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Abstract

In this paper we are concerned with motions for untangling polygonal linkages
(chains, polygons and trees) in 2 and 3 dimensions. We say that an open, simple
polygonal chain can be straightened if it can be continuously reconfigured to a sequence
of collinear segments in such a way that the rigidity and length of each link and the
simplicity of the entire chain are maintained throughout the motion. For a closed
chain (simple polygon) untangling means convexification: reconfiguration to a convex
polygon. For a tree untangling means “flattening”. Linkages that cannot be untangled
are called locked. Whether a simple open chain in 2D can be straightened remains a
tantalizing open problem. For some special classes of chains it is known that they can
be straightened. On the other hand a tree can lock. In 3D both open and closed chains
can lock without being knotted. An open chain can be straightened if it has a simple
orthogonal projection onto some plane. Furthermore, a planar closed simple chain in
3D can be convexified in a polynomial number of simple moves. A simple move is one
in which only a constant number of joints can rotate at once. In this paper we review
these and other recent results. In addition we describe some variants of the problem
proposed by Cauchy in 1813 and Erd6s in 1935.

1 Introduction

Folding and unfolding problems concerned with surfaces and linkages have received considerable
attention in the computational geometry literature recently [21]. In this paper we are only concerned
with “unfolding” linkages. Consider an idealized open polygonal chain linkage in the plane consisting
of straight links joined together end-to-end, such as the five-bar linkage illustrated in Figure 1. We
assume that the links are free to rotate about their joints in the plane but cannot cross each other at
any time. In other words, the linkage must remain a simple polygonal chain during any motion. We
are interested in the question of whether any simple such linkage can always be straightened. By
straightened we mean that every joint has an angle of 7. It is easy to see that the five-bar linkage
of Figure 1 (a) can be reconfigured to that shown in Figure 1 (b) by successively straightening one
end of the linkage starting at end point B. It is not so easy to answer this question for a more
complicated linkage, and at this writing it remains an unsolved problem whether all such linkages
can be straightened. However, Joe Mitchell has created a complicated configuration of a chain that
he believes is locked. He and O’Rourke, among others, are trying to prove that it is locked [19].
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(a) A five-bar linkage. (b) After straightening.

Figure 1: The simple polygonal chain in (a) can be reconfigured to that shown in (b).

Figure 2: The closed polygonal linkage on the left can be convexified.

An analogous problem concerns planar closed polygonal linkages. In this case we are interested
in whether a closed polygonal linkage can be convezified: reconfigured into a convex polygon while
maintaining simplicity. For example, the concave closed five-bar polygonal linkage in Figure 2 on the
left can be convexified to a pentagon by first reconfiguring the linkage into the convex quadrilateral
shown in the middle figure. It also remains an open problem whether all closed linkages can be
convexified. Of course if an open chain can be found that is locked a similar locked example for
closed chains can be obtained by doubling all the edges. These problems have applications to
robotics [16], manufacturing [2], knot theory [18] and molecular biology [13].

Before discussing some special cases of the above problems for which solutions are known, we
look at some variants of these problems that have been proposed and investigated quite some time
ago. One is a problem on convexifying closed simple polygons proposed by Paul Erd6s in 1935 and
the other is a problem of opening a convex linkage, due to Augustin Cauchy in 1813. However, to
discuss the latter problem we must take a detour to Alexandria in 300 B.C. where Euclid discussed
the simplest of all linkage straightening problems: his Proposition 24 in Book 1 of The Flements.

1.1 Euclid’s Caliper Linkage

The simplest possible polygonal linkage is a two-bar linkage (also called an elbow [16]) with one
joint that resembles a jackknife. It is obvious that such a linkage can be straightened. One merely
has to rotate one segment until it is collinear with the other and the angle at the joint equals =.
Therefore a more interesting problem concerning two-bar linkages is the caliper lemma [25]. This



Figure 3: A linkage of n-links in convex position can be straightened.

lemma states that as you open the caliper so that the smaller angle at the joint is bigger, the ends
of the caliper move a greater distance apart. This result is in essence Euclid’s Proposition 24 in
Book 1 of The Flements. Furthermore, this proposition forms one of the corner stones for many of
the most recent results in this area.

