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Abstract. In the typical nonparametric approach to classification in
instance-based learning and data mining, random data (the training set
of patterns) are collected and used to design a decision rule (classifier).
One of the most well known such rules is the k-nearest neighbor deci-
sion rule (also known as lazy learning) in which an unknown pattern is
classified into the majority class among the k-nearest neighbors in the
training set. This rule gives low error rates when the training set is large.
However, in practice it is desired to store as little of the training data
as possible, without sacrificing the performance. It is well known that
thinning (condensing) the training set with the Gabriel proximity graph
is a viable partial solution to the problem. However, this brings up the
problem of efficiently computing the Gabriel graph of large training data
sets in high dimensional spaces. In this paper we report on a new ap-
proach to the instance-based learning problem. The new approach com-
bines five tools: first, editing the data using Wilson-Gabriel-editing to
smooth the decision boundary, second, applying Gabriel-thinning to the
edited set, third, filtering this output with the ICF algorithm of Brighton
and Mellish, fourth, using the Gabriel-neighbor decision rule to classify
new incoming queries, and fifth, using a new data structure that allows
the efficient computation of approximate Gabriel graphs in high dimen-
sional spaces. Extensive experiments suggest that our approach is the
best on the market.

1 Introduction

In the typical non-parametric classification problem (see Devroye, Gyorfy and
Lugosi [4]) we have available a set of d measurements or observations (also called
a feature vector) taken from each member of a data set of n objects (patterns) de-
noted by {X, Y } = {(X1, Y1), ..., (Xn, Yn)}, where Xi and Yi denote, respectively,

? Research supported by NSERC and MITACS
?? Research supported by NSERC and FCAR



the feature vector on the ith object and the class label of that object. One of the
most attractive decision procedures, conceived by Fix and Hodges in 1951, is the
nearest-neighbor rule (1-NN-rule). Let Z be a new pattern (feature vector) to be
classified and let Xj be the feature vector in {X, Y } = {(X1, Y1), ..., (Xn, Yn)}
closest to Z. The nearest neighbor decision rule classifies the unknown pattern
Z into class Yj . The resulting feature space is partitioned into convex polyhedra.
This partitioning is called the Voronoi diagram. Each pattern (Xi, Yi) in (X, Y )
is surrounded by its Voronoi polyhedron consisting of those points in the feature
space closer to (Xi, Yi) than to (Xj , Yj) for all j 6= i. The 1-NN-rule classifies a
new pattern Z that falls into the Voronoi polyhedron of pattern Xj into class
Yj . Therefore, the decision boundary of the 1-NN-rule is determined by those
portions of the Voronoi diagram that separate patterns belonging to different
classes.

A key feature of this decision rule (also called lazy learning, instance-based

learning, and memory-based learning) is that it performs remarkably well con-
sidering that no explicit knowledge of the underlying distributions of the data is
used. Furthermore, a simple generalization of this rule called the k-NN-rule, in
which a new pattern Z is classified into the class with the most members present
among the k nearest neighbors of Z in {X, Y }, can be used to obtain good esti-
mates of the Bayes error and its probability of error asymptotically approaches
the Bayes error (Devroye et al. [4]).

In practice the size of the training set {X, Y } is not infinite. This raises two
fundamental questions of both practical and theoretical interest. How fast does
the k-nearest neighbor error rate approach the Bayes error rate as n approaches
infinity, and what is the finite-sample performance of the k-NN-rule ([9, 6]) These
questions have in turn generated a variety of additional problems concerning
several aspects of k-NN-rules in practice. How can the storage of the training set
be reduced without degrading the performance of the decision rule? How large
should k be? How can the rule be made robust to overlapping classes or noise
present in the training data? How can new decisions be made in a practical and
computationally efficient manner? Geometric proximity graphs such as Voronoi
diagrams and their many relatives provide elegant approaches to these problems.

2 Editing the Training Data to Improve Performance

Methods that have as their goal the improvement of recognition accuracy and
generalization, rather than the reduction of the size of the stored training set, are
called editing rules in the pattern recognition literature. In 1972 Wilson [12] first
conceived the idea of editing with this goal in mind, and proposed an elegant and
simple algorithm. Delete all points (in parallel) misclassified by the k-NN-rule.
Classify a new unknown pattern Z using the 1-NN rule with the edited subset
of {X, Y }.

This simple editing scheme is so powerful that the error rate of the 1-NN

rule that uses the edited subset converges to the Bayes error as n approaches
infinity. One problem with Wilson-editing is that, although the final decision is



made using the 1-NN-rule, the editing is done with the k-NN-rule, and thus one
is faced again with the problem of how to choose the value of k in practice. In
our approach we will modify Wilson-editing as described in the following.

