced hierarchical decomposition [15]. We show here that O(logn) time suffices
even if the polygon is stored simply as an array, thus strengthening the results found in [19]
and [15]. In all our results we assume the extended real RAM model of computation.

Lemma 4.1 Given a conver polygon P of n vertices in R? stored in an array and a point
¢, whether c lies in P can be determined in O(logn) time.

Proof: Let L and R denote the vertical lines through the leftmost and right-most points
of P. These points partition P into the upper and lower chains P,, and Py, respectively.
If ¢ lies to the left of L or to the right of R then c lies outside P and we are done. Therefore
assume c lies in between L and R. Perform binary search among the x coordinates of the
vertices of P,, to locate ¢ within a slab determined by an edge of P,,. Let p;, and p;;; be
the vertices of the slab thus found. Find the intersection points of the vertical projections of
p; and p;1 onto P down and call these points z; and z,. Now perform binary search on the
section of Py, that lies between z; and 25 to locate c inside a slab determined by an edge
of Pjoun- If c lies between the two edges thus found it lies in P and otherwise it lies outside
P. Lines L and R as well as the intersection points z; and z, can be found in O(logn) time
with the algorithms of Chazelle and Dobkin [5]. "

4.1 Computing 6,,..(v)

We turn now to the problem of computing €,,.-(v) in R® where v is allowed to move in a
convex polygon P (the boundary of P as well as its interior). We first consider the special
cases where the line segment [a, b] is vertical (orthogonal to the zy-plane). This special case
admits a very simple algorithm for solving the problem.

Lemma 4.2 Let [a,b] be orthogonal to the xy-plane (and above it) and v a viewing point on
the zy-plane constrained to lie in polygon P. Then computing O, (V) has time complexity

O(n).
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Proof: By proposition 2.1 let C' denote the circle that describes the infinite set of uncon-
strained maxima values of #(v) on the zy-plane. Let ¢ denote the center of C. First we check
every edge of P to see if the boundary of P intersects C. If it does then the intersection
points of P on C describe all the arcs of solution values in P and we are done. Therefore
assume that C' does not intersect the boundary of P. Two cases arise: case 1: C lies com-
pletely in the interior of P or, case 2: C lies completely in the exterior of P. In case 1 the
entire circle C forms the solution. Therefore consider case 2 when C' lies in the exterior of P.
There are two sub-cases: case 2.1: P lies in the interior of C', and case 2.2: P lies exterior
to the circle C.

Case 2.1: As the lunoid grows the circle C' divides into two circles. These two circles
define the intersection points of the boundary of the lunoid with the zy-plane. One grows
larger to infinity playing no role in the solution and the other shrinks until it touches P.
The first points of contact of the shrinking circle with P form the solution. Such a point (or
points) may be found by computing the furthest points of the boundary of P from ¢, the
center of C.

Case 2.2: As the lunoid grows the circle C again divides into two circles. One grows
smaller to zero playing no role in the solution and the other expands until it touches P. The
first point of contact that the expanding circle makes with P is the unique solution. This
point may be found by computing the nearest point of the boundary of P from c.

Consider now the complexity of the above construction. Checking the intersection of
every edge of P with C costs O(n) time. If the boundary of P does not intersect C' then to
distinguish between case 1 and case 2, i.e., to determine whether C' lies completely inside P
or not, it suffices to take any point on C' and test it for inclusion in P which by lemma 4.1
can be done in O(logn) time. To distinguish between case 2.1 and case 2.2, i.e., to determine
whether P lies completely inside C' or not, it suffices to take any vertex of P and test it
for inclusion in C, which can be done in O(1) time. In case 2.1 the furthest points of the
boundary of P from ¢ can be computed in O(n) time by examining every vertex. In case
2.2 the nearest point of the boundary of P from ¢ may be computed in O(logn) time with
the algorithm of Edelsbrunner [12]. Therefore O(n) suffices for the entire algorithm. Since
the problem of computing 6,,,,(v) is equivalent to computing the maximum distance from a
point to a convex polygon in the zy-plane (case 2.1) and the latter problem has complexity
Q(n) when the polygon is stored in an array [12], the lemma follows. =

Lemma 4.3 Let [a,b] be orthogonal to the xy-plane (and above it) and v a viewing point on
the xy-plane constrained to lie on the boundary of polygon P. Then computing Omq:(v) has
time complezity ©(n).

