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Abstract

In the manufacturing industry, finding an orientation for a mold that eliminates surface
defects and insures a complete fill after termination of the gravity casting process, is an important
and difficult problem. We study the problem of determining a favorable position of a mold
(modeled as a polyhedron), such that when it is filled, no air bubbles and ensuing surface
defects arise. Given a polyhedron in a fixed orientation, we present a linear time algorithm that
determines whether the mold can be filled from that orientation without forming air bubbles.
We also present an algorithm that determines the most favorable orientation for a polyhedral
mold in O(n?) time. A reduction from a well-known problem indicates that improving the O(n?)
bound is unlikely for general polyhedral molds. We relate fillability to some well known classes
of polyhedra. For some of these classes of objects, an optimal direction of fillability can be
determined in linear time. Finally, for molds that satisfy a local regularity condition, we give an
improved algorithm that runs in time O(nk log® nloglog(n/k)), where k is the number of local
maxima.

1 Introduction

A well-known technique used in the manufacturing of goods is gravity casting. A mold, as defined
in [3], refers to the whole assembly of parts that make up a cavity into which liquid is poured to
give the shape of the desired component when the liquid hardens. Given a mold (modeled as a
polyhedron), establishing whether there exists an orientation that allows the filling of the mold
using only one pin gate (the pin gate is the point from which the liquid is poured into the mold)
as well as determining an orientation that allows the most complete fill are two major problems in
the field of gravity casting. These problems are difficult when the focus is on the fluid dynamics
and physics of the whole molding process. To date only heuristics have been proposed as solutions
to these two problems [24], [16], [3], [10]. In fact, until now, determining the favorable position for
filling a mold was considered a cut-and-try process [24].
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However, when viewed from a purely geometric perspective, efficient solutions do exist. An
initial study of the geometric and computational aspects of mold filling has been carried out in
Bose and Toussaint [1] where it is shown that for any mold modeled by a simple polygon P with n
vertices, one can decide in O(n) time whether a given orientation allows for a complete fill (the point
from which a polygon is filled is always the highest point with respect to the direction of gravity).
They also presented an optimal O(nlogn) time algorithm which determines all the orientations
that minimize the number of venting holes needed to avoid air bubbles (a venting hole is a point
from which air, but no liquid, is allowed to escape). This problem is equivalent to finding the
orientation that minimizes the number of local maxima of P. Finally, they related fillability to
certain known classes of polygons.

Figure 1: Gravity casting of a star-shaped object using one filling hole and two additional venting
holes.

In this paper, we study the three-dimensional aspects of the mold filling problem. We show that
given a mold, represented by a polyhedron with n vertices in a fixed orientation, we can determine
in O(n) time whether or not the mold can be filled without forming air pockets. Then, we show
that in O(n?) time, we can find all the orientations of a polyhedron that allow 1-filling. This
algorithm also finds the orientation that minimizes the number of venting holes needed to ensure a
complete fill when the polyhedron is not 1-fillable. The above problem is equivalent to finding the
set of orientations of the polyhedron that minimizes the number of local maxima in the positive
z-direction assuming that gravity points in the negative z-direction. The pin gate is placed at the
global z-maximum of the polyhedron with gravity pointing in the negative z-direction, and the
venting holes are placed at the local z-maxima (See Figure 1).

We give a pseudo-lower bound on the complexity of this problem by a reduction from the problem
‘A+ B=C7 to mold filling. The problem ‘A+B=C'?" is defined as follows: Given three sets A, B
and C' of n real numbers each, decide if there exists ¢ € A, b € B and ¢ € C such that a +b = c.
The best known algorithm for ‘A+ B =C 7" uses O(n?) time. Gajentaan and Overmars [21] have



shown there exist many problems in geometry that also reduce to ‘A+ B =C'?’, such as: ‘Given a
set of n points in the plane, are there three collinear points?’ and ‘Given a set of n rectangles in the
plane, do they cover a given rectangle RECT completely?’. Since the best known algorithms take
O(n?) time to solve any one of these problems, a problem which can be reduced to one of these is
referred to as an n%-hard problem. We reduce the rectangle covering problem to the filling problem.
Our reduction takes O(nlogn) time. Therefore, the mold filling problem is n?-hard making the
quadratic bound difficult to beat even to determine whether there is an orientation with only one

local maximum.

The interesting question that arises is whether one can improve the O(n?) time bound for some
restricted classes of polyhedra. We relate fillability to certain known classes of polyhedra, namely,
star-shaped, monotone and facet-visible polyhedra. In the case of star-shaped polyhedron, this
reduces the time bound for finding an optimal orientation to O(n) time as opposed to O(n?) time.
Finally, we show that if a polyhedron is in some sense not too irregular, then we can determine in
O(nklog® nloglog(n/k)) time the orientation that minimizes the number of venting holes needed
to ensure a complete fill. Here £ is the number of local maxima in that orientation. The main idea
is that the restrictions imposed on the polyhedron, under a suitable transformation, lead to a set
of fat convex polygons in the plane, and we use the fact that a set of fat convex polygons has small
union size. Both the general algorithm and the improved but restricted algorithm are fairly simple
and should perform well in practice. The improved but restricted algorithm provides the correct
result for any polyhedron, but a guarantee on the asymptotic running time can only be given for
polyhedra with the restriction.