3 Thinning the Training Data to Reduce Storage

3.1 Decision-boundary-consistent subsets via proximity graphs

In 1979 Toussaint and Poulsen [11] used d-dimensional Voronoi diagrams to
delete “redundant” members of {X, Y } in order to obtain a subset of {X, Y }
that implements exactly the same decision boundary as would be obtained us-
ing all of {X, Y }. For this reason they called their method Voronoi condensing.
The algorithm in [11] is very simple. Two points in {X, Y } are called Voronoi

neighbors if their corresponding Voronoi polyhedra share a face. First mark each
point Xi if all its Voronoi neighbors belong to the same class as Xi. Then dis-
card all marked points. The remaining points form the Voronoi condensed subset.
Voronoi condensing does not change the error rate of the resulting decision rule
because the nearest neighbor decision boundary with the reduced set is identical
to that obtained by using the entire set. For this reason the Voronoi condensed
subset is called decision-boundary consistent. While this approach to editing
sometimes does not discard a large fraction of the training data, that informa-
tion in itself is extremely important to the pattern classifier designer because the
fraction of the data discarded is a measure of the resulting reliability of the deci-
sion rule. If few points are discarded it means that the feature space is relatively
empty because few points are completely “surrounded” by points of the same
class. This means that either there are too many features (the dimensionality of
the space is too high) or more training data are urgently needed to be able to
obtain reliable and robust estimates of the future performance of the rule. The
main problem with Voronoi-condensing is that the complexity of computing all
the Voronoi neighbors of a point is prohibitive in high dimensions.

3.2 Condensing prototypes via proximity graphs

Bhattacharya [2] and Toussaint, Bhattacharya and Poulsen [10] generalized Voronoi
condensing so that it would discard more points in a judicious and organized
manner so as not to degrade performance unnecessarily. To better understand
the rationale behind their proximity-graph-based methods it is useful to cast the
Voronoi condensing algorithm in its dual form. The dual of the Voronoi diagram
is the Delaunay triangulation. Therefore an equivalent description of Voronoi-
condensing is to discard all points (in parallel) if all their Delaunay neighbors
belong to the same class. The idea is then to use subgraphs of the Delaunay
triangulation in exactly the same manner. Experimental results obtained in [2]
and [10] suggest that the Gabriel graph is the best in this respect. This proce-
dure will be referred to as Gabriel-thinning in the following. Two points p and q

are Gabriel neighbors if the “region of influence” of p and q is empty, i.e. there



does not exist any point r of the set such that d2(p, q) > d2(p, r)+d2(r, q) where
d(p, q) denotes the distance measure between p and q. In the Euclidean space
the region of influence of p and q is the smallest hypersphere that contains them.
The Gabriel graph is obtained by connecting two points with an edge if they are
Gabriel neighbors.

In 1998 Bhattacharya and Kaller [1] proposed a proximity graph they call
the k-Gabriel graph and show how inexact thinning can be performed with this
graph. The k-Gabriel graph is much easier to use than the k-Delaunay graph and
yields good results.

4 Filtering the Training Data for Fine Tuning

Brighton and Mellish [3] proposed a new hybrid method and compared it to
several other hybrid methods on 30 different classification data sets. Their ele-
gant and simple algorithm, which appears to be the previous best in practice, is
called iterative case filtering (ICF), and may be described as follows. The first
part of the algorithm consists of preprocessing with the original Wilson edit-
ing scheme. The second part of their algorithm, their main contribution, is an
adaptive condensing procedure. The rule for discarding an element (Xk, Yk) of
{X, Y } depends on the relative magnitude of two functions of (Xk, Yk) called
the reachable set of (Xk, Yk) and the coverage set of (Xk, Yk). The reachable set
of (Xk, Yk) consists of all the data points contained in a hypersphere centered at
Xk with radius equal to the distance from Xk to the nearest data point belonging
to a class different from that of Xk. More precisely, let S(Xk, Yk) denote the hy-
persphere with center Xk and radius rk = min{d(Xk, Xj)|Yj 6= Yk} minimized
over all j. Then all the data points of {X, Y } that are contained in S(Xk, Yk)
constitute the reachable set of (Xk, Yk) denoted by R(Xk, Yk). The coverage set
of (Xk, Yk), denoted by C(Xk, Yk), consists of all the data points in {X, Y } that
have (Xk, Yk) in their own reachable set. More precisely, C(Xk, Yk) consists of all
data points (Xi, Yi), i = 1, 2, ..., n such that (Xk, Yk) is a member of R(Xi, Yi).
The condensing (thinning) step of the ICF algorithm of Brighton and Mellish [3]
can now be made precise. First, for all i mark (Xi, Yi) if |R(Xi, Yi)| > |C(Xi, Yi)|.
Then discard all marked points. This condensing step is repeated until no marked
points are discarded. We will refer to this second iterative step of their overall
procedure as the filtering step of ICF.