Proof: If P lies completely in C or the boundary of P intersects C' we proceed as in
lemma, 4.2. Therefore assume C lies completely in P. As the lunoid grows the circle C' splits
into two circles. One shrinks to zero and the other grows until it touches P. The first points
of contact form the solution. Such a point may be found by computing the nearest point
of the boundary of P from c. Therefore we can test every edge of P to find a point that
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minimizes the distance. Therefore O(n) suffices to find 6,,,,(v). To show that the lower
bound on the time complexity of computing 6,,..(v) is Q2(n) it suffices to see that there exist
convex polygons easily constructed by perturbing a regular polygon such that every edge
must be visited to ensure 6,,,,(v) is not missed in the search. n

Consider now the general problem of computing €,,., () in R? where v is allowed to move
in a convex polygon P (the boundary of P as well as its interior) on the zy-plane and the line
segment lies in general position above the zy-plane. The intersection curves of the lunoid
with the zy-plane are no longer circles and we cannot reduce the problem to simple distance
computations on the plane as we did in the special cases discussed above. Nevertheless, we
may compute 0,4, (v) in optimal linear time, as we now show, by using the cubic equations
derived in the previous section.

Theorem 4.4 0,,,.(v) may be computed in time ©(n).

Proof: First we solve the problem for the zy-plane, disregarding the polygon P altogether.
Let v* be the point on the zy-plane that realizes 0,,,,(v). Next we test to see if v* lies in
P. If it does we are done because no other point in P can have a larger angle. If v* lies
in the exterior of P then the corresponding lunoid must grow further before it touches the
boundary of P. The point at which it touches P will be the unique solution. Therefore in
this case we know the solution lies on some edge of P. Hence for each edge of P we consider
the line that contains it and solve the problem for the line by computing the roots of the
cubic equation of section 3. Consider one such line L containing some edge e of P. Let x be
the solution obtained on L when e is ignored. If z lies in e we are done. If x does not lie in
e we choose the maximum aperture angle obtained by comparing the angles that the other
roots (that lie in e) yield with the angles obtained at the end-points of e. Thus each edge of
P yields a candidate for the global solution. Finally, we select the maximum among all the
candidates. O(n) time clearly suffices and the 2(n) bound follows from the above lemmas.
]

4.2 Computing 6,,;,(v)

We turn now to the problem of computing 6,,;,(r) in R® where v is allowed to move in
a convex polygon P (the boundary of P as well as its interior) and the line segment is in
general position. In fact we assume that P lies in the zy-plane, the segment [a, b] lies above
the zy-plane and the line through [a, b] does not intersect P. The case when the line through
[a, b] intersects P is trivial since in this case 0,,;,(v) = 0. Furthermore, this case can be tested
for and dispensed with in O(logn) time by lemma 4.1 where the point ¢ is the intersection
point of the line through [a, b] with the zy-plane.

Lemma 4.5 0,,;,(v) is determined by a point on the boundary of P.
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Figure 8: 6,,:»(v) need not be determined by a vertex of P.

Proof: (by contradiction) Assume 6,,;,(v) is determined by a point v in the interior of P.
Then the lunoid that determines 6,,;,(v) contains v on its surface and there exist points of
P outside this lunoid. Therefore there exists a larger lunoid determined by some point of P
that yields a value of # smaller than 6,,;,(v), a contradiction. n

Note that this lemma establishes that in the case of ,,;,(v) there is no distinction between
the equality constraints and the inequality constraints. Allowing v the additional freedom
to move in the interior of P does not change the solution obtained when v is constrained to
lie on the boundary of P.

In the 2-dimensional version of this problem considered in [3] and [4] it was shown that
Omin(v) is determined by a vertex of P. However, this property fails to carry over to the
3-dimensional problem considered here as the following example demonstrates.

