Every Set of Disjoint Line Segments Admits a Binary Tree
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Abstract

Given a set of n disjoint line segments in the plane, we show that it is always possible to form
a tree with the endpoints of the segments such that each line segment is an edge of the tree,
the tree has no crossing edges, and the maximum vertex degree of the tree is 3. Furthermore,
there exist configurations of line segments where any such tree requires degree 3. We provide
an O(nlogn) time algorithm for constructing such a tree, and show that this is optimal.

1 Introduction

Given a set of disjoint line segments, determining whether the set admits certain combinatorial
structures has received considerable attention. One of the best-studied such structures has been
the simple circuit or polygon through a set of line segments. The question of deciding whether a set
of disjoint line segments admits a simple circuit is conjectured to be NP-complete, since Rappaport
[12] has shown that deciding whether a set of line segments allowed to intersect at their endpoints
admits a simple circuit is an NP-complete problem. For certain special cases, however, polynomial-
time algorithms have been obtained. Avis and Rappaport [1] gave an O(n?*) time and O(n?) space
algorithm to decide whether a set of disjoint line segments admits a simple monotone circuit.
Rappaport, Imai, and Toussaint [13] have shown that the decision problem is in O(nlogn) when
every line segment in the set has at least one endpoint on their convex hull (such a configuration is
known as a convezly independent set of line segments). Although not every convexly independent
set of line segments admits a simple circuit, Mirzaian [7] has shown that such a set always admits a
simple polygon such that the line segments are either part of the boundary of the polygon or form
internal diagonals. Mirzaian’s result does not hold for arbitrary sets of disjoint line segments, as
was shown by Urabe and Watanabe [17], and later by Griinbaum [6], but it is conjectured that the
result is true if the line segments are also allowed to form external diagonals of the polygon.

The simple circuit is not the only structure to have been investigated. ElGindy and Toussaint
[5] have shown that every set of line segments can be triangulated. Later, O’Rourke and Rippel
[10] proved the hamiltonicity of the visibility graph of certain restricted classes of line segments.

The structures with which this paper is concerned are trees that span a set of disjoint line
segments such that each line segment is an edge of the tree and the tree has no crossing edges
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Figure 1: no encompassing tree with maximum degree 2

— such a tree will be referred to as an encompassing tree. The problem of determining whether
a set of line segments admits an encompassing tree was first studied by Bose and Toussaint [3],
who showed that a set of disjoint line segments always admits an encompassing tree, and that the
encompassing tree of minimum total edge length has maximum degree 7. Subsequently, Rivera-
Campo and Urrutia [14] proved that a disjoint set of line segments always admits an encompassing
tree with maximum degree 4.

A natural question to ask is: Given a set of disjoint line segments, is there always an encom-
passing tree with mazimum degree less than 4? Figure 1 shows that there exist configurations that
do not admit an encompassing tree with maximum degree 2. However, we show that a set of disjoint
line segments always admits an encompassing tree with maximum degree 3 (a binary tree), and
that such a tree can be computed in optimal O(nlogn) time.

The encompassing tree construction relies heavily on a convex subdivision of the plane induced
by the set of line segments. The construction of the subdivision is discussed in Section 2, and
the special structure of the subdivision is examined in Section 3. In Section 4, it is shown how
the subdivision may be used to construct an encompassing tree of degree 3 in O(nlogn) time. In
Section 5 we present a proof of an Q(nlogn) lower bound for the problem. Closing remarks and
open problems can be found in Section 6.

Most of the geometric and graph theoretic terminology used in this paper is standard, and for
definitions we refer the reader to O’Rourke [9], Bondy and Murty [2], and Preparata and Shamos
[11].

2 The Convex Subdivision

The goal of the next three sections is to develop an algorithm to construct an encompassing tree
G (as defined earlier) for a set of n disjoint line segments S. To simplify the description of the
algorithm, and to avoid degeneracies, we will assume throughout the paper that

e no segment of S is horizontal (that is, parallel to the z-axis),



e no three endpoints of segments of S are collinear.

e of the lines obtained by extending the segments to infinity in either direction, no three intersect
in a common point.

The first of these assumptions is easily realized — if horizontal segments are present, a simple reori-
entation of the coordinate axes can be performed in O(n) time. The second and third assumptions
can be realized using a perturbation scheme; however, we will not address these issues here.

To arrive at an algorithm for computing a degree-3 encompassing tree of S, we first construct
a convex subdivision derived from the segments of S. Instead of subdividing the entire plane, we
will find it convenient to place a bounding box around the set of line segments, and to subdivide
the interior of the box into convex regions. In so doing, we ensure that the subdivision has no
unbounded regions or edges.

Conceptually, the subdivision is obtained by extending each segment s along the unique line
containing it. The extensions take the form of two rays, one oriented “upwards” (increasing in y-
coordinate) and the other oriented “downwards” (decreasing in y-coordinate). Each ray is allowed
to continue until it intersects an obstacle or another ray, at which point it is possibly truncated.

The rules governing these intersections are as follows:

1. If the intersection is determined by a ray r and an edge b of the bounding box, then r is
truncated at that intersection point: it does not continue beyond b.

2. If the intersection is determined by a ray r and a segment s of S, then r is truncated at that
intersection point: it does not continue beyond s.

3. If the intersection is determined by two rays r1 and ro of the same orientation, then one ray
is allowed to continue, and the other is truncated. Let us assume that 79 intersects r1 from
the right (as viewed from r1). If the rays are upward-oriented, then ro is truncated; if they
are downward-oriented, 1 is truncated.

4. If the intersection is determined by an upward-oriented ray r, and a downward-oriented ray
r4, then r, is allowed to continue, and r, is truncated.

See Figure 2 for illustrations of each of these cases.

These rules are sufficient to guarantee that the resulting subdivision is convex. A vertex v of the
subdivision is either an endpoint of a segment of S, a corner of the bounding box, or the truncation
point of some ray, but in each of these cases, every angle incident to v (and interior to the box) is
at most 7 by the construction. Thus every region is a polygon with no interior angle greater than
7, and is thereby convex.

To construct the subdivision in an efficient manner, we make use of the well-known sweep-line
paradigm. We assume that the reader is generally familiar with this paradigm, and present only a
sketch of the construction here. For more information regarding sweep-line techniques, see [11].