2 Notation and Preliminaries

Let us first introduce some of the terminology we will be using in this paper.

A simple polygon is a simply connected subset of the plane whose boundary is a closed chain
of line segments. We will denote a polygon by a set of vertices vy, vs,...,v,_1,v, such that each
pair of consecutive vertices is joined by an edge, including the pair {v,,v:}. We assume that the
vertices are in clockwise order, so that the interior of the polygon lies to the right as the boundary
of the polygon is traversed.

Given two points @ and b on the plane, let [ab] and (ab) denote respectively the closed and open
line segments between the two points. A chord of a polygon is a line segment between two points,
a and b, on the polygon boundary such that the open line segment is contained in the interior of
the polygon. A chord divides a polygon into two subpolygons. Given a line segment e, we denote
the line containing e as L(e).

We define a simple polyhedron P as in O’Rourke [20]. The boundary of P is a finite collection

of planar, bounded convex polygonal faces such that

1. The faces are disjoint or intersect properly. (A pair of faces intersect properly if either they
have a single vertex in common or have two vertices, and the edge joining them, in common.)

2. The link of every vertex is a simple polygonal chain. (Triangulate the faces that have vertex
v on their boundary. The link of v is the collection of edges opposite v in all the triangles



incident to v.)

3. The one-skeleton is connected. (The one-skeleton is the graph of edges and vertices of the
polyhedron.)

The boundary is closed and is denoted as dP. The boundary encloses a bounded region of space,
denoted as int(P). The polyhedron consists of the boundary and its interior, (i.e. P = int(P)UdP).
The (unbounded) ezterior of P is denoted as ext(F). As this paper only deals with simple polyhedra,
we will refer to them as polyhedra in the remainder of the paper. The vertices and the edges of the
faces are the vertices and the edges of the polyhedron. The open interior of the faces are called the
facets of the polyhedron. Therefore, for a facet f, the closure of the facet is the face and denoted

cl(f).

If we intersect a polyhedron with an arbitrary plane, the result is a collection (possibly empty)
of simple polygons (or line segments or points) lying on the plane. A polygon in this collection will
be referred to as a sectional polygon. Notice that a sectional polygon divides the polyhedron into
two simple polyhedra. Thus in this sense a sectional polygon is the three dimensional equivalent
to a chord in a polygon.

It will be convenient to have the set of all directions in space be represented by two planes.
Although this is not standard, it will help simplify the exposition. Let the plane z = —1, denoted
by DP(_)7 represent all directions with a negative z-component. Let the plane z = 1, denoted by
DP(+), represent all directions with a positive z-component. We do not consider the horizontal
directions. This assumption simplifies our discussion but is not an inherent limitation of our
methods. A point ¢ in DP) or DP) represents the direction o¢, where o represents the origin
of F3. Given a direction d, represented by og, we define opp(d) to be the opposite direction. Thus,
opp(d) is pointing in the direction of the vector go.

A polygonal chain C' = pg, p1, . . ., pn is monotonic with respect to direction O if the projections
of the vertices po, p1, ..., pn onto a line in direction © are ordered as the vertices in C'.

2.1 Geometric Model

We now define the geometric model of the gravity casting process, referred to as the gravity model.

A mold is modeled by a simple polyhedron. The point on the boundary of a mold through
which the liquid is poured into the polyhedron is called the pin gate. We assume that the pin gate
is the only point from which air is allowed to escape unless stated otherwise. A wventing hole is a
point from which only air and no liquid is allowed to escape. We assume that neither the liquid
being poured into the mold, nor the air in the mold are compressible. Finally, we assume that air
cannot bubble out through the liquid.

The sole force acting on the liquid is gravity. When a direction of gravity is not specified, we
assume, for simplicity of exposition, that gravity points in the negative z-direction. Thus, if only
one pin gate is used, we assume it to be a point on the boundary with the highest z-coordinate,
since otherwise, the polyhedron cannot be completely filled.

When liquid is poured into a polyhedron, the level of the liquid rises in the direction opposite
that of gravity. We assume that the advancing front of the rising liquid is a plane. The lowest



horizontal plane such that all the liquid in the polyhedron is contained below it, is defined as the
level plane.

When the level plane contains the pin gate, we say the polyhedron is mazimally filled. A region
containing air in a maximally filled polyhedron is called an air pocket. A polyhedron is said to be
1-fillable if there exists a pin gate and direction of gravity such that when the liquid is poured into
the polyhedron through the pin gate, there are no air pockets when the polyhedron is maximally
filled. We call the highest point (there may be more than one) of an air pocket in a maximally
filled mold, the peak of the air pocket. This leads to the following observation.

Observation 2.1 A polyhedron P in 3-space is said to be 1-fillable in direction —z provided that
for every point inside P there is a +z-monotone path from it to the z-maximum of P. Thus, a
polyhedron is 1-fillable if there is an orientation of P in which it is 1-fillable.

We extend the notion of fillability in the following two ways. A polyhedron is said to be k-fillable
if there exists a fixed orientation of the polyhedron, a placement of the pin gate and a placement of
k —1 venting holes such that when liquid is poured into the polyhedron through the pin gate, there
are no air pockets when the polyhedron is maximally filled. A polyhedron is said to be k-fillable
with re-orientation provided that the polyhedron can be re-oriented and filled from a new pin-gate
after partial filling from an initial orientation and pin gate. We assume that after the completion of
a partial filling, the liquid that is poured into the polyhedron hardens. The number k in this case
refers to the number of times that the polyhedron needs to be re-oriented before it is completely
filled. Notice that both definitions are identical when £ = 1. Unless stated otherwise, we will

always refer to k-fillable as filling from a fixed orientation.