Let the line segment [a, b] be positioned vertically over the origin of the zy-plane at some
fixed height above it and refer to Fig. 8. The solution region for 6,,,, () when v is constrained
to lie on the zy-plane then consists of a circle C' max centered at the origin (heavy circle
in Fig. 8). We construct our convex polygon P on the zy-plane such that all its vertices lie
on C' max and have positive z-coordinate. Furthermore we choose the highest and lowest
vertices, p and q respectively in Fig. 8, to be very close to the y-axis. Since all points on
the zy-plane and not on C' max have smaller aperture angles it follows that 6,,;,(v) is not
determined by a vertex of P. In the example of Fig. 8 6,,:,(v) is realized by an interior
point of the edge [p, q] of P, and, in general, 6,,;,(v) may be realized by a point anywhere
on the boundary of polygon P. Nevertheless, we can still prove a linear lower bound on
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Figure 9: 6(v) may have Q(n) local minima.

the complexity of computing 6,,;,(v) for this problem because there exist instances where all
vertices of P must be visited in order to find the solution, as we now demonstrate. The lower
bound relies again on an adversary argument that exploits on the natural representation of
a polygon by a linear array.

Lemma 4.6 6(v) may have Q(n) local minima.

Proof: Let the segment [a, b] be located vertically (parallel to the z-axis) some fixed height
above the zy-plane and let C,,,, denote the circular set of solutions that realize ,,,,(v) on
the zy-plane and refer to Fig. 9 where C),,4, is shown in bold. We now construct the convex
polygon P such that all its vertices lie on a circle Cp centered at the origin and greater than
Crnaz and such that the vertices of P with largest and smallest y-coordinates (vertices p and
q respectively) lie on a vertical line with z-coordinate greater than the radius of Cpqp. It
follows that 6,,;,(v) is non-unique and realized by each and every vertex of P. n

Theorem 4.7 Computing 0., (v) has complexity Q(n).
Proof: Lemma 4.6 shows a construction such that 6,,;,(v) is realized by each and every

vertex of P. To finish the construction we take an arbitrary vertex z of P and pull it slightly
outside the circle C'p while preserving the convexity of P. This arbitrary vertex now contains

21



the global minimum. Therefore if an algorithm does not check every vertex of P it may miss
the global minimum. n

We turn now to algorithms for computing 6,,;, (v). We first consider the special case where
the line segment [a, b] is vertical (orthogonal to the zy-plane). This special case admits a
simple algorithm, similar to its 6,4, (») counterpart, that does not require the computation
of cube roots or trigonometric functions.

Lemma 4.8 Let [a,b] be orthogonal to the xy-plane (and above it) and v a viewing point on
the zy-plane constrained to lie in polygon P. Then computing 0,,:,(v) has time complexity

O(n).

Proof: By proposition 2.1 let C' denote the circle that describes the infinite set of uncon-
strained maxima values of #(v) on the zy-plane. Let ¢ denote the center of C. Let py be the
point of P furthest (according to the Euclidean distance measure) from c. Similarly let p,
be the point of P nearest to c¢. Then it suffices to observe that 6,,;,(v) = min {6(py), 0(pn)}-
The correctness of this solution follows from arguments similar to those in lemma 4.3. Since
ps and p, can be computed in O(n) time [12] 6,,,,(v) can be computed in O(n) time. The
2(n) lower bound for this special case of the problem was established in theorem 4.7. ]

Consider now the general case where the line segment [a, b] is in general position.
Theorem 4.9 0,,;,(v) may be computed in time ©(n).

