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Abstract 

We study various classes of polyhedra that can be clamped using parallel jaw grippers. We show that all n- 
vertex convex polyhedra can be clamped regardless of the gripper size and present an O(n + k) time algorithm 
to compute all positions of a polyhedron that allow a valid clamp where k is the number of antipodal pairs of 
features. We also observe that all terrain polyhedra and orthogonal polyhedra can be clamped and a valid clamp 
can be found in linear time. Finally we show that all polyhedra can be clamped with some size of gripper. 

I. Introduction 

Grasping is an active research area in robotics. Much research has been done on the problem of 
gripping or immobilizing an object with a multifingered hand [4,8,12,13,16]. Motivated by robot hands 
consisting of pairs of parallel rectangular plates (known as parallel j aw  grippers) researchers have 
also considered the problem of finding a secure grip of a planar object with a pair of parallel line 
segments [6,14,17,19]. Each plate is referred to as a gripper. Informally, a polygon P is clamped in 
the plane when it is "securely" held between the two grippers (modeled in the plane by a pair of  line 
segments forming the opposite sides of a rectangle) such that P does not rotate or slip out of the 
gripper when the gripper is squeezed. A polygon is called clampable if there exists a clamp for every 
positive length gripper. 

Souvaine and Van Wyk [17] showed that all convex polygons are clampable, and conjectured that 
all simple polygons are clampable. Capoyleas [6] gave a slightly weaker definition of clamping and 
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showed that a class of polygons with convex pockets is clampable under this definition. Albertson, 
Haas and O'Rourke [2] defined the class of free polygons (a polygon is called free if no outward 
normal of the polygon intersects its interior) and showed that free polygons are clampable. They also 
showed that sail polygons (a polygon is a sail polygon if it has exactly three convex vertices), and 
polygons with at most 5 vertices are clampable. 

In this paper we address the problem of determining when a 3-dimensional object (modeled as a 
simple polyhedron) is clampable with a parallel jaw gripper consisting of a pair of parallel plates that 
are the opposite faces of a rectangular box. First, we observe that terrain polyhedra and orthogonal 
polyhedra are clampable and that a valid clamp can be found in linear time. The main result of our 
paper is a proof that all convex polyhedra are clampable. We also give an O(n + k) time algorithm to 
find all clamps of an n-vertex convex polyhedron, where k is the number of antipodal pairs of features 
of the polyhedron. 

2. Notation and preliminaries 

All polygons and polyhedra considered in this paper will be simple; for definitions of this and 
other geometric terms the reader is referred to, e.g., [14,15]. We will denote the open interior of a 
polyhedron P by int(P). Polyhedra are closed, i.e., the boundary is considered part of the polyhedron. 
The convex hull of a set S of points is denoted CH(S). The closed line segment with endpoints z 
and y is written ~--ffy. The relative interior of a point s__et ~ is the__ interior of S in the highest dimensional 
affine subspace spanned by 6; for a line segment ab this is ab \ {a, b} and for a point p this is p itself. 
Two point sets intersect properly if their relative interiors intersect. 

2.1. Grippers and clamps 

A parallel jaw gripper is modeled by a pair of rectangles forming opposite faces of a rectangular 
box. Each rectangle is referred to as a gripper. The size of a gripper is determined by the length and 
the width of the rectangle. Although intuitively it may seem that the size of a gripper plays a key 
role in determining whether or not a polyhedron can be clamped, we will show that several classes of 
polyhedra can be clamped regardless of the size of the gripper. 

To give a geometric definition of a clamp, we begin by first defining the contact set of a gripper 
(similarly to [17]). We shall give a characterization of the secureness of a configuration of the grippers 
and the object that is based only on the points of the grippers in contact with the object. Let dist(p, q) 
denote the Euclidean distance between p and q. Given a polyhedron P and a gripper G, the contact 
set of G is the set of all points p E G such that for all e > 0, there is a point q that lies in both the 
interior of the box defined by the grippers and in the interior of P such that dist(p, q) < e. 

Note that the contact set may be a proper subset of the set of all points at which G touches 
polyhedron P.  The e-condition for the contact set ensures that the polyhedron is between the two 
grippers and avoids configurations such as the one illustrated in Fig. 1. If in some configuration both 
grippers have non-empty contact sets, where the contact sets are denoted by a and/3, we call the pair 
(a,/3) of contact sets a grip. 

Although when a polyhedron is in a grip both grippers touch the polyhedron and at least some part 
of the interior of the polyhedron is contained between them, the grip is not necessarily secure. By 
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Fig. 1. An empty contact set. 