5 The New Hybrid Gabriel Graph Algorithm

Our new approach to the problem of instance-based learning depends heavily
on the use of the Gabriel graph. First we describe the approach using the exact
Gabriel graph, and after that we turn to the practical version for high dimen-
sional problems.

Step 1: The original training set {X, Y } is subjected to editing with a mod-
ification of Wilson editing. Instead of editing with the k nearest neighbors of a



point, we use the Gabriel neighbors, thus dispensing with the problem of choos-
ing a value of k. Let {X, Y }′ denote the edited training set.

Step 2: The set {X, Y }′ is subjected to thinning (condensing) using the
Gabriel graph rule: points are discarded (in parallel) if all their Gabriel neigh-
bors belong to the same class. Let {X, Y }′′ denote the resulting edited-thinned
training set.

Step 3: Subject the set {X, Y }′′ to the filtering step of the ICF algorithm of
Brighton and Mellish [3]. Let {X, Y }′′′ denote the final training set obtained.

Decision rule: A new query point Z is classified according to the majority
vote among the Gabriel neighbors of Z in {X, Y }′′′.

The above algorithm is called Hybrid Gabriel-Graph Algorithm. If {X, Y }′′

is used instead of {X, Y }′′′ in the decision rule, the algorithm is called Gabriel-
Graph Algorithm. As discussed earlier, the set {X, Y }′′ maintains the decision
boundary of the the set {X, Y } extremely well [2, 10, 11].

In high dimensional spaces computing the exact Gabriel graph may be costly
for large training sets. The brute force approach to compute the Gabriel graph
of n points in d dimension is O(dn3). There is no known faster algorithm for the
exact computation of the Gabriel graph in arbitrary dimensions. In this paper a
data structure called GSASH is introduced that allows efficient computation of
approximate Gabriel neighbors. The practical version of our algorithm uses the
approximate Gabriel graph instead of the exact Gabriel graph at every step. The
resulting algorithms are called Approximate Hybrid Gabriel-Graph Algorithm
and Approximate Gabriel-Graph Algorithm.

5.1 GSASH structure

The data structure GSASH [8] is a modification of SASH [5] to handle Gabriel
neighbors rather than the originally intended k nearest neighbors. GSASH is
basically a multi-level directed acyclic graph with the following characteristics:

(a) Each node in the graph corresponds to a data item.
(b) The graph consists of O(log n) levels for a dataset X of size n. Actually

at most 2n nodes in GSASH are maintained, with n items at the bottom
most level, say h, and one item at level 1. With the possible exception of
the first level, each level i has half of the nodes as in level i + 1. The overall
structure is as follows: All the n data items are stored at level h. We then
“copy” half of these i.e. n

2
items uniformly at random to level h − 1. We

repeat this process of “copying” all the way up to the root. If a level has at
most c nodes (the constant c is chosen in advance of the construction), we
pick one of these c nodes to be the root. The root is at level 1. The levels
of GSASH are therefore numbered from 1 (the top level) to h (the bottom
level). Let Si denote the data items stored at level i.

(c) The nodes of Si at level i have edges directed to the nodes of Si+1 at level
i + 1. Each node (object p) links to at most c nodes at level below. These
nodes represent the c closest approximate Gabriel neighbors of p among the
points of the set Si+1.



The issue of determining the value of c is an important one. One of the
considerations behind the GSASH design is that connections to a given node v

from a sufficient number of its approximate Gabriel neighbors could help guide
a query search to v. In SASH a fixed choice of c = 16 led to good performance.
In GSASH the same value for the parameter c has been used.

5.2 GSASH querying

Given a query object q, the search for a set of closest k approximate Gabriel
neighbors can be performed on GSASH. The query process starts at the root.
Let Pi(q) denote the set of ki closest approximate Gabriel neighbors of q selected
from among the elements of Si. Let Ci(q) denote the distinct child nodes of
Pi(q). Pi+1(q) is then constructed by first determining the approximate Gabriel
neighbors of q among the points of the set Ci(q) with respect to the set Si+1

and then selecting the closest ki+1 of them to q.
We can easily use ki = k for all i. Like SASH [5] the GSASH experimentation

uses a geometric search pattern that allows a larger proportion of the search to
be devoted on the largest samples of the elements, namely those located closer
to the bottom of the GSASH.