1.2 Cauchy’s Convex Linkage

A natural generalization of Euclid’s two-bar linkage is a linkage A = A; As...A,, consisting of n — 1
links in convex position such as that illustrated in Figure 3. We say that a linkage is in convex
position if when we join the two ends with a line segment we obtain a convex polygon. That
all such linkages can be straightened is easily established. For every link A;A;41 construct a ray
starting at A;41 in direction A;, and let C; denote the resulting cone defined by the two rays
starting at A;y1 and A;j2, respectively. Because the linkage is in convex position the cones C; are
all empty. This property suggests the following unfolding motion. Rotate A1 A2 about A2 so as
to sweep A1 Az through the cone Cy until it is collinear with Az As. This motion leaves the cones
Cs,Cs,...,Cp_s unchanged. Now we consider A; A2 A3 as one link A; A3 and rotate it about Aj in
cone C3. We continue this process unhindered until the chain is collinear with A, A,,_1. Therefore
the straightening property of Euclid’s two-bar linkage extends to the convex (n — 1)-bar linkage.

The question now arises: does the caliper lemma apply to this more general situation? In other
words, when the (n — 1)-bar convex linkage opens to a new convex configuration, do the ends
also move apart? The answer is yes and the result is known as Cauchy’s Lemma after the French
mathematician Augustin Cauchy who first investigated the problem in 1813 in the context of his
famous rigidity theorem for convex polyhedra [9].

Let us examine how Cauchy [9] tried to prove the theorem. We say tried because, although his
theorem is correct, his proof is not. We invite the reader to spot the flaw before we expose it.

Theorem 1 (Cauchy’s Lemma) If we transform a convez linkage A = Ay As... Ay, into another
convex linkage B = B1Bs...By, by opening all joints Az As...An_1, or by opening some joints and
leaving the remaining joints unchanged, then the linkage ends A1 and A, move apart, that is, the
distance between By and B, is greater than the distance between A1 and A,,.



Figure 4: Illustrating Cauchy’s proof when one joint is opened.

Proof: (Cauchy’s incorrect “proof”) For the case n = 3 Euclid’s caliper lemma establishes the
result. Therefore consider the case when n is greater than three. Let A; be one of the &k joints
that opens to the angle at B; and let us first open only this joint and leave the remaining joints
unchanged (refer to Figure 4). Then the linkage A; A;11... A, rotates rigidly in a clockwise direction
about A;. Similarly, the linkage A;As...A; rotates rigidly in a counter-clockwise direction about
A;. Therefore, the angles o = angle A, A;A;+1 and # = angle A1 A; A;_1 remain fixed during the
rotation. Furthermore, since angle A;_1A;A;41 has increased it follows that angle A; A; A, has
increased. Finally, since the distances d(A,, A;) and d( A1, A;) remain fixed during the rotation we
conclude by applying Euclid’s caliper lemma to the “caliper” A;A;A, that A1 and A, have moved
apart.

If more than one joint of A is opened we consider one joint at a time and proceed as above
until all k¥ joints have been opened. Since at each such opening the distance between A; and A,
increases it follows that when we are finished d(B1, Bn) > d(Al, An). [ ]

Although not explicitly stated, Cauchy is attempting a proof by induction on the number of
joints opened. Let us assume that k joints are to be opened. First we establish the base case:
k = 1. We need to show that when one convex linkage A;A>...A, is transformed into another
convex linkage Bi Bs...B, by opening one joint A; then the ends A; and A, move apart. Up to
this point Cauchy’s proof is not only correct, but executed in a most elegant manner by converting
the problem to Euclid’s caliper lemma. Now when k& > 1 we assume the result holds when we open
k — 1 joints (the induction hypothesis) and must prove it is true when we open the k joints. After
proving the base case k = 1, Cauchy describes a procedure for opening all & joints by considering
one joint at a time. The implicit reasoning here is that once we have opened one of the &k joints
we obtain a linkage in which we must open only & — 1 joints for which we invoke the induction
hypothesis. Not only does Cauchy not state the induction hypothesis, but he does not prove that
his method works. Furthermore, it fails precisely because the induction hypothesis breaks down.