Proof: By lemma 4.5 we know that 6,,;,(v) is determined by an edge of P. Therefore, for
each edge of P we solve the problem using the method of section 3.2 to obtain a candidate
for the global minimum. Finally, we select the smallest of the candidate values for the global
solution. Since each candidate is computed in O(1) time, the entire solution is O(n). The
Q2(n) bound follows from theorem 4.7. =

5 Viewing a segment from a convex polyhedron

Let P be a convex polyhedron in R? not intersecting the line segment [a, b]. In this section we
are concerned with the problems of determining 6,,,,(v) and 6,,;,,(v) where v varies over the
entire polyhedron P. We assume that the polyhedron is represented in the form of a doubly-
connected-edge-list (DCEL). This is a simple and natural data structure employed widely
for representing planar graphs [19] and since a convex polyhedron is isomorphic to a planar
graph it is suited for our problem. Furthermore this data structure is easily implemented
with six linear arrays and thus corresponds very much with our data structure used in the
problems concerning convex polygons in the previous sections of this paper. We first examine
the 0,40 (v) problem for which we assume that the line L(a,b) through the segment [a, b]
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does not intersect the interior of polyhedron P. If it does (which can be determined in O(n)
time) we decompose P into two convex polyhedra by cutting P (also in O(n) time) with any
plane containing [a, b]. We then solve for 6,,,,(v) in each of the two resulting polyhedra and
select the greater of the two results as the global maximum.

5.1 Computing 0,,,,(v)
First we show that only the boundary of P need be searched.

Lemma 5.1 0,,,,(v) is determined by a point v* on bd(P).

Proof: Let v* be the point in P that determines 6,,,,(v) and assume v*€ int(P). The
segment [a, v*| must intersect bd(P) at some point, say o*, for which /(a, a*,b) > (a,v*,b),
a contradiction. [

In fact we may restrict further our search for 6, () to a smaller region of the boundary
of P “facing” [a,b], a region we refer to as the inner facets of P with respect to segment
[a,b]. To make this notion more precise it is useful to introduce the notion of visibility and
to regard P as an opaque object that is a barrier to straight lines of sight. Accordingly we
say that two points x and y in R? are wvisible (or see each other) if the interior of [z, y] does
not intersect the interior of P. We say that a point = sees a set S if x sees every element
of S. We now relate the solution region to the subset of bd(P) that has the property that
every point of this subset sees [a, b].

Lemma 5.2 0,,,,(v) is determined by a point v* that sees [a, b].

Proof: (by contradiction) Let v* determine 6,,,,(~) and assume that v* does not see every
point of [a, b]. Then there exists a point u € [a, b] such that int[u, v*] intersects int(P). Let
w be such an intersection point. Since (1) w € int(P), (2) w € A(a,b,v*) and (3) w # v*
it follows that /(a,w,b) > /(a,v*,b), a contradiction. n

Let us now consider the problem of computing this restricted region of P. Let x be a
point exterior to P and let Py(x) denote the set of points of bd(P) that see z. Let Pya,d]
denote the set of points of bd(P) that see segment [a, b], i.e., each point in Py [a, b] sees every
point in [a,b] (see Fig. 10). Note that in general Py[a,b] is not equal to the intersection of
Py (a) and Py (b). It is possible that Py (a) N Py (b) = bd(P) and yet bd(P) may contain many
points that do not see [a, b].

A common tangent plane of x and P is a plane that contains z, contains at least one
point of P (touches P) and has int(P) to one side of it. Let H(P) be a closed half-space in
R? that contains P. Define the support cone of P from z as the intersection of all half-spaces
H(P) such that x is on each plane that determines each H(P). Denote such a polyhedral
support cone by SCp(z). Note that the set {bd[SCp(x)]} N {bd(P)} partitions bd(P) into
two connected components: the visible set Py (z) and the invisible set Pr(x). The set Pr(x)
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Figure 10: Illustrating the region Py[a, b] (shaded) from which [a, b] is visible.

consists of those points of P that do not see z. For algorithmic purposes it is further useful
to define the notion of a separating support cone of P with respect to the segment [a,b]. A
separating support plane of segment [a, b] and polyhedron P is a plane that contains at least
one point of [a, b], at least one point of P, and is such that int[a, b] is not on the same side of
the plane as int(P), i.e., the plane is tangent to both objects and separates their interiors.
A separating support plane partitions R? into two separating support half-spaces. The
separating support cone of P with respect to the segment [a, b], denoted by SSCpla, b], is the
unbounded convex polyhedral set obtained by intersecting all separating support half-spaces
that contain P. Note that removing P from SSCpla, b] partitions the remaining portion of
SSCpla,b] into two components: the bounded portion and the unbounded one. Similarly,
the set {bd[SSCpla,b]} N {bd(P)} partitions bd(P) into two connected components: the set
facing the bounded component of SSCp[a, b] and the set facing the unbounded component
of SSCpla,b]. We denote the portion of bd(P) facing the bounded component by Pg[a, b]
because we may compute it (as we shall see later) by “rotating” a separating plane between
[a,b] and P. First we establish an equivalence relation between Pgla,b] and Py[a, b].