3 The Decision Problem

In this section we will present an O(n) time algorithm to decide whether a polyhedron P is 1-fillable
given an orientation of the polyhedron.

Let P be a simple polyhedron of which all facets are triangulated, and let v be an arbitrary
vertex of P. We define P, to be the union of the facets incident to v. Let fy,..., f,, be the sequence
of facets of P, such that f; and f;;; are incident to an edge denoted e;, and f,, and f; are incident
to an edge e,,. If v is incident to m facets, and if P has a triangulated boundary, then P, has 2m
edges and m vertices besides v. Let S, be a sphere centered at v, such that 5, only intersects the
m edges incident to v, and no other facets, edges or vertices of P.

Definition 3.1 A wvertex v is a convex vertex of P provided that there exists a plane h,, with
v € h,, such that S, N h, does not intersect the interior of P.

Let A} and h; denote the closed half-spaces above and below the plane h,, containing the
vertex v. Let hJ be the closed half-space bounded by the plane h, with normal d, containing the
vertex v and where ¢ € {—, 4} is the opposite of the sign of the z-component in d. Recall that we
assume, for simplicity, that d is not a horizontal direction.



Definition 3.2 A vertex v is a local maximum of P in direction d provided that P, lies in the
closed half-space h?.

We now prove the theorem used to establish the linear time decision algorithm.

Theorem 3.1 A polyhedron P is 1-fillable if and only if the orientation of P has precisely one
local mazimum in direction +z.

Proof: (=) We assume that gravity is in the —z direction. Suppose that P is 1-fillable, and
suppose that P has more than one local z-maximum. Let ¢ be a local z-maximum of P which is
not the global z-maximum M of P. Let Il be any path from ¢ to M. Since ¢ is a local z-maximum,
IT has negative value in its z-component when it leaves ¢, contradicting observation 2.1

(<) On the other hand, suppose that P has only one local z-maximum M, which must also
be the global z-maximum of P. Let p be any point inside P, and let f be the facet of P hit by a
ray emanating from p vertically upward. Let ¢ be the vertex incident to this facet with maximum
z-coordinate. Clearly, there is a 4+z-monotone path from p to ¢ consisting of two segments. If
g = M we are done, otherwise ¢ is not a local z-maximum, and it must be incident to an edge with
endpoints ¢ and ¢’ such that ¢’ has greater z-coordinate. We repeat the argument with ¢’ for ¢
until the path reaches M. |

From this theorem, we see that given a polyhedron P and a direction of gravity g, to test 1-
fillability of P with respect to g, we need only determine the number of local maxima with respect
to gravity. We can determine if a vertex is a local maximum in time linear in the degree of the
vertex. This immediately gives us a linear time algorithm to determine whether or not a polyhedron
is 1-fillable from a fixed orientation.

Theorem 3.2 Given a polyhedron P, we can determine in O(n) time whether or not the polyhedron
is 1-fillable with respect to gravity.

4 Determining all Directions of Fillability

In this section we present an O(n?) time algorithm to find the orientation of a given polyhedron P
that minimizes the number of venting holes needed in order to ensure a complete fill from a fixed
orientation. This orientation is equivalent to the orientation that minimizes the number of local
maxima. The algorithm has two stages. In the first stage, the fillability problem is transformed to
a planar problem for a set of convex (possibly unbounded) polygons that cover the plane. In the
second stage, the following problem is solved: Given a set of n convex polygons in the plane, find
the point that is covered by a minimum number of them.

4.1 Transforming Fillability to Covering

Let P be a bounded polyhedron with n vertices, and assume that P is given by its incidence graph
(see e.g. [8]). First, we triangulate every facet of P (see e.g. [4, 23]). We choose an initial orientation



of P such that no edge of P is vertical. Let v be any vertex of P. We extract the description of
P, from the description of P in time proportional to the size of P,. Let fi,..., f,, be the sequence
of disjoint facets incident to v, such that f; and f;4; are incident to an edge e; of P, (and f,
and f; are incident to an edge e,,). Let w1, ..., w,, be the sequence of endpoints corresponding to
€1, ..., €m, see Figure 2.

Suppose that v is a convex vertex. We define the cone C, of v to be the unbounded polyhedron
consisting of v as its only vertex, m half-lines Fy,..., F,, starting at v, which contain the edges
€1, ..., €m, respectively, and m unbounded facets bounded by F; and E;11 (1 <i<m—1),or F,
and Fp. Since C, need not be a convex polyhedron, but its only vertex is convex, we say that C, is a
semi-convezx cone. Let C'C), be the convex hull of C',, which clearly is a convez cone. The half-lines
that are the edges of C'C, are a subset of the edges of (;; we denote them by F;,..., F; , where
1 <4y < -+ <i; <m. Finally, we define the normal cone NC', of the convex cone CC),, as follows.
Let f;,, ..., h;, be the set of planes that pass through v and are perpendicular to Fy,..., F;,. Let
H;,, ..., H;, be the closed half-spaces bounded by h;,,...,h;, such that they contain E; ..., E;,,
respectively. Then NC,, is the convex region that is bounded by H; N-- ‘M H;;. Notice that if CC,
is a sharp cone then NC', is a blunt cone, and vice versa.