The sweep is done in two passes: in the first pass, a horizontal line is swept from bottom to
top, searching for intersections involving upward-oriented rays only — downward-oriented rays are
ignored. When an intersection is detected, the appropriate rule (1, 2, or 3) is applied.
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Figure 2: Extension ray intersection rules.

In the second pass, the downward-oriented rays are introduced. A horizontal line is swept from
top to bottom, searching for intersections involving downward-oriented rays. When an intersection
is detected, the appropriate rule (1, 2, 3, or 4) is applied. Note that the fourth rule guarantees
that the subdivision edges introduced in the first pass are not disturbed, as these edges derive from
upward-oriented rays.

Consider the set of line segments (and its bounding box) shown in Figure 3a. The subdivisions
obtained after the first and second passes are shown in Figures 3b and 3c respectively.

3 Properties of the Convex Subdivision

In this section, we state and prove a number of facts concerning convex subdivisions of the kind
described in the previous section. We shall also examine structures to be found within the subdivi-
sion which are central to the description of the algorithm presented in the following section, both
in its motivation, and in the proof of its correctness.

We assume throughout that Q is the subdivision for a set S of n line segments in the plane.
Lemma 1 The number of edges, vertices, and regions of Q is in O(n).

Proof Follows easily from Euler’s Formula [2].
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Figure 3: Constructing the convex subdivision

The edges of the subdivision can be of one of three types:

e segment edges, which derive from segments of .S,
e extension edges, which derive from extension rays of segments of S, and

e boz edges, which derive from the sides of the bounding box.

Each extension edge can be thought to have an orientation, namely that of the ray from which the
edge is derived. It can be classified as an upward extension edge or a downward extension edge,
depending on the orientation of the ray.

Lemma 2 Every cycle in Q (other than the cycle forming the bounding bozx) contains an endpoint
of some segment in S.

Proof Assume otherwise: that is, there exists some cycle n that does not consist entirely of box
edges, and that does not contain an endpoint of any segment in S. Note that the cycle must contain
at least one extension edge.

Let ' = {eg,e1,€2,...,€ex_1,ex} be the subsequence of 7 consisting of the extension edges of 7,
where eg = e;. With respect to the ordering of 7/, each extension edge is oriented either forward
or backward.

e Case I: the edges of n' do not all share the same orientation.



In this case, there must exist some ¢ such that e; is backward and e;;; is forward. Clearly, e;
and e;41 cannot share a common endpoint — otherwise, two rays would emanate from one
point, in contravention of the rules governing intersections (3 and 4). This implies that there
must be at least one non-extension edge between e; and e; 1 in 7. Let e be the non-extension
edge occurring immediately before e;41 in 7.

Let v be the vertex of Q where e meets e;41. Vertex v cannot lie on a box edge, since no
extension ray can emanate from the side of the bounding box. Therefore e must be a segment
edge. However, v must then be an endpoint of the underlying segment s in S, since no
extension ray can emanate from the side of s. This contradicts the assumption.

e Case II: the edges of ' all share the same orientation.

Without loss of generality, we can assume that the extension edges are all forward edges.
The arguments of Case I imply that the cycle must consist entirely of extension edges —
that is, n = /', and the cycle is the sequence 7 itself. The edges of n’ therefore cannot be all
upward; otherwise, each vertex in the cycle would have y-coordinate strictly greater than its
predecessor, which is impossible. Similarly, the edges of ' cannot be all downward. Therefore
there exists some j such that e; is upward and e;j;; is downward.

Let v' be the vertex where e; meets e;1. The edge e;1, being forward, is oriented away from
v'. Therefore e; (and not e;1) was on the ray that was truncated at v’. But this contravenes
the fourth intersection rule of Section 2, by which the downward-oriented ray containing e;1
should have been truncated instead. Thus no simple cycle may have its extension edges share
a common orientation. 0O

Lemma 2 has an immediate implication concerning the structures formed by extension edges.
Let F be the subgraph of Q induced by the extension edges of Q. Since Q cannot contain cycles
consisting entirely of extension edges, F must be a forest; that is, each connected component of F
is a tree. We will refer to such trees as extension trees.

By the orientation of its incident edge, we can distinguish between two types of leaves of
extension trees: those whose incident edges are directed away from the leaf, and those whose
incident edges are directed towards the leaf. The former kind correspond to endpoints of segments
of S; the latter kind can be formed only when an extension ray meets either the side of a segment
or the bounding box. While an extension tree can have many leaves of the former kind, it turns
out that it can have only one of the latter kind. We shall refer to these latter kinds of nodes as
roots of their respective trees, reserving the term leaf for nodes of the former kind. The following
lemma, justifies the use of this terminology:

Lemma 3 If T is an extension tree, then it has exactly one root. Furthermore, the edges along the
path from any node to the root are all oriented towards the root.

Proof According to the rules governing the intersections of extension rays, each internal node
of the tree has exactly one outgoing edge. From any starting node z, let us consider the set of
nodes reachable from z via a sequence of outgoing edges. Since T" has no cycles, and is finite, this
sequence must describe a unique path in T of finite length, oriented towards the terminus. Since



Figure 4: Two adjacent extension trees

the definition states that leaves are incident to outgoing edges, and roots to incoming edges, the
terminus of this path can only be a root. This root is unique, since every internal node can have
only one outgoing edge. O

Even though the leaves of an extension tree may lie on many different segments of the subdi-
vision, the uniqueness of the root allows us to associate each tree with either a unique segment of
S, or the bounding box. Let T and T, be extension trees rooted on the same side of a common
segment s of S, and let r; and r, be their respective roots. If no other extension tree rooted on the
same side of s has its root between 71 and 79, then we say that 77 and T are adjacent. In the same
spirit, we say that two trees rooted on the bounding box are adjacent if it is possible to move along
the bounding box from one root to the other without encountering the root of any other extension
tree. See Figure 4 for an example of adjacent extension trees.

Consider a segment s of S, and the set 7 = {T1,T5, ..., T} of all trees rooted to one particular
side of s. Let us assume that the trees of 7 are indexed in accordance with the left-to-right
ordering of their roots with respect to s, as viewed toward s from the side to which the trees
attach. Let (v1,vs,...v;) be the sequence of leaves one would obtain if one reported them as
they were encountered during an inorder traversal of all the trees of T in left-to-right order. With
respect to this ordering, we say that v; is the left neighbour of v;11, that v;1 is the right neighbour
of v;, and that v; and v;11 are neighbouring leaves (see Figure 4).