Theorem 1. The GSASH data structure of n objects can be constructed in

O(dn log n) time requiring O(dn) extra storage space. An arbitrary k approxi-

mate Gabriel neighbors query can be answered in O(dk log n) time.

6 Experimental results

In this section we compare three algorithms: Approximate Gabriel-Graph Al-
gorithm (called Gabriel), ICF-Algorithm (called ICF) and Approximate Hybrid
Gabriel-Graph Algorithm (called Hybrid). In order to investigate the inner work-
ings of these algorithms we generated some synthetic data sets in the plane. All
data are generated inside a unit square. The decision boundary considered is
circular. Points generated uniformly on either side of the boundary are given
opposite class labels. Each generated set has 1000 points. The results obtained
are 10-fold cross validated. Figs. 1(a), (b) and (c) show the points that are
kept by the algorithms Gabriel, Hybrid and ICF respectively. The figures also
show the error rates and storage reductions for the three algorithms. As ex-
pected, Gabriel produces the condensed subset of points that tightly maintains
the decision boundary at the cost of slightly extra storage. The ICF distorts the
boundary significantly. There are significant number of “non-border” points that
are maintained which are not close enough to the boundary so as to classify the
border points correctly. This is a significant weakness of the ICF algorithm. This
is where Hybrid algorithm wins out. Not only does it reduce storage appreciably
but also it faithfully maintains the decision boundary.

We have also compared the three algorithms using the data sets available
in UCI machine learning depository [7]. The cell data was obtained from the



(a) (b)

(c)

Fig. 1. (a) Gabriel thinned data set. 104 out of 1000 points remained. Error rate 2.75%
on 200 randomly generated points (b)Hybrid thinned data set. 73 out of 1000 points
remained. Error rate 3.25% on 200 randomly generated points (c)ICF thinned data set.
98 out of 1000 points remained. Error rate 4.75% on 200 randomly generated points.

Biomedical Image Processing laboratory at McGill University. The chosen data
sets appeared to be the universal choice for performing experimental analysis of
IBL algorithms (Wilson and Martinez [13] and Brighton and Mellish [3]). Table
1 shows the particulars of the data sets.

Table 2 gives us a measure of the accuracy of the algorithms. The results
are obtained by the so-called cross validation technique. 20% of the data (for
the testing purpose) is selected randomly from the data set. The remaining data
points (called training set) are used to design the classifier. The experiment was
repeated 10 times. The editing step of the algorithms Gabriel and Hybrid uses
the approximate Gabriel neighbors. There are two versions of ICF reported in
Table 2. The first version ICF-1 implements Wilson editing using 3-NN-rule.
This is similar to the one used in [3]. The second version of ICF-2 implements
Wilson editing using Gabriel-NN-rule. Thus the edited sets used in Gabriel,
Hybrid and ICF are the same. In all cases the classification is done using the
nearest neighbor rule. The distance between feature vectors (numerical, nominal



or mixed) are computed using the V DM approach proposed by Wilson and
Martinez [13].

The results indicate that ICF algorithm is able to aggressively throw away
instances but has higher classification error. The Hybrid algorithm strikes the
best balance between classification accuracy and storage reduction.

Data Set Size Number of Classes Dimension

abalone 4177 29 8
anneal 898 6 38

audiology 226 24 69
auto-mpg 398 9 7

balance-scale 625 3 4
breast-cancer-w 699 2 9

bupa 345 2 6
car 1728 4 6
cell 2999 2 6
cmc 1473 3 10
crx 690 2 15

dermatology 366 6 33
ecoli 336 8 7
glass 214 7 10

haberman 306 2 3
heart-cleveland 303 5 13

hepatitis 155 2 19
house-votes-84 435 2 16

ionosphere 351 2 34
iris 150 3 3

pima-diabetes 768 2 8
thyroid 215 3 6

waveform 5000 3 21
wine 178 3 13

wisconson-bc-di 569 2 30
Table 1. Particulars of the data sets used

7 Conclusion

The main objective of our study is to show that proximity graphs capture the
appropriate proximity information in a data set. However, it is costly to exactly
compute the proximity information. A data structure GSASH is proposed which
allows one to compute the approximate Gabriel proximity information in an effi-
cient manner. The Gabriel condensed set, using the approximate Gabriel graph,