Fig. 2. A grip where the object translates when the grippers are squeezed, compared with a secure alternative. 

Fig. 3. A grip where the object rotates when the grippers are squeezed, along with the secure grip reached after rotation. 

this we mean that by squeezing the grippers, the polyhedron may rotate or slip out (see, e.g., Figs. 2 
and 3). Therefore, we wish to define a grip that "holds a polyhedron securely". Such a grip will be 
referred to as a clamp. 

In the rest of this section, we consider a simplified physical model of a rigid object gripped by parallel 
jaw grippers, and use this model to define a clamp geometrically. For a more rigorous treatment of the 
statics of rigid bodies, we refer the reader to [18]. We start from the premise that a grip is secure if and 
only if the object does not translate or rotate (relative to the grippers) when the grippers are squeezed. 
This is equivalent to requiring that the system of the grippers and the object be in static equilibrium, 
i.e., the external forces and torques acting on the object sum to zero. In general there will be other 
forces acting on an object other than those exerted by the grippers; we assume that when the grippers 
are able to exert arbitrarily large pressure on the object without dislodging it, the friction between the 
grippers and the object (which is proportional to the pressure of the grippers) counterbalances any 
external forces such as gravity. 

In the following, we assume without loss of generality that the grippers are horizontal and the z-axis 
is normal to the grippers. The x and y axes will thus be contained in a plane parallel to the grippers. 
Let proj r (A ) denote the orthogonal projection of A into plane F. Let proj(A) denote the orthogonal 
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Fig. 4. Illustrating the two cases of Condition 1. 

Fig. 5. A grip in static equilibrium that is unstable. 

projection of A into the plane z = 0. For ease of reference, we define the following condition on a 
pair of contact sets (a,/3), illustrated in Fig. 4. 

Condition 1. (a) One of CH(a)  or CH(/3) has nonzero area and proj(CH(a)) properly intersects 
proj(CH(/3)), 

(b) There exists (a, b) E a and (c, d) E/3 such that proj(ab) properly intersects proj(cd). 

We would like our definition of a clamp to exclude cases such as the one illustrated in Fig. 5, 
since they are liable to be insecure if they are misaligned slightly. We say that an object is in stable 
rotational equilibrium if the sum of the torques on it is zero and there exists some e > 0 such that if 
each coordinate of the contact points is perturbed by any 6 such that 161 < e, the sum of the torques 
is still zero. Stable static equilibrium is defined analogously. 

Lemma  1. I f  an object held in a grip (a, ~) is in stable rotational equilibrium with respect to any 
axis normal to the z-axis then Condition 1 holds for  a and/3. 

Proof. Suppose the object is in stable rotational equilibrium about every axis of rotation perpendicular 
to the z-axis. It follows proj(CH(a)) must properly intersect proj(CH(/3)), hence if either CH(a)  or 
CH(/3) has nonzero area, then Condition l(a) holds. 

Suppose CH(a)  and CH(/3) both have zero area. If a and /3 are coplanar then the rotational 
equilibrium is not stable, hence Condition l(b) holds. [] 
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Fig. 6. A grip whose stability depends on the angle 0. Fig. 7. An unstable grip where Condition l(a) is satisfied 
(the bottom gripper is above and parallel to the base of 
the object). 

Fig. 8. An unstable grip where Condition l(b) is satisfied. Fig. 9. Projection of Fig. 8 into the plane z --- 0. 

We have established that stable static equilibrium implies Condition 1 (since static equilibrium 
implies rotational equilibrium). The converse is unfortunately not true. Even in two dimensions, if 
one of  the contact sets contains points on the boundary of  a gripper, then the object may translate or 
rotate when the grippers are squeezed even though (the two dimensional equivalent of) Condition 1 
is satisfied. Consider  for example the grip shown in Fig. 6; the stability of  this grip seems to depend 
not only on the contact sets, but on the angle 0. Even stronger examples can be constructed in three 
dimensions (see, e.g., Figs. 7, 8 and 9). 

In order to have static equilibrium, not only must Condition 1 hold, but also the force components  
acting along the x- and v-axes and the torque components about the z-axis must sum to zero. One 
trivial way  of  ensuring this is to insist that the object does not contact the edge of  the grippers; in 
this case all forces have vertical lines of  action. We give a weaker sufficient condition, although it is 
still not necessary. Given a grip (c~,/3), let the proper contact sets ( s  t,/3t) denote those points in the 
contact sets contained in the open interior of  the respective grippers. 