Figure 2: Left: P,. Middle: the convex hull CC, of C,. Right: the convex cone C'C, and the
normal cone NC,,.

Each convex vertex of the polyhedron P defines a convex region in pp-) and /or DP("'), which
corresponds to the directions with respect to which it is a local maximum. Hence, P gives rise
to O(n) convex regions in these planes. It follows that a direction for which P has the smallest
number of local maxima corresponds to some point in the plane that is covered by the smallest

number of convex regions. The following lemma relates the normal convex cones to the direction
planes, DP(=) and DP().

Lemma 4.1 For every convex vertex v of a polyhedron P such that v coincides with the origin o
and direction d = o4 where ¢ is a point on one of the direction planes, it holds that v is a local
mazimum in (non-horizontal) direction —d if and only if ¢ € NC, N DP) or g€ NC,N DPH),

Proof: Let £ be the half-line rooted at o with direction d. By construction, the following equiva-
lence holds for any convex vertex v located at o and ¢ € {—,+}: There exists a plane h through v



with normal d such that CC, C A° if and only if ¢ C interior(NC,) U NC,. Since the direction d
is represented by the point ¢ = £N DP(<>)7 the lemma follows immediately. ]

Therefore we first determine if v is a convex vertex. This is the case if and only if v is an
extremal point in the set {v,wy, ..., w,,}. This is equivalent to the problem of determining if v can
be separated from {wy,...,w,,} by a plane, which in turn is equivalent to linear programming [7].
Therefore we can determine if v is convex by linear programming in linear time (see e.g. [8, 16, 25]).
If v is not a convex vertex, then v is not a local maximum for any direction, and we stop considering
v. Otherwise, let h, be a plane that contains v and has w1, ..., w,, to one side of it. Such a plane is
returned by the linear programming test. Let A/ be a plane parallel to h! which intersects all edges
€1,---,em. The intersection of h! with P, is a simple polygon P, with m vertices (corresponding
to €1,...,€,) and m edges (corresponding to fi,..., f,n). We compute the convex hull of P, in
linear time [15], [17]. Let us denote the convex hull by CH(P,). Let &, .. ., €, be the sequence of
vertices of CH(P,), where 1 <i4; < --- < i; < m. Clearly, these vertices correspond to the edges
€iyy- -+, €, of P,. We have in fact computed the edges adjacent to v on the convex hull of P,. This
information gives us the description of the convex cone C'C, of v in linear time. Furthermore, the
normal cone NC', can also be computed in additional linear time.

Translate NC, such that v coincides with the origin o. Let fo) be the convex polygon NC', N
DP) and let ngl_) be NC,n DP™). Either Qg_) is a bounded convex polygon and Qgﬂ is empty,
or vice versa, or both Qq(J_) and Q1(,+) are unbounded convex polygons. The convex polygons have
the following meaning: v is a local maximum in a non-horizontal direction —d if and only if the
half-line starting at the origin o in direction d intersects the interior of one of the polygons fo) or
Qq(ﬁ) by Lemma 4.1. We compute the convex polygons Q) and QM) for all vertices of P, giving
sets () and Q(*) of at most n convex polygons in the planes DP) and DP(+)7 respectively. The
total complexity of the polygons in Q=) and Q(+) is O(n). The question: ‘Is P 1-fillable?” or ‘Is
there an orientation of P such that it has only 1 maximum?’ translates to the question: ‘Is there
a point in DP) or DPM) that is covered by only one convex polygon?’ Similarly, the question
of k-fillability translates to deciding whether there exists a point that is covered by only k£ convex
polygons. We therefore have established the following result:

Lemma 4.2 In O(n) time, one can transform the problem of k-fillability to the problem of finding
a point in the plane covered by only k convex polygons.

4.2 Solving the Covering Problem

The next step in the algorithm involves solving the following problem: ‘Given a set Q of n convex,
but not necessarily bounded, polygons in the plane, with total complexity O(n), find a point that
is covered by the minimum number of polygons of Q.” Our algorithm constructs the subdivision
induced by Q, and associates to each cell the number of polygons that contain it.

The subdivision induced by Q without the numbering can be constructed deterministically in
O(nlogn+ A) time by the algorithm of Chazelle and Edelsbrunner[5], where A is the total number
of intersection points of all polygons in Q. Alternatively, a simpler randomized algorithm performs
the task with the same time bound, see Clarkson[6] or Mulmuley[18]. Clearly A = O(n?), and we



obtain a planar subdivision & with O(n?) vertices, edges and cells. Consider the graph G which has
a node for every cell of §, and an edge between two nodes if the corresponding cells are incident to
the same edge of S. The graph G has O(n?) nodes and edges. Start at any node a1, and compute
in O(n) time how many polygons of Q@ cover it. Store this number with a;. Start from a; with
a depth first search. Every edge (a;, a;) of G we traverse corresponds to going inside or outside a
polygon of Q, in which case we take the number of @;, add or subtract one from it, and assign this
number to a;. Thus the whole process of assigning values to cells of S requires only O(n?) time.
The cell with the minimum number assigned to it is covered by the minimum number of polygons.