Data Set Gabriel Hybrid ICF-1 ICF-2

Accu Sdev Stor Accu Sdev Stor Accu Sdev Stor Accu Sdev Stor

abalone 25.8% 1.1 28.7% 23.7% 1.7 14.8% 21.2% 1.8 24.3% 21.5% 2.3 17.8%

anneal 83.1% 3.2 23.2% 94.3% 2.2 10.3% 94.1% 3.3 20.7% 91.8% 2.0 13.7%

audiology 51.6% 4.3 23.2% 55.1% 8.4 15.0% 73.8% 6.2 31.3% 53.8% 5.3 14.8%

auto-mpg 47.3% 6.4 25.5% 53.2% 4.0 30.0% 50.9% 3.7 36.9% 48.9% 10.0 34.7%

balance-scale 85.1% 1.8 61.3% 80.0% 2.0 19.0% 78.1% 2.1 16.0% 79.7% 1.7 18.6%

breast-cancer-w 95.8% 2.9 10.4% 96.0% 2.1 1.8% 94.5% 1.9 3.0% 94.5% 3.4 2.5%

bupa 64.6% 5.5 46.6% 63.8% 6.4 22.9% 56.8% 4.4 22.4% 64.6% 5.5 26.2%

car 94.4% 1.4 81.5% 94.3% 1.2 13.7% 95.5% 1.3 17.4% 94.6% 1.2 13.7%

cell 94.1% 1.2 8.2% 94.6% 0.6 3.3% 94.2% 0.5 4.6% 93.8% 0.5 2.2%

cmc 51.2% 3.0 45.3% 52.4% 2.5 17.8% 47.8% 5.0 28.5% 51.8% 3.0 22.0%

crx 69.9% 2.7 27.5% 85.9% 3.5 8.2% 82.6% 2.5 8.5% 74.5% 4.6 16.8%

dermatology 97.3% 2.6 86.6% 94.5% 3.5 13.2% 94.0% 3.9 10.2% 95.6% 3.7 14.1%

ecoli 83.6% 4.7 34.0% 82.7% 4.8 11.8% 83.3% 6.9 14.2% 84.2% 4.3 13.8%

glass 64.3% 8.9 48.1% 66.2% 5.9 26.3% 63.8% 9.0 27.4% 68.6% 8.8 26.5%

haberman 74.8% 5.9 18.7% 70.5% 3.3 10.6% 68.9% 4.8 13.9% 69.2% 4.2 12.9%

heart-cleveland 54.0% 5.8 14.3% 50.0% 3.9 9.4% 54.7% 5.2 18.2% 54.7% 7.6 7.3%

hepatitis 76.1% 7.4 11.3% 74.8% 12.8 6.0% 80.0% 9.0 9.0% 80.0% 8.3 5.3%

house-votes-84 94.3% 3.5 48.1% 87.6% 4.8 8.0% 87.1% 6.9 10.9% 84.4% 7.6 7.8%

ionosphere 85.7% 4.3 54.7% 81.1% 10.1 8.5% 82.0% 6.2 5.3% 84.6% 2.6 8.8%

iris 95.3% 4.5 20.8% 92.0% 5.6 14.7% 92.0% 6.1 18.5% 90.0% 2.4 16.7%

pima-diabetes 73.2% 2.7 31.3% 72.3% 2.3 14.3% 70.5% 3.0 13.9% 71.9% 3.6 17.2%

thyroid 93.5% 5.0 19.2% 93.5% 3.0 9.9% 92.1% 2.8 9.1% 93.5% 3.4 11.5%

waveform 79.7% 1.0 84.9% 76.1% 1.9 14.6% 75.5% 0.8 13.2% 75.6% 1.0 14.8%

wine 73.1% 5.9 22.5% 94.9% 3.1 13.8% 89.1% 7.9 12.4% 92.0% 4.2 12.7%

wisconson-bc-di 92.9% 1.7 6.4% 93.3% 2.8 4.6% 93.5% 1.7 5.5% 92.6% 1.6 6.8%
Table 2. Results on real-world data

preserves the classification decision boundary remarkably well. We have shown
here that ICF algorithm [3] aggressively removes instances from the training set
thereby compromising on the quality of the classification correctness. The pro-
posed Hybrid algorithm, based on the approximate Gabriel graph information,
is shown to exhibit the best features of both of its constituents. It preserves the
decision boundary remarkably well and is also able to aggressively reduce the
storage space.
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