Observation 4 Let v and w be neighbouring leaves with respect to some segment s of S. Then
there exists a path from v to w in Q that:

e passes only through extension edges of trees rooted at s, or segment edges contained in s, and

e that is entirely contained in the boundary of some cell ¢ of Q.



Observation 5 Let v be a leaf of an extension tree T, rooted at some segment s of S. Let s, be
the left endpoint of s as viewed from the side to which the extension tree is rooted. If v has no left
neighbour, then there exists a path from v to s, in Q that:

e passes only through extension edges of Ty, or segment edges contained in s, and

o that is entirely contained in the boundary of some cell ¢ of Q.

Note that v can be identical to s,, in which case the extension tree of which s, is a leaf has its
root at s. By symmetry, Observation 5 holds when v has no right neighbour and s, is the right
endpoint.

Observation 4 extends to the case where we consider all trees rooted at the bounding box. The
only difference worth noting here is that whereas v; has no left neighbour and v,, has no right
neighbour in the case outlined above, every leaf of a tree rooted at the bounding box always has
both a left and a right neighbour.

We conclude the discussion of the properties of the convex subdivision with the following lemma,
that shows that all segments of S can be connected simply by ensuring that for every cell ¢, the
segments on the boundary of every cell ¢ are mutually connected.

Lemma 6 Let S be a set of n disjoint line segments, and Q be its underlying conver subdivision.
Let G be any planar graph whose vertex set is the set of endpoints of the segments in S and whose
edge set includes the segments of S. Then G is connected if and only if for every cell ¢ of Q, the
set of segment endpoints on the boundary of c is connected in G.

Proof If G is connected, then trivially the set of segment endpoints on the boundary of any given
cell are mutually reachable in G.

If the segment endpoints on the boundary of every cell ¢ are mutually connected in GG, then the
fact that G is connect follows from Lemma 2 (i.e. every cycle in Q must contain an endpoint of S)
and the fact that the planar dual [2] of Q is connected. O

4 Constructing an Encompassing Tree of Degree 3

The degree-3 encompassing tree construction algorithm, ENCOMPASS, can best be described as
incremental: starting from a single segment of S, previously unattached segments are attached to a
growing tree G one by one until no unattached segments remain. When the algorithm terminates,
G is the encompassing tree for S.

In the next subsection, we discuss some of the invariants and conventions observed by ENCOMPASS.

In Section 4.2 we present a key procedure of the overall algorithm, ATTACHTO — one which
given a leaf of an extension tree, attaches to it the segment at which the tree is rooted.

Procedure ATTACHTO is not in itself sufficient to correctly link up all the segments into an
encompassing tree of degree 3. Although the main algorithm greedily relies on ATTACHTO to



attach as many segments as possible to the growing connected component, it sometimes occurs
that segments are left unattached even after all opportunities for applying ATTACHTO have been
exhausted. In Section 4.3, we present the procedure STITCHUP that takes a cell with both attached
and unattached segments in its boundary, and attaches to G those segments that ATTACHTO could
not find.

In Subsection 4.4, we present the main algorithm, as well as its complexity analysis, and a proof
of correctness.

4.1 Preliminaries

Algorithm ENCOMPASS accepts as its input a set of segments S and returns an encompassing tree
G of degree at most 3. Whenever in the course of the execution of the algorithm an edge of G is
created between two segment endpoints v and w, we shall say that a bridge (v, w) has been created
between v and w.

The ENCOMPASS algorithm maintains the following invariants regarding the creation of bridges:

e A bridge is added only between two mutually visible endpoints.

e Each bridge added to the encompassing tree passes through the interior of exactly one cell of
the subdivision Q, from one segment endpoint on its boundary to another segment endpoint
on the boundary.

e Each endpoint can have at most two bridges attached to it, one through each of the two cells
sharing the endpoint in their common boundary.

e A bridge is never created between two endpoints so as to introduce a cycle into G.

During the execution of the algorithm, as vertices are visited and bridges created, the segments,
segment endpoints, and cells of Q will acquire various labels. The labels also respect certain
invariant conditions, outlined below.

A segment can be labeled unattached, in which case it has not yet been bridged to any other
segment; attached, which indicates that it has been integrated into the final encompassing tree
G; and semi-attached, which indicates that it has been connected to other segments by means of
bridges, but has not yet been integrated into the final encompassing tree. Semi-attached segments
are labeled with the name of a connected component into which it has been integrated. Initially,
all segments are unattached. Once a segment becomes semi-attached, it will never again become
unattached. Once it becomes attached, it will always remain attached. The bounding box as a whole
will sometimes be treated as if it were a segment. It is initialized with the label unattached, and
will eventually receive the label attached.

Segment endpoints can be labeled unvisited, pending, or examined. An endpoint is unvisited if
its segment has not yet been attached to another. Otherwise, if it is a candidate leaf from which
to apply ATTACHTO, then it carries the label pending. Endpoints labeled unwvisited or pending
have no bridges yet attached to them. An endpoint labeled examined is one from which a call to



ATTACHTO is no longer necessary. Initially, all segment endpoints are unvisited. Once an endpoint
becomes pending, it will never again become unwvisited. Once it becomes examined, it will always
remain ezamined.

The labels of the cells of Q depend on the labels of the segments having endpoints contained in
its boundary. If these labels are all unattached, then the cell is labeled unwvisited. If the segments
are all attached, this implies that all endpoints in the boundary of the cell are mutually connected
by the encompassing tree, and thus the cell acquires the label connected. A cell that is neither
connected nor unvisited (that is, only “partly” connected) is labeled pending. Initially, all cells are
unwvisited. Once a cell becomes pending, it will never again become unwvisited. Once it becomes
connected, it will always remain connected. When all cells become connected, all segments are in G.

In the descriptions to come, the labels of cells are often not explicitly mentioned. We assume
that every time a segment label is modified, the labels of the two cells upon which it borders are
updated in accordance with the new segment label. This can be done simply by maintaining an
appropriate counter for each cell.