Returning to the k-fillability problem, the above algorithm finds the direction d such that the
polyhedron has the minimum number of local maxima, if we apply it to both the set Q(=) of convex
polygons in the plane DP) and Q) in the plane DP(+). We summarize the algorithm below.

Algorithm 1: Find all orientations such that P is fillable with minimum number of venting
holes.

1. Select all convex vertices of polyhedron P.

2. Compute the convex cone of each convex vertex.

3. Compute the normal cone of each convex cone. Call this set NC.

4. Tntersect each normal cone in NC with DP(+) and DP(=). Call this set of (possibly unbounded)
convex polygons R.

5. Compute the arrangement Q(+) induced by R on DP™) and Q=) induced by R on P,

6. Find all regions on Q) and Q(-) covered by the least number of convex polygons of the set

R. These regions represent the orientations minimizing the number of venting holes need to

fill P.
We conclude with the following theorem:

Theorem 4.1 Given a simple bounded polyhedron P in 3-space, one can find in O(n?) time an
orientation for P such that P is fillable with the minimum number of venting holes.

Remark: Observe that the solution presented above makes no use of the fact that P is topo-
logically equivalent to a sphere. The algorithm works equally well for a polyhedron topologically
equivalent to a torus or polyhedron of yet higher genus. In practice, this is relevant because a
plastic cup with an ear is modeled by a polyhedron that is a torus.

5 A Reduction from Covering to 1-Fillability

In this section, we present an O(nlogn) time reduction from the rectangle covering problem to the
problem of 1-fillability of polyhedra. Since a reduction from the ‘A+ B = ?’problem to rectangle
covering is given by Gajentaan & Overmars[21], it follows that 1-fillability is at least at hard as
‘A+B=C7.



Theorem 5.1 The rectangle covering problem can be reduced to the 1-fillability problem in O(nlogn)
time.

Proof: Let I be an instance of the rectangle covering problem, i.e., given a set R of n rectangles
in the plane, and also a rectangle RECT, decide if the union of the rectangles in R cover RECT.
We now describe the construction of a polyhedron P such that it is 1-fillable if and only if the
rectangle RECT is not covered by R.

00

Figure 3: Left: an instance of the rectangle covering problem. Middle: a rectangle r; and its convex
cone CC(r;). Right: the normal convex cone NC(r;) and the spike s;.
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We associate the plane in which R and RFECT lie with the plane z = —1, such that the center of
RECT is the point (0,0, —1). For every r; € R, we associate the convex cone CC(r;) to be the cone

with apex the origin o of 3-space, and whose intersection with the plane z = —1 is the rectangle r;.
Then we invert C'C(r;) to obtain a convex cone NC(r;), and we intersect NC(r;) with the plane
z = —1 to obtain a possibly unbounded convex polygon ;. For each ();, we choose a point ¢; in

its interior such that all of the ¢; are distinct. (The convex hull of the ¢; should contain the point
(0,0, —1);if not, we add suitably chosen dummy rectangles to R outside of RECT to enforce this.)
Let h; be the plane through o with normal og;. Translate h; in direction og; by an amount such
that the interior of h; N NC'(r;) has positive area, but is contained in a disk with diameter 1. Define
the spike s; to be the polyhedron hi+ N NC(r;). Translate h; and the spike s; simultaneously back
in direction ¢jo, such that h; passes through o again.

Let v be the minimum distance between any two of the distinct points ¢;. Let I' be the maximum
distance of any ¢; to the origin o. Let S be a sphere centered at o with radius at least 2I'/y + 1.
Translate every pair h; and s; in direction gjo such that h; is tangent to S (S C k). By the choice
of the radius of S and the area of h; N NC(r;) (the ‘base’ of the spike), no two spikes s; and s;
intersect. Compute the convex polytope P = (2 > —1)N(;<;<, h; . By construction (the addition
of dummy rectangles), P is a bounded convex polyhedron. To P, we add each spike s; on the facet
of P that lies in h;. To finish the construction, we add one more gadget to the facet contained in
the plane z = —1. This is the new spike spgpcr for RECT, which is translated in the —z-direction
over a distance so that its topmost point penetrates the lower facet of P.

Without all the spikes, P is a convex polyhedron, and thus has exactly one maximum for every
direction. The spike spgor gives additional local maxima for every direction corresponding to a
point in z = —1 outside of RECT. The other spikes give a local maximum for every direction
that corresponds to a point inside the corresponding rectangles of R. Hence, P is 1-fillable if and
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Figure 4: An example of the polyhedron constructed for theorem 5.1.

only if RECT is not covered by the union of the rectangles in R. The construction can be per-
formed in O(nlogn) time using the half-space intersection algorithm of Preparata and Muller [22]. m

6 Fillability of Certain Classes of Polyhedra

In this section, we investigate the relationship between the notion of fillability and certain known
classes of restricted polyhedra. These results are relevant to the manufacturing industry because
in practice many objects are not modeled by polyhedra of arbitrary shape complexity.

6.1 Monotone Polyhedra

A polygon P is monotonic in direction [ if for every line L orthogonal to [ that intersects P, the
intersection L N P is a line segment (or point). We generalize this notion to 3-dimensions to obtain
a large family of monotone polyhedra. We define the class as follows.