Lemma 5.3 For a given line segment [a,b] and disjoint convex polyhedron P, Py[a,b] =
PR[G,, b]

Proof: We prove the lemma by showing that each set is contained in the other, i.e., (i)
Pyla,b] C Pgla,b] and (ii) Pg[a,b] C Pyla, b].

(i) Let v be a point in Py[a, b], i.e., on the boundary of P such that it sees [a, b]. Then
int(P) cannot intersect int[A(a, v, b)], for otherwise there would exist a point in int[a, b] not
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visible from v, a contradiction. Since both A(a,v,b) and P are convex sets with only point
v in common, it follows that there exists a plane through v supporting both A(a,v,b) and P
which separates A(a, v, b) from int(P). Call this tangent plane H,. If H, also passes through
a or b then H, belongs to Pg[a,b]. If H, does not intersect any point of A(a, v, b) other than
v then it can be rotated in any direction, while remaining tangent to P throughout the
rotation, until it supports both P and [a, b], thus ensuring that v is in Pg[a,b]. Since v is
arbitrary it follows that Py [a,b] C Pgla,b].

(ii) Let 7 be a point in Pgla,b]. If r € bd(Pg[a,b]) then by construction r admits a
plane corresponding to a facet of the separating support cone SSCp[a,b] that supports P,
contains r and separates int(P) from int[A(a,r,b)]. Therefore r sees [a,b] and r € Py|a,b).
If r € int(Pg[a,b]) then consider any plane H, tangent to P at r. By the construction
of SSCpla,b] H, must cut SSCpla,b] into two components one of which is bounded and
therefore H, separates int(P) from [a,b] and hence from A(a,r,b). Therefore r sees [a, b]
and 7 € Py[a,b]. Therefore Pgla,b] C Pyla,b]. "

Consider now the complexity of computing for a given line segment [a, b] and disjoint con-
vex polyhedron P the region Py[a, b] from which at each location we can see [a, b] completely
and where the solution for 6,,,,;() can be found. By lemma 5.3 this problem is equivalent
to computing Pg|a,b]. If we consider the more general problem where the segment [a, b] is
also a convex polyhedron then Pg|a, b] may be obtained by computing all extreme separating
planes of the two polyhedra. For this an O(n) time algorithm due to Davis [9] is available
which uses a projective transformation to convert this problem to a convex hull problem
of two new disjoint convex polyhedra. However, since in our problem [a,b] is only a line
segment we can dispense with the projective transformation altogether and use a simpler
O(n) time algorithm which we describe next.

Assume for this description that no four vertices of P and [a,b] are co-planar. This
assumption places no limitations on our methods or complexity results and simplifies the
presentation. Furthermore we assume without loss of generality that [a,b] is vertical, i.e.,
parallel to the z-axis and that a lies above b. Pgla,b] is determined by all the separating
tangent planes of [a,b] and P. The extremal bounds of this set consist of two planes that
contain [a, b] and are tangent to vertices of P. Let these two vertices of P be denoted by ¢
and t'. Let HU, denote the intersection of the set of half spaces (determined by non-vertical
planes) that contain P, such that their bounding planes lie above P, contain b and are tangent
to P. Similarly, let HL, denote the intersection of the set of half spaces (determined by
non-vertical planes) that contain P, such that their bounding planes lie below P, contain
a and are tangent to P. Then the intersection of HU, and HL, is equal to SSCpla,b|.
Furthermore, bd(HU,) N P together with ¢ and ¢’ define a polygonal chain of vertices and
edges of P, T, = (t,...,t). Similarly, bd(H L,) N P together with ' and ¢ define a polygonal
chain of vertices and edges of P, T, = (¢,...,t"). Therefore the concatenation of T} and
T, encloses the region Pgla,b] and to compute Pg[a,b| it suffices to compute T and T, .
Since P is represented by a DCEL data structure we may use the “rotating calipers” [25] to
construct these chains. Consider computing 7, (the computation of 7, is analogous). First
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solutions for B, (V)
on the xy-plane