4.2 Connecting the Leaves of Extension Trees

Under the assumption that no two segments are collinear, Observation 4 implies that subject to
other restrictions (such as the invariants outlined in the previous subsection), a bridge can always
be created between any two neighbouring leaves v and w — unless v and w are opposite endpoints
of the same segment of S, in which case no bridge is necessary. If endpoint v has no left neighbour,
then by Observation 5 a bridge can be created between v and the left endpoint of the segment
to which the extension tree of v is rooted (and similarly if v has no right neighbour). Algorithm
ENcoMPAss takes advantage of this by means of its procedure ATTACHTO.

Procedure ATTACHTO(z, dir) accepts a leaf z of an extension tree that is already contained in
some connected component (that is, either semi-attached or attached), and a direction dir (“left” or
“right”). If T}, is the extension tree of which z is a leaf, then the behaviour of ATTACHTO depends
on whether T, is rooted at some segment s* of S, or at the bounding box. In the former case,
ATTACHTO only proceeds if s* is unattached by traversing the trees rooted at s* towards one of
the endpoints of s* (determined by dir), linking the leaves when necessary as it goes along. This
process is guaranteed to reach the targeted endpoint of s*, since each of the trees traversed are all
rooted at s*.

The manner in which a leaf is linked depends on the labeling of the segment of which it is
an endpoint. Let a be the current leaf in the sequence, belonging to component G,, and let b
be the next leaf in the sequence. Let s, and s, be the segments of which a and b are endpoints,
respectively. If s is unattached, ATTACHTO introduces a bridge between a and b, integrates s into
(G, by assigning it the same label as s,, and then continues the procedure from b.

If sp is not unattached, then it belongs to some connected component Gy. If Gy = G, then
instead of bridging from a to b (and introducing an unwanted cycle into G, = G,), the procedure
simply proceeds onward from b without creating a bridge.

If Gy # G,, then the introduction of a bridge from a to b forces the two components to be
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merged. If G, = G, then all segments of G, are immediately relabeled to that of G, namely
attached. Similarly if G, = G, all segments of G are immediately relabeled to attached. If neither
Gy nor G, equals G, then the two components are merged. In all three cases, the procedure
continues from b.

Whenever two components other than G are to be merged, it would be inefficient to explicitly
relabel the segments of one component to match that of the other; if this is done, a given edge
could potentially be relabeled many times. Instead, an efficient set union-find data structure U is
used to keep track of equivalence classes of segment labels. Merging components is thus a matter
of merging classes of labels. The explicit relabeling that occurs when a component is merged with
G can only be done once per edge — once a segment receives the label attached, its label will never
change again.

The procedure by which the leaves of neighbouring extension trees are linked finishes with the
initial leaf £ and s* in the same connected component; several components may have been merged
with each other or into G in the process. Once segment s* has been attached (say at its endpoint
A), ATTACHTO is called again starting from \. To avoid creating two bridges at A in the same cell
of Q, the direction of the linking is reversed. For example, if the call ATTACHTO(z, left) resulted
in s* being linked to z, then the call ATTACHTO(A, right) would be performed.

If X itself is the last extension tree leaf, then by attaching A, s* is attached. In this case, since
extension tree T) is rooted at the previously-visited segment s*, no further call to ATTACHTO is
made from .

Figure 5 illustrates the process by which segments are attached by showing the bridges created
as a result a call to ATTACHTO(z, right), assuming the prior creation of bridge b. Note that in
this example, the sequence of calls to ATTACHTO terminates at a node y which is simultaneously
the target endpoint of its segment, and the last of the leaves of the extension trees rooted at its
segment.

In the case where Ty, is not rooted at a segment of S, but instead is rooted at the bounding box,
the behaviour of ATTACHT O is somewhat different. If ATTACHT O is called when all segments are
yet unattached, the circular nature of the list of neighbours results in the connection of the entire
list. Once the starting point is reached, the process terminates. For an example of how ATTACHT O
handles this special case, see Figure 6.

ATtTACHT O(z, dir)

(1) If z has already been marked ezamined, then return. Otherwise, mark z as being ezamined.

(2) Let T be the extension tree of which z is a leaf, and let r; be the root of T;. Let s* be the
segment at which 7} is rooted.

(3) If s* is attached or semi-attached, then return.

(4) (s* must be an unattached segment.)
If  has no neighbouring leaf in the direction dir, then:

(4a) Let w be that endpoint of s* which lies in direction dir from r, as viewed from z. If
T = w, then return.
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Figure 5: Bridges created by ATTACHTO(z, right)

Figure 6: Bridges created by ATTACHTO(z, right)
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(4b) Otherwise:

(4b1) Create a bridge between z and w. Mark s* with the label of s,. Mark the
endpoint of s* opposite to w as pending.

(4b2) Let oppdir be the direction opposite to dir. ATTACHTO(w, oppdir).

5 Else, z has a neighbouring leaf y in the direction dir. Let s, be the segment of which y is
an endpoint.

(ba) If sy is unattached, then create a bridge between z and y. Mark s, with the label of
sz, and the endpoint of s, opposite to y as pending.

(56b) Otherwise, s, is attached or semi-attached. If the component of s, is different to that
of sz, then:

(5b1) Create a bridge between z and y.

(5b2) If s, is attached then relabel all segments of the connected component con-
taining s, as attached.

(6b3) Otherwise, if s, is attached then relabel all segments of the connected com-
ponent containing s, as attached.

(6b4) Otherwise, both s, and s, are semi-attached. Merge the components con-
taining s; and sy, by making their labels equivalent to each other within the
union-find structure U.

(5¢) ATTACHTO(Y, dir).

It should be noted at this point that ATTACHTO maintains each of the invariants listed in
Subsection 4.1. In particular, the introduction of the bridge at Step (5bl) does not violate the
invariant relating to the number of bridges that may be attached at a particular endpoint: if y
already had a bridge attached to it, the endpoint would have had the label ezamined — in which
case, the procedure ATTACHTO would have been called at y before, that would have resulted in s*
already having been labeled attached or semi-attached. A formal inductive proof of correctness will
be given later in the paper.

4.3 Stitching Up Cells

Procedure ATTACHT O is not in itself sufficient to link all segments into a tree of degree 3. Even
if ATTACHTO is applied such that no more endpoints are pending, some segments may still be
unattached, and some cells of Q may not yet be connected (see Figure 7 for an example). In these
situations where ATTACHTO cannot be applied, the procedure to be outlined in this subsection
takes over. Since this procedure, STITCHUP, relies heavily upon special properties of subdivisions
for which ATTACHTO cannot be applied, we shall describe STITCHUP without worrying about its
applicability at this stage. Its applicability and usefulness will be established after the overall
algorithm has been described.

