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Abstract

A band is defined as the intersection of the surface of a
convex polyhedron with the space between two parallel
planes, as long as this space does not contain any ver-
tices of the polyhedron. An wunfolding of a given band
is obtained by cutting along exactly one edge and plac-
ing all faces of the band into the plane, without causing
intersections. We prove that for a specific type of band
there exists an appropriate edge to cut so that the band
may be unfolded.

1 Introduction

It has long been an unsolved problem to decide whether
every polyhedron may be cut along edges and unfolded
flat to a single, nonoverlapping polygon [7, 5, 4]. An
interesting special case emerged in the late 1990s: !
can the band of surface of a convex polyhedron enclosed
between parallel planes, and containing no polyhedron
vertices, be unfolded without overlap by cutting a sin-
gle edge? A band and its associated polyhedron are
illustrated in Fig. 1.
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Figure 1: A polyhedron cut by two parallel planes, and
a top view of the resulting band.

This band forms the side faces of what is known as
a prismadoid—the convex hull of two parallel convex
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polygons in R®*—but the band unfolding question ig-
nores the top and bottom faces A and B of the pris-
matoid. An example was found (by E. Demaine and
A. Lubiw) that shows that band unfoldings can over-
lap, if a “bad” edge is chosen to cut; see Fig. 2.

Figure 2: A truncated tetrahedron can unfold to an
overlapping configuration if the wrong edge is cut.

So the question remained: Does there always exist
a “good” edge to cut? This paper answers YES for a
special case: when the top A and bottom B polygons of
the band are nested in the sense that the projection of
A onto the plane of B falls strictly interior to B. In this
case we say that the band is nested (as shown in Fig. 1).
Intuitively, we might expect to obtain a nested band
if both planes cut the polyhedron near its “top”. Our
argument provides more than nonoverlap in the final
planar state: it ensures non-intersection throughout a
continuous unfolding motion. Moreover, we believe the
argument should extend to capture arbitrary bands.

Band-like constructs have been studied before. Bhat-
tacharya and Rosenfeld [2] define a polygonal ribbon as
a finite sequence of polygons, not necessarily coplanar,
such that each pair of successive polygons intersects ex-
actly in a common side. Triangular and rectangular
ribbons (both open and closed) have also been stud-
ied. Arteca and Mezey [1] deal with continuous rib-
bons. Simple bands can be used as linkages to transfer
mechanical motion, as pointed out by Cundy and Rol-
lett [3].

There is one unfolding result that is relevant to our
problem, which may be interpreted as unfolding in-



finitely thin bands. This is that a “slice curve,” the
intersection of a plane with a convex polyhedron, de-
velops in the plane without overlap [6]. This holds re-
gardless of where this curve is cut. Thus, both the top
and the bottom boundary of any band (and in fact any
slice curve between), unfold without overlap. So overlap
can only occur from interaction with the cut edge, as in
Fig. 2.

2 Unfolding Nested Bands

The projection of a nested band has certain properties.
Every vertex is incident to exactly three edges. Two of
these edges belong to one of the nested polygons, and
the third links to the other polygon. There are no edge
crossings. The projection is partitioned into quadrilat-
erals, each corresponding to part of a polyhedral face.
Since each face is flat, the quadrilaterals in are in fact
trapezoids where edges from the inner and outer poly-
gons are parallel. Unless mentioned otherwise, all argu-
ments in this section involve the projection of a band.

We continue with some definitions that are necessary
to describe the unfolding motions:

An edge of a band is a hinge if it was part of an edge
of the given polyhedron. All hinges have an endpoint
on each of the given parallel planes.

After cutting a single hinge, a flattening motion is a
continuous motion during which each face moves rigidly
but remains connected to each adjacent face via their
common hinge, and the resulting configuration is pla-
nar. If no intersection occurs during the motion, then
this motion is an unfolding.

A planar chain is convez if joining the endpoints with
an edge yields a convex polygon.

A non-convex chain is weakly convez if we encounter
only left (or only right) turns as we traverse it, and join-
ing the endpoints with an edge yields a polygon which
has no exterior angles less than 7.

Any chain that has only left (right) turns but is not
convex or weakly convex is a spiral.

The interior angle at a vertex of a spiral or convex
chain is the smaller of the two angles at the vertex.
Exterior angles are defined accordingly.