Consider the three-bar linkage A1 A2 A3 A4 in Figure 5 (a). We would like to open the £ = 2
joints Az and As so that the angles at B> and Bs are right angles. In this way we satisfy the
input-output conditions of the problem that linkages A1 A2 A3 Ay and Bi By B3 By are both convex.
Following Cauchy’s procedure we first open one joint A> as in Figure 5 (a). Now we have a linkage
in which only £ — 1 links are to be opened and would like to invoke the induction hypothesis to
finish the proof. But the induction hypothesis specifies that the linkage must be conver and this is
clearly not the case since A4 lies in the interior of triangle By Az As.
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Figure 5: A counter-example to Cauchy’s proof.

Furthermore, for non-convex linkages the theorem is false. For example, consider again the
linkage BiAzAsAs in Figure 5 (a). If we open joint Az so that As moves to A} and such that
angle As Az Al < angle A>AsB1 + angle A3 A3 Bq, then B; and A4 actually move closer together
and d(Bi, Ay) < d(Bi1, As). This flaw in Cauchy’s proof went unnoticed for over 120 years until
Ernst Steinitz uncovered it and together with Rademacher provided a correct but very long and
complicated induction proof [26]. A similar long proof is described by Lyusternik [17]. Since then
many other proofs of Cauchy’s arm lemma, as it is also called, have appeared. The shortest and
most elegant induction proof is due to S. K. Zaremba [24]. It is so beautiful in fact that it was
chosen to appear in Proofs from THE BOOK by Martin Aigner and Ginter M. Ziegler [1]. This
book, dedicated to the memory of Paul Erdds, contains a selection of the most beautiful proofs,
brilliant ideas, clever insights, wonderful observations and tantalizing open problems in the world
of mathematics.

2 Open Chains

In the previous section we concentrated on the problem of opening planar convex polygonal linkages
by increasing both the interior angles of the joints and the distance between the endpoints of the
linkage. Here we return to the original problem of actually straightening the linkages. As pointed
out earlier, no one has yet proved or disproved whether every linkage can be straightened. On
the other hand, as Figure 3 illustrates, straightening convex linkages is trivially accomplished by
straightening one joint at a time, in order, starting from either endpoint. Furthermore, it is clear
that the procedure works also for some non-convex linkages such as the spirallinkage in Figure 1 (a)
as long as one starts the unfolding from the outerendpoint of the linkage. Therefore it is only natural
to ask how powerful this simple-minded jackknife motion is for straightening more general classes
of linkages. Several more general classes of polygons have been investigated in [6] where jacknife
motions and other simple motions in which only two joints rotate simultaneously are allowed. In
particular, [6] contains O(nr) time algorithms that use O(r) simple motions to straighten hull-
ezpanding and doubly-visible chains and an O(nlogn) time algorithm for O(n) simple motions to
straighten same-side-visible chains. A chain is hull-expanding if, as we compute the convex hull of
the chain starting at one end, the next link always lies outside the convex hull of the links examined
so far. Here jackknife motions suffice. A chain is doubly-visible if for each point on the chain
there exists a line that intersects the chain only at this point. Finally, a chain is same-side-visible
provided there exists a line such that the chain is to one side of the line and for each point on the
chain there exists a ray on the same side of the chain that intersects the chain only at that point
and also intersects the line.



Arkin et al., [2] call jacknife motions from one end “all-or-nothing” straightening and solve
several foldability problems for chains (by applying the straightening in reverse order) under various
manufacturing constraints. They also prove that certain problems of determining if planar linkages
can be straightened are hard.

In 3D it is shown in [3] that a chain which admits a simple projection onto some plane can be
straightened with O(nr) simple motions.

3 Polygons

Not much is known concerning which classes of polygons in 2D can always be convexified. Everett
et al., [12] show that star-shaped polygons can be convexified in O(r?) time using O(n) complex
motions. Each such motion is a radial expansion and rotates O(n) joints simultancously. Biedl
et al., [5] prove that a monotone polygon can be convexified in O(n?) time using O(n?) simple
motions, where each such motion rotates no more than four joints simultaneously. It is conjectured
that equilateral polygons can always be convexified.