Procedure STITCHUP is called upon cells that are labeled pending: to be precise, those that
have endpoints of both attached and unattached segments in their boundaries. If ¢ is such a cell,
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Figure 7: No more endpoints are pending, but ¢ is not connected

the effect of calling STITCHUP is to attach all unattached segments having one or both endpoints
lying on the boundary of c.

This is done in three phases. In the first phase, a clockwise scan is performed around the
boundary of ¢, starting from an endpoint wy that is guaranteed to belong to an attached segment.
When the scan encounters an unattached segment with both endpoints on the boundary of ¢, it
initiates a call to ATTACHTO in one of two ways, depending on the number of consecutive unattached
segments encountered leading up to the current segment.

Once the first invocation of ATTACHTO has terminated, a number of previously-unwvisited end-
points may become pending. Calls to ATTACHTO are then initiated from each pending endpoint,
until no further pending endpoints remain. The result of this process is the creation of a connected
component consisting of semi-attached segments and bridges. The scan then progresses to the next
segment with both endpoints in the boundary of ¢, and the process is repeated to yield another
connected component.

It shall be shown later that when this scan has terminated, each of the previously-unattached
segments on the boundary of ¢ will have been integrated into a connected component. As a result
of the action of ATTACHTO, some components may have merged with each other, or even with
the original component of attached edges. Furthermore, every surviving semi-attached component
shall be shown to contain at least two endpoints on the boundary of ¢ that are not incident to any
bridges passing through c.

In the second phase of the STITCHUP procedure, a clockwise scan is again performed, this
time to identify endpoints of semi-attached components not incident to bridges through ¢. When
two consecutive such endpoints are discovered from different semi-attached components, a bridge
is introduced, thereby merging the components. Once the scan is complete, a single semi-attached
component remains.

In the final phase, the remaining semi-attached component (call it G') is integrated into the
attached component (G, in one of two ways. If the endpoint wy is incident to no bridge passing
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through ¢, then wy may safely be bridged to either of two endpoints of G’ (call them A and p)
identified as incident to no bridges passing through ¢. Otherwise, if a bridge through c¢ is incident
to wy, it is replaced by two new bridges connecting G to G’'. The connectivity of the endpoints of the
deleted bridge is in a sense “diverted” through the new bridges and segments of the semi-attached
component.

Once STITCHUP has terminated for cell ¢, all segments are again labeled either attached or
unattached, and again no endpoint of a segment of S is left with a label of pending. We claim,
and shall prove later, that all segments on the boundary of ¢ that were previously unattached have
become attached as a result of the call to STITCHUP.

STITCHUP(c)

(1) Let W = {wg, w1, ws, ..., wk_1,wx} be the sequence of segment endpoints encountered as
one traverses the boundary of ¢ in clockwise order, where wy = wy is the first endpoint
on the boundary of ¢ to have been marked by the algorithm as ezxamined. Let s; be the
segment of which w; is an endpoint, for all 0 <7 < k.

(2) Initialize the union-find structure U to recognize equivalence classes within the set of labels
{1,...,k —1}. Each label is initially in its own equivalence class.

(3) For i «— 0 to k — 1, do the following:
(3a) If segment s; is attached or semi-attached, then set a +— i.
(a stores the most recently encountered attached or semi-attached endpoint.)
(3b) If s; is unattached and s; = s;+1, then:

(3bl) (s; has both endpoints on the boundary of ¢.)
Mark s; as semi-attached with component label ¢ — segment s; is the first
in a new connected component. Mark w; and w; 1 as pending.

(3b2) If i — a is even, then initiate ATTACHTO(w;, right).
(3b3) If i — a is odd, then initiate ATTACHTO(w;+1, left).
(3b4) While there are endpoints yet pending, choose such an endpoint (call it y),
and initiate ATTACHT O(y, right).
(4) Set A +— p«+— 0.

(5) For i «— 0 to k — 1, do the following. If s; is semi-attached and w; has no bridge attached
to it passing through cell ¢, then:
(5a) If A = () then set A +— 1.
(5b) Otherwise, if p = () then set p +— i.
(5¢) Otherwise, if s; and s, are in different semi-attached connected components, then:

(6c1) Introduce a bridge between s, and s; through c.

(5¢2) Using the union-find structure I, merge the components containing s, and
S;.
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(5¢3) Set p «— 1.
(6d) Otherwise, if s; and s, are in the same semi-attached connected component, then set
p — 1.
(6) At this point, all segments with endpoints on the boundary of ¢ are either attached, or

belong to a common semi-attached connected component.

(6a) If there is no bridge attached to wy passing through ¢, then introduce the new bridge
(wp, wy)-

(6b) If there previously existed a bridge between wy and wy, then delete the bridge, and
replace it with bridges (w1, wy) and (w), wp).

(6¢c) Otherwise, there previously existed a bridge between wy and wg_;1. Delete this
bridge, and replace it with bridges (wo,wy) and (w,, wi_1).

(7) Relabel all semi-attached segments in S as being attached.
Note that STITCHUP maintains each of the invariants listed in Subsection 4.1; in particular,
a call to STITCHUP cannot result in the connection of more than one bridge through c at any

endpoint of any segment. The proof of this claim follows the discussion of Algorithm ENCOMPASS
in the next section.

4.4 The Main Algorithm

Having described procedures ATTACHTO and STITCHUP, we are now in a position to outline the
main algorithm. Following this, we shall prove that it is correct.

ENcOMPASS

(1) From the set of segments S, build its associated convex subdivision using the method
outlined in Section 2.

(2) Mark the bounding box and each segment as unattached. Mark each segment endpoint and
each cell unvisited.

(3) Connect the leaves of all trees rooted at the bounding box, as follows:

(3a) Choose such a leaf (call it z). Let s, be the segment of which z is an endpoint.
(3b)

(3c) ATTACHTO(Z, right).

(3d) Mark the bounding box as attached.

Mark s; as attached, and the endpoint of s, opposite to x as pending.

(4) While there are endpoints yet pending do:

(4a) Choose such an endpoint (call it y).
(4b) ATTACHTO(Y, right).
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(5) While there are cells yet pending do:

(5a) Choose such a cell (call it ¢).
(5b) StrTCHUP(C).