Definition 6.1 A polyhedron P is weakly monotonic in direction [ if there exists a direction | such
that the intersection, of each plane orthogonal to | that intersects P, is a simple polygon (or a line
segment or point). The direction | is referred to as the direction of monotonicity.

Note that there exist many different classes of simple polygons [19], [23], [26], [27]. By substi-
tuting one of these classes for the word simple in the above definition, we obtain a score of families
of weakly monotonic polyhedra. Thus we say that if all the intersections are convez polygons, we
have a weakly monotonic polyhedron in the convez sense. If the intersections are monotone poly-
gons, then we have a weakly monotonic polyhedron in the monotone sense, and so on. Refer to
figure 5. Weakly monotone polyhedra have been previously investigated in the context of movable
separability of polyhedra [26].
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Figure 5: Weakly Monotonic Polyhedron

Theorem 6.1 A weakly monotonic polyhedron P is 1-fillable if it is oriented such that gravity
points in the direction of monotonicity.

Proof: For ease of exposition, let us assume that gravity, g, is in the negative z-direction.
If we show that P has only one local maximum in the positive z-direction then by theorem 3.1
we establish the theorem. Suppose that P had more than one local maximum. Let m be a local
maximum that is not the global z-maximum. Let P,, be the union of the facets incident to m, and
let h,, be the plane containing m with normal g.

Let h,, be the lower closed half-space bounded by the plane A, with normal g, containing the
vertex m. By definition 3.2, we have that P, € h,,. Since there is a point with a greater z value
than m, the intersection of h,, with P is not a simple polygon, a contradiction. |

6.2 Open-Facet Visible Polyhedra and Star-Shaped Polyhedra

Two points inside a polyhedron are said to be wvisible if the line segment between them does not
intersect the exterior of the polyhedron. A point p is weakly visible from a facet f if there is a point
x on f such that p is visible from z.

A polyhedron P is facet visible if there is a facet of the polyhedron from which all the points in
the polyhedron are weakly visible. A polyhedron P is open-facet visible if there is a facet f in P
such that all points p are visible from some point x on f that is not on the boundary of the facet.

Let P be an open-facet visible polyhedron. Without loss of generality, let f; be the open facet
from which the polyhedron is weakly visible. Let d* denote the direction of the interior normal to
the facet.
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Theorem 6.2 An open-facet visible polyhedron P is 1-fillable if it is oriented such that d* points
in the direction of gravity.

Proof: Tor ease of exposition, let us assume that gravity is in the negative z-direction.

Let py, an arbitrary point of the open-facet, be the pin gate. Let a be an arbitrary point in P.
Since P is open-facet visible, there must be a point b on f; that sees point «, i.e. [ab] € P.

Let Il be the path = (a, b, p;1) in P. Since II is monotone with respect to d*, the theorem follows.

Corollary 6.1 Fuvery polyhedron that is weakly visible from a sectional polygon is 2-fillable with
re-orientation.

Figure 6: A star-shaped polyhedron that is not 1-fillable

A star-shaped polyhedron is a polyhedron that contains at least one point = from which all points
of the polyhedron are visible (see figures 1 and 6 for a star-shaped polyhedron). The set of points
from which all points are visible is known as the kernel of the star-shaped polyhedron. A point
in the kernel of a star-shaped polyhedron can be computed in O(n) time using Megiddo’s linear
programming technique [16]. This implies that in O(n) time, a sectional polygon can be found from
which the star-shaped polyhedron is weakly visible. However, a star-shaped polyhedron may not
necessarily be 1-fillable (see figure 6). In fact, if a star-shaped polyhedron is filled from one fixed
orientation, it may need €(n) venting holes.

Theorem 6.3 A star-shaped polyhedron is not necessarily 1-fillable but can always be 2-filled with
re-orientation in O(n) time.

7 An Improved Algorithm for Restricted Polyhedra

We next consider the issue of improving our O(n?) time algorithm for polyhedra that satisfy certain
regularity conditions. We place a local condition on each vertex to ensure that the covering problem
we obtain can be solved more efficiently. Our new algorithm runs in O (nklog®™") ) time, and thus
is dependent upon the number of local maxima of P. If this number is small compared to n, the
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new algorithm improves considerably upon the previous algorithm. The local restriction is such
that the convex polygons that are obtained for the covering problem are fat, that is, the ratio of
the diameter to the width of each polygon is bounded from above by a constant (a convex polygon
is fat provided that the ratio of the diameter to the width is bounded by a constant). We have
identified two different restrictions that each lead to fat polygons.

Definition 7.1 A convex vertex v of a polyhedron P in 3-space is non-flat provided that there
exists a positive constant 3 and plane h through v such that P, C h~ or P, C ht, and every edge
e incident to v makes an angle at least 8 with h.

For a point p, a normalized vector v in 3-space, and a non-negative real A, let £ be the half-line
p+A-7. A cone annulus CA with radii r; and rs is the geometric object such that for any plane A
that is perpendicular to £ and intersects £ at a point represented by some value of A in the equation
of the line ¢, the intersection h N CA is an annulus defined by circles with radii Ary and Ary. The
ratio of the cone annulus CA is defined to be ry/ry, assuming that ro > ry.