3.1 Erdés Flips

Before discussing how linkages in three dimensions might be untangled, if at all, we consider a
convexification problem which could be considered to be in between two and three dimensions. Let
A = A1 A2 A3 As be a closed non-convex four-bar linkage in the two-dimensional zy-plane with As
as its reflex joint. Assume that A; Ay = A3 Az and A2 A; = A3 Ay. Furthermore, assume that the
linkage (although planar) is embedded in the 3D space with axes z, y and z, that the joints are
ball-joints which allow rotations in all directions in 3D and that, as usual, no two links may cross
during any motion. If we lift joint As off the zy-plane into the third dimension z (leaving the other
three joints fixed) by rotating it about the line through A; and A4 until it returns to the zy-plane
at position Bs, then the linkage has been convexified with one simple motion. This rotation motion
in 3D is equivalent to a reflection transformation in the zy-plane: Bs is the reflection of As across

the line through A; and As.

A natural more general question is: given any planar closed linkage in 3D, can the third dimen-
sion be helpful, with motions similar to those described above, for convexification? This problem
has been discovered and re-discovered independently by several mathematicians, and more recently,
computer scientists dating back to 1935, the latter group motivated by practical robotics problems
with linkages, and the former by simple curiosity about the geometric properties of polygons and
simple closed curves [23], as well as the computer exploration of knot spaces [18] .

The first person to propose this problem was Paul Erdés in 1935 [11] in the context of planar
polygons. Consider the linkage as the boundary of the simple polygon P in Figure 6 (a). If we
subtract this polygon from its convex hull we obtain the convex deficiency: a collection of connected
regions. Each such region together with its boundary is itself a polygon, often called a pocket of
P. The polygon P in Figure 6 (a) has two pockets P, and P,. Each pocket has an edge which
coincides with a convex hull edge of P (shown in the figure by dotted lines). Such an edge is called
the pocket lid. Erdds defined a reflection operation on P as a simultaneous reflection of all the
pockets of P about their corresponding pocket lids. Applying a reflection operation to polygon P
in Figure 6 (a) yields the new polygon P’ in Figure 6 (b). In 1935 Erdds conjectured that given any
simple polygon, a finite number of such reflection operations will convexify it. The first proof of
Erdds’ conjecture was provided in 1939 by Béla Nagy [20]. First Nagy observed that reflecting all
the pockets in one step can lead from a simple polygon to a non-simple one. Therefore he modified



Figure 6: Flipping the pockets of a polygon.

Erdés’ problem slightly by defining one step to be the reflection of only one pocket. Since a pocket
is reflected into a previously empty half-plane (because a pocket lid is a line of support of P) no
collisions can occur with such a motion. Let us call such an operation a flip. Nagy then proceeded
to prove that any linkage (simple polygon) can be convexified by a finite number of flips. Since 1939
there have been many rediscoveries of this problem, surprisingly, no author aware of the results of
the other authors. The latest rediscovery was in 1998 by Biedl et al., [3], and Grinbaum [14] has
given an account of some of these. I have since discovered additional instances and a survey of these
papers along with a simplified elementary proof of the Erdds-Nagy theorem that borrows the best
from the existing proofs is forthcoming [28].

Although the Erdo6s flips will convexify any simple polygon in a finite number of steps, this
number cannot be bounded as a function of n. Given any positive integer k it is possible to
construct a polygon (indeed a quadrilateral) that will need at least k flips [3], [14]. On the other
hand, Biedl, et al. [3] have shown that with the line-tracking motions of Lenhart and Whitesides [16]
any planar simple polygon in 3D can be convexified in O(n?) time with O(n?) simple motions.

3.2 Locked Unknotted Polygons in 3D

The space of closed chains or polygons of n line segments with lengths I, ...,1,, embedded in R’
as unknots (also trivial knots) is denoted (using the notation of Cantarella and Johnston [8]) by
Pol,(ly,...,ln). In 1998 Cantarella and Johnston [8] and independently, Biedl, et al. [3] studied the
embedding classes of such objects and discovered that there exist stuck (or locked) simple polygons.
The polygon of Biedl, et al. [3] contains 10 edges whereas the example of Cantarella and Johnston [8]
has only six edges (see Figure 7). These results are relevant to linkage convexification problems
because they imply there exist simple linkages in 3D that cannot be convexified. The results are also
relevant to understanding how small-scale rigidity influences the shape of DNA and other complex
molecules [15]. Since, in addition to the flat convex version, there are “right” and “left” handed
versions of the unknot in Figure 7 , Cantarella and Johnston in effect proved that the space of
isotopic embeddings of the hexagon has at least three connected components. The lengths of the
edges are crucial for this property. Indeed, if all six lengths are the same, Millet and Orellana [18]
showed that the class of unknots in Polg(1,1,1,1,1,1) is connected. Furthermore, if we consider
orientation Calvo [7] has shown that there are distinct embeddings of left and right-handed trefoils
in Polg(1,1,1,1,1,1). Cantarella and Johnston conclude that they suspect that all stuck unknots
in Polg belong to the class illustrated in Figure 7, in other words, that there are no more than three
components in Pols. However, recently I discovered a new class of stuck unknotted hexagons [27].
An example of a hexagon in this new class is shown in Figure 8.
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Figure 7: The stuck unknot in Cantarella and Johnston [8].