The normal cone of a vertex v belonging to a convex
polygon is the region between two halflines that begin
at v, are respectively perpendicular to the two edges
incident at v and are both in the exterior of the polygon.

We say that a point is to the left (right) of a segment
zy if it is to the left (right) of a directed line through
zy.

When an edge of a given band is cut, the two convex
polygons in the projection mentioned above are cut into
(degenerate) convex chains. Suppose that we begin a
flattening motion by “squeezing” the two parallel planes
and keeping all vertices of the band on the planes. Such

a motion will increase the interior angle at every vertex
in the projection. Furthermore an interior angle can
only open to 7. Thus in the projection a convex chain
cannot self-intersect after such a motion. Proofs for
these claims are omitted here. All of our proofs involve
this specific method of flattening.

The projection of a band is related to the actual flat-
tening motion of a band as follows: let zp be the vertical
separation between the two planes, A and B. The two
planes will move towards each other, always remaining
parallel. Vertices of the hinges will always remain in the
planes. Let f be one band face, the hull of parallel edges
biby and ajas. zp is determined by the dihedral angle
at bibe between f and the base plane B. At any one
time, the 2D picture is an overhead projection of the 3D
band, with z decreasing from its initial value zg to 0, at
which time it is entirely flat in the B plane, i.e. we have
a uniform squashing of the band by lowering A until it
meets B. For any face f, the value of z determines its
dihedral angle with respect to B. The opening of the
convex chains, visible in the overhead view represents
the turning at each hinge, necessary to accommodate
the various simultaneous dihedral motions.

Let the vertices of the inner polygon be ordered in
clockwise order, and the cut hinge be incident to ver-
tex a;. We hold a;_;a; fixed horizontally in the plane
and relabel the newly created endpoint as a*. Corre-
spondingly, for the outer polygon, the direction of b;_1b;
remains fixed (it moves away from a;_ja; but remains
parallel) and b* is a “moving” endpoint. Thus the cut
edge is split into edges a;b; and a*b*. These definitions
are illustrated in Fig. 3.
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Figure 3: Left: projection of the inner convex chain
and part of the outer chain. The cone of a vertex a; is
shown, as well as the projection of the polyhedral edge
incident to a;. Right: the result of cutting at a;b; and
flattening.

Notice that the projection of the hinge incident to a;
becomes longer after flattening.

Lemma 1 A flattened band cannot produce an inner
chain that is a spiral.

Proof. During our type of flattening motion a*a;41 can
only rotate clockwise, because all joints open clockwise,



and the centers of rotation at these joints are all left of
a;r10*. Let R be the region that is to the right of the
two half-lines that form the normal cone of a;. As the
unfolding motion begins, a* can only move within R.
This can be seen by opening each angle successively in
clockwise order, starting with the angle at a;;. Also, it
follows from Cauchy’s arm lemma (see, e.g., [8]) that no
two points on an opening convex chain approach each
other. Eventually a* may end up anywhere within R or
in the region to the right of a;_;a;, but only after tracing
a clockwise motion about a;. Consequently, a flattened
band cannot produce a spiral. Also notice that the final
direction of a*b* will always be more clockwise than the
final direction of a;b;. O

Lemma 2 If a flattening produces an inner chain that
is convex then the band can be unfolded.

Proof. If intersection is to occur, then some part of the
inner chain must cross through a;b; or a*b*. This follows
from the results on slice curves, mentioned in the intro-
duction. From the arguments of the previous lemma,
we see that the inner chain will be convex throughout
the motion. Since the direction of a*b* is always more
clockwise than that of a;b;, the ends of the band cannot
intersect. O

The same types of arguments may be used to prove
that we can safely cut along any hinge where b; is lo-
cated within the normal cone of a;, or any hinge incident
to an acute interior angle.

We now characterize the types of chains that may be
obtained after a flattening resulting from a cut at a;b;.
We say that a chain is “safe” if it is convex. There are
two types of “dangerous” chains, depending on which
endpoint is not on the hull (clearly one of the two end-
points must be on the hull). Suppose that a; is not on
the hull of the opened chain. A problem might arise
if a;b; was initially to the right of the normal cone at
a;. In other words, a. might cross through a;b;. In this
case the chain is “unsafe” (see Fig. 4). We note that
if the whole flattening motion is observed, it is possible
that this crossing might happen but in the final position
there will be no intersection (i.e. a. and all successive
edges might cross out again). In other words, the term
“unsafe” serves just as a warning. Even under these
conditions there may be no intersection at any time of
the flattening motion.