X-axis

Figure 11: #(v) may have Q(n) local maxima realized at vertices of polyhedron P.

the points ¢t and ¢’ can be found in O(n) time by finding the common tangents from the
projection point of [a, b] to the projection of polyhedron P, on the zy-plane. We initialize
the rotating plane in the vertical position through a, b, and ¢. Then we rotate the plane in a
counter-clockwise direction as viewed from b while maintaining the rotating plane tangent to
[a,b] and P. To find the next contact vertex of P we need only compute the dihedral angles
(or functions monotonic to these) of the vertices adjacent to the vertex being considered.
Since the DCEL allows us to find these in constant time per vertex, each rotation can be
done in O(d) time where d is the degree of the vertex being considered. We have therefore
established the following result.

Lemma 5.4 Given a line segment [a,b] and a disjoint convex n-vertex polyhedron P, the
region Pgla,b] may be computed in O(n) time.

Lemma 5.5 Given a line segment [a,b] and a disjoint convex n-vertex polyhedron P, 0(v)
may have Q(n) local mazima.

Proof: We modify the example of Fig. 8 for the segment-polygon case in R3. Let the line
segment [a, b] be positioned vertically over the origin of the zy-plane, as before, but now at
some fixed height above it so that the solution region for 6,,,,(v) when v is constrained to
lie on the zy-plane consists of the circle centered at the origin (heavy circle in Fig. 11) such
that it contains the polygon in its interior. To convert the polygon to a polyhedron P we
add a new vertex s that has xy-coordinates in the interior of the polygon and that lies very

26



close to, but below, the zy-plane. Finally we connect s by edges to all the vertices of the
original polygon that now is the top face of the convex polyhedron P. As the lunoid grows
further its boundary surface will intersect the xy-plane in two circles. One will grow without
bound. The other will eventually intersect simultaneously all the vertices of P but s. Thus
each vertex of the top face of P will yield a local maximum. [

Theorem 5.6 Given a line segment [a,b] and a disjoint convex m-vertex polyhedron P,
Omaz (V) may be computed in optimal O(n) time.

Proof: By lemmas 5.1, 5.2, and 5.3, ,0,(v) must lie on a face of P that belongs to
the set Py|a,b]. Furthermore, each such face f; has the property that segment [a, ] lies on
one side of the plane containing f;. Therefore each face f; of Py[a,b] is an instance of the
segment-polygon problem considered in section 4. Therefore for each such face f; we can use
theorem 4.4 to obtain a candidate solution in O(m;) time, where m; is the number of edges
of f;. The maximum of these candidates is the global solution. Since the summation of m;
over all 7 is O(n), and by lemma 5.4 the computation time of Py|a,b] is O(n), it follows
that the entire algorithm runs in O(n) time. Finally, lemma 5.5 allows us (by perturbing
a vertex of P) to apply an adversary argument to obtain an 2(n) bound on the complexity. m

5.2 Computing 0,,,,(v)

We assume that the line L(a,b) through the segment [a, b] does not intersect polyhedron P.
In this case the solution of ,,,(v) is zero and occurs at any intersection point. Furthermore
this case can be dispensed with in O(n) time by testing the intersection of L(a, b) with every
facet of P. In the previous section we saw that 6,,,,(v) may be realized by a point in the
interior of some facet. On the other hand the 6,,;,(v) problem is fundamentally different
in the sense that the solution must lie on the boundary of a facet of P. Furthermore, the
solution need not lie on a vertex of P, as it necessarily must in the 2-dimensional version of
this problem. In 3-dimensions the solution may lie in the interior of an edge of P.