Denote the space polygon by its vertices A = A1 As...Ag and let I; be the length of link A; A;41,
modulo 6. Note that the lengths in both figures are not metrically accurate but the figures are easier
to visualize as shown. Intuitively the only way to convexify the polygon with the knot diagram
shown is to either pass the chain A3 AsAsAs over A1 or under As. For this to occur it is necessary
that the length of A3 A4 As A¢ be not smaller than the length of the shorter of I3 and lg . However,
it is possible to construct such hexagons that violate these distance requirements. For example,
a polygon with the knot diagram shown in Figure 8 is stuck if it has the following coordinates.
Ay = (100,10,0), Ay = (=100,10, 1), A5 = (10,20, 0), Ay = (10,0,10), A5 = (—10,0, —10), Ag =
(—=10, 20, 0).

Furthermore, the hexagon in Figure 8 is in a sense more stuck than the hexagon in Figure 7.
Let us define the stuck number of a polygon as the minimum number of links that must be removed
so that the remaining open chains can be straightened. Then, if the stuck number of a polygon is
k we will say the polygon is k-stuck. Let us call a polygon weakly k-stuck if the removal of any k
links allows the remaining open chains to be straightened. Similarly, let us call a polygon strongly
k-stuck if this is not the case but there exists some set of k links whose removal allows subsequent
straightening. Using the results of Cantarella and Johnston [8] it can be shown that the hexagon
in Figure 7 is weakly 1-stuck whereas the example in Figure 8 is strongly 1-stuck. Indeed, if in
the hexagon of Figure 8 the link A; A» is removed we obtain the stuck knitting-needles example of
Cantarella and Johnston [8] and Biedl et al. [3].

It is clear from the example in Figure 8 that here we also have left and right handed versions
of the polygon. Therefore we have the following result.

Theorem 2 (Toussaint [27]) For suitable choices of edge-length, there are at least five classes of
embeddings of the unknot in Polg

We note that just as in the example of Cantarella and Johnston, we can obtain a family of stuck
unknots similar to the polygon in Figure 8 for any value of » > 6 by inserting a polygonal chain of
any number of edges between A4 and As as long as their total length does not exceed the length 4.
As a final remark we add that although hexagons in 3D can be knotted, any simple polygon with
less than six edges is unknotted [22].

In contrast to the result in 3D, recently Cocan and O’Rourke [10] have shown that for all
dimensions greater than 3 every simple open chain may be straightened, and every simple closed
chain may be convexified. The algorithms run in polynomial time.

We close this section by mentioning a couple of additional open problems. (1) A natural gen-
eralization of convexifying a planar polygon in 3D is to consider more general polygons that admit
a simple projection onto some plane. It is conjectured that all such polygons can be convexified.
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Figure 8: A new class of stuck unknotted hexagons (Toussaint [27]).

(2) Since T discovered the stuck unknots of Figure 8 I have heard from Heather Johnston and Ja-
son Cantarella that they, together with Jouko Koskinen have also just discovered this class. The
conjecture now is that there are no more than five classes of non-trivial embeddings of hexagons in

3D.

4 Tree Linkages

A tree linkage is a linkage that has the form of a tree. As before, nodes are joints that can rotate
and the edges are links that remain rigid in the sense that they do not bend and their length is
preserved during any motion. The tree linkage reconfiguration problem is: given two configurations,
can one be moved to the other. The flattening problem can be described as follows. Hang the tree
linkage from any joint acting as the root so that the children of every joint are pointing downward
and the aspect ratio of the linkage is as large as desired without allowing any links to cross during
the motion. Biedl et al. [4] show that not every tree linkage can be straightened.
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