As mentioned, there are two types of dangerous un-
foldings, and in each case there is only a potential prob-
lem if a hinge lies on a specific side of its associated nor-
mal cone. Clearly if a given band cannot unfold with
our motion then all vertices are associated with unsafe
openings.

Lemma 3 Not all hinges can be to the left (or all to
the right) of their associated normal cones. Thus not
all vertices can have the same type of unsafe property.

Figure 4: Cutting at a; is “dangerous” if a* ends up
above the dotted line. In this case the cut is labeled
“unsafe” if the hinge at a; (shown dashed) is to the
right of its normal cone. A symmetric dangerous and
unsafe case exists for the other side of the cone.

Proof. It is enough to look at the initial projection to
see this: suppose without loss of generality that on the
inner chain all hinges are clockwise of their respective
normal cones. Take any trapezoid with height h (mea-
sured in the projection). The trapezoid belonging to
the next edge clockwise must have height greater than
h. This continues around the convex polygon until we
reach the original trapezoid which would have to have
height greater than h. So somewhere there is a vertex ay
whose hinge is counterclockwise of the normal cone at
ay, while the hinge at a1 is clockwise of its respective
cone. O

Suppose that we have located two successive vertices
as described in the previous lemma. For the cuts at
both vertices to be unsafe, in each case some portion
of edge arayy1 is not on the resulting hull of the inner
chain (see Fig. 5). In other words the type of dangerous
opening cannot be the same at both vertices.

Figure 5: The type of dangerous opening (indicated by
the curves below the labeled vertices) must alternate
between some pair of successive vertices.

Lemma 4 Cutting a hinge incident to either ay or ags1
(defined in the previous lemma) must result in a chain
that is not unsafe.



Proof. Let us begin by cutting at axy;. As usual,
we hold ajagy1 fixed horizontally and open all angles.
Newly created a* must end up in the upper-right quad-
rant of ajy1, in order to have the necessary type of
dangerous opening. Now we make a new cut at ag,
and translate the entire unfolded chain (except the fixed
edge) so that a* re-attaches to agy1. We let the trans-
lated copy of aj retain its label, and call the horizontal
edge a*ay41. Notice that a; must be in the lower left
quadrant of a* (see Fig. 6).

Figure 6: Left: an unfolded chain. Right: translating
part of the chain so that the cut vertex is switched.

Now we have a new opened chain, except that we
have not taken care of the openings at the angles of
ar and agy1. Since agti1ar42 (previously a*aky2) had
rotated clockwise in the first unfolding, and we have
merely translated it back, we must rotate it counter-
clockwise to return it to its initial orientation. We must
then further rotate it counterclockwise in order to open
the interior angle at agy1. The entire chain will rotate
rigidly as well. Thus a; cannot cross into the upper-left
quadrant of a*. Now notice that during the first open-
ing, edge ax—1ay rotated clockwise, due to the opening
of the angle at ar. So we might expect that in order to
compensate for this in our final diagram we should ro-
tate ap_1ay counterclockwise (which might cause ay, to
go above the horizontal line). After all, if a cut is made
at ag, then ap_jar must rotate counterclockwise from
its initial position, but now it is clockwise. However,
since the opening of the angle at ax—; was included in
the first opening, and this has not been tampered with,
then edge aj_jar must be in its correct position. The
counterclockwise motion produced by adjusting the an-
gle at ag41 is enough to make the direction of ag_jay
more counterclockwise than it was initially.

This means that cutting at a, leads either to the same
type of dangerous opening as a1 or to a safe opening.
We conclude that an opening which is not unsafe exists
either at aj, or at a4 O

Since we can always find a vertex to cut so that the
inner chain opens to a position that is not unsafe, we
can always find an edge to cut along so that a nested
band can be unfolded:

Theorem 5 Fvery nested band can be unfolded.

3 Remarks

In a closed band, vertices are allowed on the parallel
planes of the slab. We claim that all closed nested bands
may also be unfolded, though proof is omitted here. We
also believe that a more complex proof establishes that
all bands may be unfolded. Even with it established
that arbitrary bands may be unfolded without overlap,
it remains interesting to see if this will lead to an un-
folding of prismatoids without overlap, including the top
and bottom polygons A and B. It is natural to hope
they could be nestled on opposite sides of the unfolded
band, but it is not obvious how to ensure nonoverlap.
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