The proof of correctness of Algorithm ENCOMPASS is by induction. It is easily seen that the
first segments are correctly attached to G at Step (3) of ENCOMPASS. For each remaining segment
s of S attached at Step (4) or Step (5), we assume inductively that both of the Lemmas 7 and 8
hold true before s is attached, and show that both also hold after s is attached.

The proofs of the lemmas rely on two main facts. First, ATTACHTO and STITCHUP both
maintain the invariants set out in Subsection 4.1. In particular, any endpoint labeled unwvisited
or pending is not connected to a bridge. Both ATTACHTO and STITCHUP ensure that when a
new bridge is introduced, that its endpoints will have acquired the label ezamined. Second, any
endpoint with the label ezamined must have been given this label by ATTACHT 0.

Lemma 7 Let s, be a segment labeled either attached or semi-attached, and let v be an endpoint
of sy which has become examined as a result of the application of ATTACHTO upon v. Let T, be
the extension tree of which v is a leaf, and let s be the segment of S at which T, is rooted. If s was
unattached at the time that ATTACHT O was invoked on v, then once this invocation has terminated,
s must have correctly been made a member of the same connected component as s,.

Proof Let us assume that s is not in the same connected component as s, after the invocation
of ATTACHTO on v has terminated. If the call to ATTACHTO on v did not immediately result
in s being bridged to v, then ATTACHTO attempted to link the neighbouring leaves of extension
trees to an endpoint of s by means of bridges. If all these leaves were labeled unvisited or pending,
then clearly the algorithm succeeded in bridging to and attaching the segment s, as no bridges had
previously been attached to these leaves. Therefore at least one of the leaves (call it v') on the
path to the endpoint of s must have previously been ezamined. As v' can only have been given
this label by ATTACHTO, the induction hypothesis implies that v’ and s are in the same connected
component. However, if v’ and v are not already in the same connected component, the bridge
(v,v") introduced at Step (5bl) of ATTACHTO causes the components to be merged. From this
contradiction, the result follows. O

Lemma 8 Let ¢ be a pending cell upon which the call STITCHUP(c) is made, at a time when
all segments of S are labeled either attached or unattached. Then when the call to STITCHUP
terminates,

1. All segments of S are again labeled either attached or unattached.
2. No endpoints of segments of S are pending.

3. c¢ is correctly connected.
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Proof Consider the sequence of segment endpoints W = {wg, w1, ws, ..., wk_1, wy} encountered
as one traverses the boundary of ¢ in clockwise order, where wg = wy, is the first endpoint on the
boundary of ¢ to have been marked by the algorithm as erxamined. Let s; be the segment of which
w; is an endpoint, for all 0 < < k.

Imagine the boundary of ¢ as viewed from the interior, in clockwise order starting from wy.
The extension edge emanating from each endpoint of W must itself lie on the boundary of ¢. If
the extension edge of w; follows w; when scanning the boundary in clockwise order, then we will
say that w; is a clockwise (CW) endpoint of W. Otherwise, w; will be called a counterclockwise
(CCW) endpoint.

We first show that after the loop of Step (3) has terminated, all segments on the boundary of
c are either attached or semi-attached. The invariants maintained during the execution of the loop
are:

1. Immediately before the execution of Step (3bl), s; is attached or semi-attached for all 0 <
J<a

2. Immediately after the execution of Step (3b4), s; is attached or semi-attached for all 0 < j <
1+ 1.

3. Immediately after the execution of Step (3b4), s; belongs to the same connected component
as sj41, for all a < j <i.

4. Except during the execution of Steps (3bl) to (3b4), no endpoints of edges are pending.

5. Immediately after the execution of Step (3b4), if s; is labeled semi-attached, then there exist
two endpoints w;, and w;, of W such that:

e there are no bridges passing through the interior of ¢ having w;, or wj, as an endpoint;
° j1<je<i+1;

e if b is the smallest index such that s, belongs to the same semi-attached component as
s;, then s; also belongs to this component for all b < j < ja.

Note that when STITCHUP is invoked, no endpoints can be labeled pending. Also note that in the
first iteration of the loop, a is set to 0, since sy had been attached prior to the call to STITCHUP.

Consider now the situation at ¢ = p in which segment s,, is found to be unattached at Step (3a),
and sp_1 has the label attached or semi-attached. Endpoint w, cannot be CW; otherwise, the
sequence of edges on the boundary of ¢ between w;, 1 and w, would consist of extension edges,
followed by a single segment edge adjacent to w,. The extension tree of which w,_; is a leaf would
therefore be rooted at s,. Since the loop invariant implies that w, 1 cannot be labeled pending
(and therefore must be ezamined), Lemma 7 implies that s, must be attached or semi-attached —
a contradiction. Therefore w, must be CCW in this situation.

Let p < g < k be the smallest index such that either w, is CW, or s, is attached or semi-attached.
We claim that in fact s; must be unattached. Otherwise, we have two cases:
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o w, is CW.

From the definition of ¢, we have that w,_; is CCW. The only way a CCW endpoint can be
followed by a CW endpoint in clockwise order about the boundary of c is if the endpoints
belong to the same segment. However, the assumption that s, is attached or semi-attached
implies that s;_1 = s4 is also attached or semi-attached. This contradicts the minimality of

q.
o wy is COW.

Since wg—1 is also CCW, the sequence of edges on the boundary of ¢ between w,_1 and wy
would consist of extension edges, preceded by a single segment edge adjacent to w,_1. The
extension tree of which wy is a leaf would therefore be rooted at s; 1. Since the loop invariant
implies that w, cannot be labeled pending (and therefore must be ezamined), Lemma 7 implies
that s,_1 must be attached or semi-attached — again, contradicting the minimality of q.

We are forced to conclude that w, is CW, and also that s,_; = s,. This implies the following:

e Once an unattached segment s, is discovered at Step (3a), the condition of Step (3b) will
eventually be met at some 7 > p.

e Segment s; is unattached for all p < j <i+ 1.

e Endpoint w; is CCW for all p < j <.