Definition 7.2 A convex vertex v of a polyhedron P in 3-space is annulus-bounded provided that
there ezists a constant p and a cone annulus CA, with apex v and ratio at most p, such that

P, C CA,.

Observe that a convex vertex v of P can be non-flat but not annulus-bounded, or annulus-
bounded but not non-flat. Non-flatness will usually be the case for any vertex v that is not used to
approximate a convex surface in 3-space. If v is used to approximate a convex surface in 3-space,
then it may be annulus-bounded or not. Roughly speaking, v will be annulus-bounded if in the
neighborhood of v on the surface, the number of approximating points is chosen linearly dependent
upon the change in derivative (and not dependent upon the distance).

Definition 7.3 A bounded polyhedron P in 3-space is restricted provided that each convex vertex
v of P is non-flat or annulus-bounded.

We will show that any restricted polyhedron P yields—using an adapted transformation to
the covering problem—a set of fat convex polygons. The second problem is that of computing
regions that are covered not too often without having to compute the full subdivision of the convex
polygons (which may have quadratic complexity even for fat objects). We will show that one can
compute the regions that are at most k-covered in O(nklog?® nloglog(n/k)) time, if the convex
polygons are fat.

7.1 Transforming a Restricted Polyhedron to Fat Polygons

Let P be a restricted polyhedron with n vertices. As before, we triangulate all facets of P, and for
each vertex v € P, we test whether v is convex. If so, we compute the convex cone C'C', and the
normal convex cone NC',. However, instead of letting all non-horizontal directions be represented
by the planes z = —1 and z = 1, we let all directions be represented by an axis-parallel cube. Let
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DC' be the axis-parallel cube centered at the origin o and with edge length 2. The normal cone
may intersect all six facets of DC', or its interior may contain a whole facet. For any facet F of
DC', consider the set Q of clipped convex polygons NC', N F, see Figure 7.

Figure 7: Left: the intersection of the cube with two convex cones. Right: one facet of the cube
intersected by several convex cones.

Lemma 7.1 Any clipped convex polygon () € Q can be extended to a fat convex polygon that
coincides with @ inside the facet F.

Proof: Let hp be the plane that contains facet F, and let F' C hp be the square with edge
length 4 that contains F’ such that their centers coincide and their edges are parallel. Suppose that
@ = NC, N F for an normal cone NC,,. Define Q' = NC, N F’" and Q" = NC, N hp, see Figure 8.

| e

Figure 8: The facet F’, the square F’ and the polygons @, @’ and Q" in hp.

First, suppose that v is a non-flat vertex. Let h be the plane and [ the constant as in Defi-
nition 7.1. It follows that C'C, is contained in a circular cone with radius r bounded from above
by the constant 1/tan(8). Therefore, the normal cone NC, contains a circular cone with radius
r’ > tan(f). There are two cases: (i) Q" C F' (or, equivalently, @' = Q"), and (i) Q" € F' (or
Q' C Q"). In the former case, ' contains a circle with radius at least r’, which provides a lower
bound on the width of Q’. The diameter of Q' is at most 4v/2, the diameter of F’. It follows that
@' is fat. In the latter case, consider the convex cone NC,. It contains a half-line that intersects
F, and it contains a circular cone with radius r’. Since the cone is convex, it must contain the
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closure of the half-line and the circular cone. This object intersects F’ in a region with width at
least min{tan(3/v/2), 1/2}. Since Q' contains this region, Q' is fat.

Second, suppose that v is annulus bounded, and let C'C,, be contained in a cone annulus with
radii 7] and r}. It follows easily that NC, is contained in a cone annulus with radii ry = 1/r} and
ro = 1/r]. We will show that if ro/r; = r}/r] is bounded by a constant, then @’ is fat (this only
holds if @' intersects F).

There are two cases: (i) Q" C I’ (or, equivalently, Q' = Q"), and (ii) Q" Z I (or Q' C Q").

In the former case, ' contains a circle with radius at least r{, and @’ is contained in a circle
with radius at most 9r;. Therefore, the width of @)’ is at least r; and the diameter is at most 9rs,
and since ry/ry is bounded, Q' is fat.

In the latter case, let w be the width of @'. We will show that w > r1/(3r2). If ro/ry is
bounded from above by a positive constant, then w is bounded from below by a positive constant.
Furthermore, the diameter § of @)’ is at least 1 (since @)’ intersects the boundaries of both F' and
F"), and § is at most 44/2, the diameter of F’. It follows that the ratio of diameter and width of
Q)" is bounded by a constant, and therefore, () is fat.

Let p; and py be two points on @)’ that realize the width, and assume without loss of generality
that w < 1/2 (otherwise, it follows immediately that ()’ is fat). Let £; and ¢ be the lines through
p1 and po, and tangent to Q”. Therefore, they are also tangent to @)’, and Q" lies between the lines.
Let hy and hg be the planes through o and containing ¢; and {3, respectively. Observe that NC,
lies between the planes Ay and hy. Furthermore, p; € hy and py € hy have distance w in 3-space,
and the segment pyp; has distance at least 1 to the line hy N hy. It follows that ry < w/2.