Lemma 5.7 0,,;,(v) is determined by a point on an edge of P.

Proof: (by contradiction) First we show that 6,,;,(v) is determined by a point on the
boundary of P. Assume that 6,,;,(v) is determined by a point v* on the interior of a facet
f of P. Construct a plane H determined by the three points {a,b,v*} and let Py be the
convex polygon which is the intersection of P with H. Two cases arise: either Py is a facet
of P or it is not. In the first case which arises if v* lies on a facet F' that lies in H, we
may consider the two-dimensional problem with v* in the interior of Py. But then we can
find a point on the boundary of Py with smaller aperture angle, a contradiction. Therefore
assume Py is not a facet of P. In this case we may consider the two-dimensional problem
with v* in the interior of an edge e of Py. But then since the aperture angle function 0(v)
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is an upwards unimodal function on e, one of the endpoints of e must have smaller aperture
angle than v*, a contradiction. n

A natural question is whether 6,,,,(~) can be restricted further to a subset of the edges
of P. We now answer this question in the affirmative by showing that 6,,;,(v) is determined
by an edge of the “outer facets” of P with respect to segment [a,b]. First we make more
precise what we mean by the outer facets of P. Let B(P) denote the portion of bd(P) on
CH(P U [a,b]), where CH denotes the convex hull. We call the facets of B(P) the outer
facets of P with respect to [a, b].

Lemma 5.8 0,,;,(v) is determined by a point on B(P).

Proof: (by contradiction) By lemma 5.7 60,,;,(v) is determined by a point on an edge
of P. Let B'(P) denote the complement of B(P), i.e., the part of B(P) that lies in
int[CH(P U [a,b])]. Now assume 6,,;,(v) is determined by a point v on some edge of P
in B'(P). Then we may extend segment av in the direction of v until it intersects bd(P) at
some point, say v'. Now /av'b < /avb, a contradiction. Therefore 6,,,(v) is determined by
a point in the complement of B'(P), i.e, B(P). n

Lemma 5.9 6(v) may have 2(n) local minima.

Proof: The proof of lemma 4.6 (Fig. 9) can be applied directly by converting the polygon
to a polyhedron as was done in lemma 5.4 (see Fig. 11).

Theorem 5.10 Given a line segment [a,b] and a disjoint conver n-vertex polyhedron P,
Omin (V) may be computed in optimal O(n) time.

Proof: By theorem 5.6 and lemma 5.7, 6,,;, (v) must lie on an edge of P that belongs to the
set B(P). Each edge of B(P) is an instance of the problem solved in section 3.2 and can thus
be solved in O(1) time to give a candidate solution. Since there are O(n) edges in B(P) and
B(P) can be computed in O(n) time using the “rotating calipers” the entire algorithm runs
in O(n) time. Finally, lemma 5.9 implies an Q(n) lower bound via an adversary argument.
]

6 Conclusion

We have obtained theoretically optimal and exact algorithms for computing the maximum
and minimum aperture angles that a line segment determines for a camera as it travels in a
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region bounded by a convex polyhedron in space. A natural question is whether the meth-
ods developed here are to be preferred over the approximate numerical global optimization
methods traditionally used to solve optimization problems [13]. In practice the algorithms
proposed here are of course not exact. Our methods are exact combinatorial decompositions
of the original problems into O(n) fundamental primitive computations that include: square
roots, cube roots, trigonometric functions and inverse trigonometric functions. However, in
practice a computer uses approximate numerical optimization methods to compute these
primitives. Nevertheless, these simpler primitive problems (particularly square roots) are
much better understood than the general global numerical optimization methods. Therefore
from the practical point of view we have proposed new approximate numerical optimization
methods for solving these problems. Which of the two approaches is more accurate, stable
and faster in practice remains to be empirically determined.

Much theoretical work also remains unexplored. A line segment is the simplest object
that determines an aperture angle. One may be interested in viewing more general objects
such as convex polyhedra. A variety of generalizations of aperture angle are also possible.
For example, one may be interested in the solid angle of the smallest circular cone that
contains the object. Such problems remain open.
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