When Steps (3b1) through (3b4) are executed, the effect is to render semi-attached (or possibly
even attached) every segment s; in the range p < j <14+ 1. To prove that this is the case, consider
the effect of initiating ATTACHTO at endpoint w;, where w; and w;j_1 are both CCW. Arguments
similar to those appearing above ensure that as a result of the call to ATTACHTO, segment s;_;
becomes a member of the same connected component as s;. Endpoint w; 1 becomes either pending
or ezamined, depending on the endpoint by which s;_; becomes attached. However, Step (3b4)
ensures that all pending endpoints become ezamined before the step terminates. Given that both
endpoints of s; = s;;1 are labeled pending in Step (3bl), and that all w; are CCW and s; are
initially unattached for all p < j < 4, all w; in the range must become eramined by the time
Step (3b4) terminates.

When Step (3b4) terminates, the second through fourth loop invariants mentioned above have
been restored. Since s;11 = s; becomes semi-attached (or possibly even attached) as a result, a is
set to ¢ + 1 in the next iteration of the loop. This guarantees that the first loop invariant holds
for the next execution of Step (3bl), if any. Thus when the loop terminates, all segments in the
boundary of ¢ are indeed labeled either attached or semi-attached.

So far we have not justified the separate handling of the cases depending on the parity of 1 — a,
in Steps (3b2) and (3b3). We claim that this separate handling allows the fifth loop invariant to
be maintained. Let us assume then that s; is semi-attached when Step (3b4) terminates.

If i — a is even, then Step (3b2) prevents w; from receiving a bridge through the interior of ¢
before the termination of Step (3b4) — since all bridges introduced in Step (3b) merge segments
into a common connected component, a second bridge through w; would introduce a cycle. In
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order to identify a second endpoint that receives no bridge through ¢, consider the endpoints whose
indices lie in the range {a+1,...,7—1}. Any bridges introduced through ¢ at any of the endpoints
in the range must either link two consecutive endpoints in the range, or must link w,41 with wj.
We have two cases:

® wqi1 is not bridged to wq.

Since no endpoint can receive more than one bridge, an even number of endpoints of the
range must receive bridges. As the cardinality of the range is odd, there must be at least one
endpoint that receives no bridge through c. Together with w;, this leaves the semi-attached
component of s; with at least two unused endpoints with indices in the range {a+1,...,i+1}.

Let b be the smallest index such that s; belongs to the same semi-attached component as
s; = 8;41. If b = a+1, we are done, since s; is in the component of s; foralla+1 < j <i+1.
Otherwise, b < a. Immediately before the current iteration of the loop, segment s, must have
been the segment of smallest index of a different semi-attached component. If so, the fifth
loop invariant guarantees the existence of endpoints w;; and wj, to which no bridges were
incident through c before the current iteration where b < j; < jo. Since s;; was in the same
component as s, for all b < j' < jo, then j5 < a. And since no bridge was introduced at the
current iteration between w, and we41, the endpoints w;, and w;, are not incident to bridges
through ¢ when the current iteration terminates. The fifth loop invariant is therefore satisfied
in this case.

® Wy is bridged to wq.

If this occurs, the connected component of s; merges with that of s,. If s, is attached, then
s; becomes attached, contradicting our assumption that s; was semi-attached at the end of
Step (3b4). If s, is semi-attached, then the result of the merge is a single semi-attached
component. By the fifth loop invariant, at least two endpoints w;, and w;, of W in the semi-
attached component to which s, belonged had no bridge attached to them passing through c.
Let b be the smallest index of the segments in the component of s,. As before, b < j1 < j2 < a.

If jo < a, then the arguments of the previous case apply to show that the fifth loop invariant
continues to hold. Otherwise, j2 = a. Since s; belongs to the former component of s, for all
b < j < a, and to the component of s; for all a+1 < j < i, after the merge, s; belongs to the
component of s; for all b < 5 < ¢+ 1. Endpoint w;, cannot have received a bridge as a result
of the merge, and therefore w;, and w; satisfy the conditions of the fifth loop invariant.

If i — a is odd, Step (3b3) ensures that w;y; will have no bridge attached to it through c.
Considering that the range of indices {a + 1,...,%} is of odd cardinality, the fifth loop invariant
can be shown to hold using an argument almost identical to that of the case where ¢ — a is even.

At this point, we have shown that all five invariants are maintained by the loop of Step (3).
In particular, when the loop terminates, the second, third, and fifth invariants still hold, and no
endpoints of segments in S are pending. Each bridge passing through ¢ must link consecutive
endpoints of W, since it can only have been introduced via a call to ATTACHTO. Such bridges
cannot interfere with any other bridges that may later be introduced between free endpoints of W.
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The loop in Step (5) uses the index p to maintain the most recently-encountered unbridged end-
point of the current semi-attached component; whenever an unbridged endpoint of a new component
is discovered, a bridge is introduced between w, and the new endpoint, merging the components.
The fifth invariant guarantees that when the first unbridged endpoint w;, of a new component is
discovered, a second unbridged endpoint w;, of that component also exists, with jo > j;. This
ensures that the merged component has an unbridged endpoint that can be used to merge the next
component to be discovered by the loop of Step (5). When the loop terminates, all semi-attached
edges have been merged into one component, and A and p are the minimum and maximum indices
of the original unbridged endpoints taken over all semi-attached segments.

In Step (6), the semi-attached component is merged into the attached component via endpoints
wo, wy, and (perhaps) w,. Since there exists no j in the interval {0,...,A} such that w; was
an unbridged endpoint of a semi-attached segment before Step (5), the bridges (wg,w)) would
intersect no other bridges through c if introduced; similarly, the bridges (w1, w)) and (w,, wx_1)
would intersect no other bridges.

If wy is not already incident to a bridge through ¢, the introduction of bridge (wg, w)) correctly
merges the semi-attached and attached components. Otherwise, if the bridge (wg,w1) exists, re-
placing (wo,w1) by (wi,wy) and (w,, wy) correctly splices the semi-attached component into the
attached component between wy and w;. The result is a single connected component that includes
all endpoints of W.

To conclude the proof, we note that when STITCHUP has terminated, no segments are semi-
attached and no endpoints are pending. |

Lemma 9 ENCOMPASS eventually terminates after taking at most O(nlogn) time.

Proof The construction of the underlying convex subdivision @ can be accomplished using planar
line-sweep techniques, as outlined in Section 2, in O(n logn) time [11]. At the time of construction,
pointers can be established linking the leaves of extension trees with the segments to which they
are rooted, and counters can be set up to allow efficient modification of the labels of cells.