Also, since @' intersects both F' and F’, it follows that ro > 1/6. Hence, w > r1/(3r2) as
required. |

7.2 Computing the k-covered Regions for Fat Polygons

A set of n fat convex polygons with total complexity O(n) has the property that the boundary of
the union has close to linear complexity, whereas it may be quadratic for non-fat convex polygons.
A more general result, which we require for our algorithm, is:

Theorem 7.1 [12, 14] Given a set Q of n fat convex polygons with total complexity O(n), the total
complexity of all cells in the subdivision induced by Q which are covered by at most k polygons of

Q is O(nkloglog(n/k)).

If we clip each polygon in the set Q with a square F', then the theorem still holds. For some
value of k, we will test whether every point in F is at least k-covered. If not, then we know that
the polyhedron that gave rise to Q has less than £ local maxima for some orientation. If for each
of the six facets of DC every point is at least k-covered, then we know that the polyhedron has at
least & local maxima for every orientation.

For a facet I, a set Q of polygons with total complexity O(n), and an integer k > 1, we test
whether there exists a point inside F that is covered by at most k& polygons of Q. This is done
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by computing the subdivision defined by Q using divide-and-conquer. However, we only compute
edges and vertices of regions that are covered by at most k& polygons of Q. With every region, an
integer is associated that represents the number of polygons that cover the region. The regions for
which the integer is greater than k are associated with the special integer co.

We partition Q into two subsets Q; and Qy such that the total complexity of the polygons in
each of the subsets is approximately the same. Recursively, we compute the subdivisions &y and S
of the regions that are covered by at most £ polygons of Q1 and Qs, respectively. Then we merge
these two subdivisions &7 and Sy as follows.

Perform a plane sweep over §; U Sy to compute the union S of these subdivisions (S is a
refinement of both §; and &;). The plane sweep stops at every vertex of §; and of Sy, and at every
intersection point of an edge in S; and an edge in Sy. Any region R of S is assigned an integer as
follows. Assume R C R; and R C R for regions R; in & and Ry in 8. Let Ry be associated to
11, and Ry to i3. Then the integer ¢ for R is i1 + 29, unless 11 = 00, 13 = 00, or 71 + i3 > k, in which
case 7 is assigned oo. This gives a correct assignment of integers to the subdivision S. However,
S contains edges between two regions with integer co. To complete the merge step, we remove all
the edges from S to obtain the desired subdivision S.

If the polygons in Q; and Q3 have complexity O(n), then the subdivisions §; and S have
complexity O(nkloglog(n/k)) by Theorem 7.1. The number of intersection points of some edge of
S and some edge of S is O(nkloglog(n/k)), since such an intersection point is obtained from two
edges that bound a region that is at most k£ times covered. Hence, any intersection point lies on
the closure of a cell that is at most 2k times covered. By the complexity result of Theorem 7.1,
the plane sweep takes O(nklognloglog(n/k)) time. We conclude that the divide-and- conquer
algorithm requires O(nk log® n loglog(n/k)) time in total.

We show how to use the above algorithm for k-fillability of a polyhedron P. Let Fi,..., Fs be
the six facets of the cube DC', and let Qq,..., Qg be the six sets of polygons on these facets. Let
7 = 1 and determine for each F; and Q; whether there exists a point on F; that is covered by only
7 polygons of Q;. If the answer is no for all F;, then we double j and try again. If the answer is yes
for some facet F;, then traverse all subdivisions of Fi, ..., Fs that we computed, and find the region
with smallest associated integer £ < 7. Any point in this region corresponds to an orientation of the
polyhedron P for which it has k local maxima. Any other orientation gives as least as many maxima.
The time taken by the algorithm is O( ([12052 .ot log? nloglog(n/2%)) = O(nk log® nloglog(n/k))
time.

Theorem 7.2 Let P be a polyhedron with n vertices, such that P is locally annulus bounded. Then
an orientation for P can be found such that P can be filled using k venting holes, which is the
minimum possible for P, and the algorithm takes O(nk log® nloglog(n/k)) time.

8 Conclusions and Open Problems

This paper presented the first algorithm to compute an orientation of a polyhedron in 3-dimensional
space which is good for a mold used for gravity casting. The orientation found minimizes the number
of venting holes needed to guarantee a complete fill without forming air pockets. It was shown that
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the required orientation is that which minimizes the number of local z-maxima. For a polyhedron
with n vertices, our algorithm runs in O(n?) time and should be easy to implement.

It was also shown that it will most likely be difficult to reduce the O(n?) bound if no restrictions
on the polyhedron are imposed. However, we gave a second algorithm that should improve the first
one in most practical situations and, under some local conditions of the polyhedron, we showed that
the second algorithm performs asymptotically better than the first one. If the minimum number
of venting holes required to fill the polyhedron is &, our algorithm runs in O(nk log® nloglog(n/k))
time. In practice, k£ will most probably be small compared to n.

There are several directions for further research. First of all, the algorithms presented in this
paper have not yet been implemented, and it would be interesting to test how they behave in
practice. Secondly, for the second algorithm, we imposed restrictions on the polyhedron to be able
to prove the stated running time. It may, however, be possible to weaken the restrictions that we
imposed and still prove the same time bound. Also, a different approach may yield other algorithms
that improve upon the O(n?) time bound for other types of restricted polyhedra. Thirdly, our
algorithms require O(n?) and O(nklognloglog(n/k)) storage, respectively. It may be possible to
improve this, perhaps by using the topological line sweep algorithm of Edelsbrunner and Guibas[9].
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