L e m m a  2. I f  the proper contact sets (a, /3) satisfy Condition 1, then the object is in stable rotational 
equilibrium w.r.t, any axis normal to the z-axis. 
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Proof. Suppose that Condition 1 holds for proper contact sets c~ and/3. Let F be an arbitrary vertical 
plane. One of A -- proj r (CH(a))  and B -- projr(CH(/3) ) must be a line segment. Without loss of 
generality, suppose B is a line segment. Since there is a point in CH(c~) that projects orthogonally into 
the open relative interior of CH(/3), the line segments proj(A) and proj(B) must overlap properly. It 
follows that one of them, without loss of generality proj(A), must have an endpoint that projects in 
the interior of the other, unless both line segments are equal. But the endpoints of proj (A) and proj (B) 
are projections of vertices of CH(c~) and CH(/3), hence points in o~ and/3, respectively. Observe that 
in each case, there is a configuration of three or four points in the projection onto F corresponding to 
what Albertson, Haas and O'Rourke [2] call a three or four point clamp in two dimensions. Given one 
of these configurations of contact points in the interior of the grippers, if the object were to rotate about 
an axis normal to F,  it would force the grippers farther apart, a contradiction. From the definition of 
rotational equilibrium, it follows that the sum of all torque components in the plane F must be zero. 
Since F was an arbitrary vertical plane, the sum of torque about any horizontal axis must be zero. 

Note that because Condition 1 requires proper intersection of the projected contact sets, there is 
always some e perturbation that can be applied to the coordinates of the contact points without violating 
Condition 1, hence the rotational equilibrium is stable. [] 

Theorem 1. / f  Condition 1 holds for  proper contact sets a and/3, the object is in stable static 
equilibrium. 

Proof. Suppose Condition 1 holds and there exists points a E c~ and b E /3 in the interior of the 
grippers. In order for there to be translation of the object or rotation about the z-axis, the interior of 
some face of the object must contact the edge of the grippers, since otherwise all forces act parallel to 
the z-axis. In order for the object to rotate or translate the grippers must come closer together when 
squeezed. Consider the line segment ab. Since both a and b are interior to the grippers, if the grippers 
are moved closer together, ab must rotate about some horizontal axis. Because the object is rigid, this 
would imply that the whole object rotates about a horizontal axis. But by Lemma 2, we know this is 
impossible. 

This leads us to define a clamp as follows. 

Definition 1. A grip is a clamp if Condition 1 holds for the proper contact sets. 

The tetrahedron in Fig. 10 can be clamped under Condition l(a) with one gripper on the peak of the 
tetrahedron and the other on its base. The tetrahedron in Fig. 11 can be clamped under Condition 1 (b). 
Fig. 12 illustrates that there are stable grips that do not satisfy Definition 1. Such grips require a more 
sophisticated characterization but are not needed for the classes of polyhedra studied in this paper. 

Fig. 10. Only a vertex-face clamp exists. 
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Fig. 11. Only an edge-edge clamp exists. 

Fig. 12. A stable grip that does not satisfy Definition 1. The vertices form two nested regular tetrahedra. 

We say that a polyhedron is clampable if it admits a clamp for every size of gripper. We say that a 
polyhedron is partially clampable if it admits a clamp with a gripper of a particular size. 

3. Clampable polyhedra 

The definition of a clamp immediately implies that all terrain polyhedra are clampable. A polyhe- 
dron P is a terrain polyhedron provided that there exists a face f of P contained in a plane F such 
that Vx E P, ~ C P,  where y = projF(x ). Such polyhedra can be recognized in linear time [3]. 

Observation 1. Every terrain polyhedron is clampable and a clamp can be found in linear time. 

Every orthogonal polygon has at least 4 extreme edges (edges incident on the minimum enclosing 
rectangle). Since the two edges adjacent to an extreme edge are parallel and project orthogonally onto 
each other for some positive distance, there exist at least 2 distinct clamps of an orthogonal polygon. 
Similarly, every orthogonal polyhedron has at least 6 extreme faces. By considering the set of extreme 
faces in a given direction, finding a clamp of an orthogonal polyhedron reduces to finding an edge 
that is extreme for a set of orthogonal polygons. 

Observation 2. Every orthogonal polyhedron is clampable and a clamp can be found in linear time. 
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3.1. Convex polyhedra 

In this subsection, we establish our main result: that all convex polyhedra are clampable. We also 
give an algorithm to determine all positions that admit a valid clamp. 