The total amount of work done in executing procedure ATTACHT O is proportional to the number
of vertices and edges of Q, which by Lemma 1 is in O(n). The first time ATTACHTO is called on
an endpoint, it marks it as ezamined; if called on the endpoint again, it simply exits without doing
anything (this can be charged to the neighbour from which the call was made). The extension edges
of Q can be traversed at most once in each direction when moving from neighbour to neighbour;
segment edges can be traversed at most four times each (twice from each of the two cells it bounds).

The total work done in executing STITCHUP on ¢ can be divided into three categories: work
involving the union-find structure I/; work involving calls to ATTACHT 0; and the remainder of the
work. The work involving calls to ATTACHTO has already been accounted for. Also, the relabeling
of the segments in the final step of STITCHUP can be charged to the segments themselves — since
each segment can become attached only once, the total work performed in this step over all calls to
STITCHUP is in O(n).

Let k. be the number of subdivision edges on the boundary of cell ¢; this number is larger than
the number of segment endpoints on the boundary. The total number of union-find operations
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is in O(k,), as well as the total time taken which has not already been accounted for by calls to
ATTACHTO, or the relabeling discussed above. If standard union-find structures are used [4], the
time taken to perform these operations is in O(k. - a(k.)), where a(k.) is the very slowly-growing
inverse of Ackermann’s function. Since STITCHUP can only be performed once per cell, the total
time taken by calls to STITCHUP is in O(}_ (k.- a(k.))) C O(a(n) >, k). Since each non-box edge
of the subdivision is contained in exactly two cells, and since the number of cells is in O(n), >, k.
is proportional to the total number of edges of Q, which is in O(n). The total additional time taken
by the calls to STITCHUP is therefore in O(n - a(n)).

The overall work performed by ENCOMPASS is accounted for by the total work involved in calls
to ATTACHTO, to the additional work performed by STITCHUP, and to the construction of the
convex subdivision. The time taken to construct the subdivision dominates, and thus the total
time taken by ENCOMPASS is in O(nlogn). O

Lemma 10 When the ezecution of ENCOMPASS terminates, then G is a degree-3 encompassing
tree for S.

Proof Lemma 9 implies that ENCOMPASS does indeed terminate.

Assume that G does not encompass all segments of S. Then there exists at least one cell of
Q that is unvisited. Since no cell is pending (by Step (5)), all cells that are not unvisited must be
connected. The correctness of Step (3) ensures that all cells bordering the bounding box are not
unwvisited; therefore, they must all be connected.

Let C be the union of all cells that are unwvisited. The boundary of C consists of a collection of
disjoint simple cycles in Q. There is at least one cycle in the boundary; call it C'. Since C cannot
contain box segments, Lemma 2 implies that there exists some segment endpoint v on C. Since v
is on the boundary of an unwvisited cell, v must be labeled unwvisited. But v is also on the boundary
of a connected cell, and must therefore be labeled examined — a contradiction. Every cell must
therefore be connected. Lemma 6 then implies that G encompasses all segments of S.

The planarity and degree of G are a result of the invariants set forth in Section 4.1. O

Theorem 11 Given a set S of n disjoint line segments in the plane, ENCOMPASS computes a
degree-3 planar encompassing tree of S in O(nlogn) time and O(n) space.

Proof Follows from Lemmas 1, 7, 8, 9, and 10. a

5 Lower Bound

Finally, we show that the problem of finding a degree-3 encompassing tree of a set of disjoint line
segments requires 2(nlogn) time to solve, using a reduction similar to that for the convex hull
problem [11]. This implies the optimality of Algorithm ENCOMPASS.

Theorem 12 The problem of sorting n real numbers is O(n)-transformable to the problem of find-

ing a degree-3 spanning tree of a set of disjoint line segments; thus, finding a degree-3 encompassing
tree of a set of disjoint line segments requires Q(nlogn) time.
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Proof Given a set S of n positive real numbers, zi,...,z,, we show how any encompassing
tree algorithm can be used to sort them with only linear overhead. For convenience, let s1,..., s,
represent the indices of the sorted order of the real numbers from smallest to largest; that is, zs,
is the smallest of the numbers, and z;, is the largest. Let m = z,, be the maximum element of S.

For each number x;, we construct a corresponding vertical line segment, /;, i.e., we associate
the number ¢ with the line segment. = The line segment I; is constructed in the following way.
The lower endpoint has coordinates (z;,z? — m? — 1), and the upper endpoint has coordinates
(z;, —2? + m? + 1). Note that since m can be computed in linear time, the construction requires
only linear time.

These endpoints are well defined — for all values of %, the lower endpoint is strictly below the
T — axis, while the upper endpoint is strictly above. All of the lower endpoints lie on the upward-
opening parabola L : y = 22 — m? — 1 and all of the upper endpoints lie on the downward-opening
parabola U : y = —z? + m? + 1. Since the endpoints are on the boundary of the a convex region
(namely that bounded by U, L, and the y-axis), the fact that the segments are parallel means that

the endpoints of [5; are visible from the endpoints of no other edges except I,_, and I5,_, .

Since the degree-3 encompassing tree consists of visibility edges between line segments together
with the line segments themselves, a simple depth-first traversal of the tree starting from the
leftmost vertex of degree 1 enables us to uncover the sorted order of the input in linear time from

the output delivered by any algorithm. O

Although the segments of the proof were chosen to be parallel for the sake of convenience,
constructions in which no two segments are parallel can also be used.

6 Conclusion

In this paper, we have shown that a set of disjoint line segments always admits an encompassing
tree with maximum vertex degree 3, and that there exist configurations of line segments such that
any encompassing tree of the set has maximum degree 3. We presented an algorithm to compute
a binary encompassing tree in O(nlogn) time, and showed a lower bound of Q(nlogn) for the
problem establishing the optimality of our algorithm. There are a number of open problems still
to be considered.

1. Is it NP-hard to compute a simple polygon or a simple hamiltonian path through a set of
disjoint line segments? Rappaport [12] has shown that the decision problem is NP-complete
when the line segments are allowed to intersect at their endpoints.

2. Is it possible to compute a simple polygon through a set of disjoint line segments, where the
line segments are either part of the boundary, internal diagonals or external diagonals [7]?
Urabe and Watanabe [17] have shown that if the line segments are limited to the boundary
and internal diagonals, that it is not always possible.

3. Is the visibility graph of a set of disjoint line segments hamiltonian [7]? If not, can anything
be said about the longest path in the visibility graph?
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