To show that all convex polyhedra may be clamped, we must show that given a gripper of any 
size, there always exists at least one position of the grippers that satisfies one of the two conditions 
defining a clamp. A key towards showing this is the observation that a convex polyhedron can only be 
clamped at an antipodal pair of features. An antipodal pair of features is the intersection of a convex 
polyhedron with a pair of parallel support planes. Since a plane of support can only meet a convex 
polyhedron at a vertex, edge or face, there can only be six types of antipodal pairs: vertex-vertex, 
vertex-edge, vertex-face, edge-edge, edge-face and face-face. 

From the definition of a clamp, we see that a vertex-vertex pair and vertex-edge pair cannot form 
a clamp. Therefore, what remains to be shown is that there always exists an antipodal pair satisfying 
one of the two criteria of clamping. There are two special types of antipodal pairs that immediately 
come to mind: those that determine the maximum (diameter) and minimum (width) distances between 
parallel planes of support. The diameter can be determined by an antipodal pair that does not satisfy 
Condition 1. In [11], the authors show that the width cannot be determined by a vertex-vertex or 
vertex-edge pair that is not part of another antipodal pair. 

Lemma  3 [11]. The width of  a convex polyhedron P in three dimensions is determined by an antipodal 
vertex-face pair, edge-edge pair, face-face pair or edge-face pair of  P. 

Lemma 3 in itself is not sufficient to show that all convex polyhedra are clampable. We now show, 
however, that an antipodal pair determining the width always satisfies one of the two conditions 
defining a clamp. Before proving this theorem, we need to establish a few geometric lemmas. First, 
we show that for convex polyhedra, there is no need to distinguish between contact sets and proper 
contact sets in the interior of the grippers. Since P is convex, then so are the contact sets. It follows 
that if we remove points on the boundary of the contact sets (and the grippers), Condition 1 will still 
be satisfied. Thus we have the following lemma. 

Lemma 4. For convex polyhedra, if  Condition 1 is satisfied for a grip G, then G is a clamp. 

The following lemma is a specialization of (1.10) in [9] to 3-dimensional space and the Euclidean 
metric. 

Lemma 5 [9]. Let P be convex polytope. I f  A and B are parallel planes o f  support for  P realizing 
the width o f F ,  then proj/3(A n P) properly intersects B n P. 

In essence, the above lemmas tell us that convex polyhedra are clampable with infinite grippers. 
We now show that the grippers can in fact be made arbitrarily small. 

Lemma  6. I f  there is a clamp of  a convex polyhedron P for some positive size gripper, there is a 
clamp for any positive size gripper. 

Proof. To see this is true, we note that in both cases of Definition 1 there is some point p in the 
proper intersection of the two projected contact sets. Since P is convex, the points in the convex hulls 
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of two contact sets that project onto p must be points on the surface of P.  It follows that that if we 
keep the grippers centered on p then Condition 1 will continue to hold no matter how far we shrink 
the grippers (while maintaining a positive size). [] 

We now have the tools to prove the following theorem, a generalization of the main result of [17]. 

Theorem 2. An antipodal pair determining the width of  a convex polyhedron provides a clamp for  
any positive size gripper. 

Proof. Let P be a convex polytope. Consider a pair of rectangular grippers placed on an antipodal 
pair of features (p, q) of P that determine the width. For sufficiently large grippers, the contact sets 
are precisely (p, q), and the grip is a clamp by Lemmas 3, 4 and 5. But by Lemma 6, it follows that 
there is a clamp for any positive size gripper. [] 

Corollary 1. Every simple polyhedron is partially clampable. 

Proof. Notice that a clamp is defined in terms of the convex hulls of the contact sets, rather than the 
contact sets. The convex hulls of the contact sets are precisely the contact sets of the convex hull, so 
we may apply Lemmas 3 and 5 to the convex hull of the input polytope. We can always enlarge the 
grippers so that the contact set is entirely contained in the interior of the grippers. [] 

Although there can be many positions admitting a valid clamp, there are some polyhedra (such 
as the ones depicted in Figs. 10 and 11) where the antipodal pair determining the width is the only 
position providing a clamp. 

We now turn our attention to computing a valid clamp. Theorem 2 guarantees that every convex 
polyhedron has at least one valid clamp. To find such a clamp, we rely on Brown's technique [5] 
to compute all antipodal pairs of features. We briefly summarize this technique. Given a convex 
polyhedron tangent to the z = 0 plane with no vertical faces (such an orientation can always be 
found), the first step is to partition the faces into those whose outward normals have a positive z- 
component (the upper set) and those whose outward normals have a negative z-component (the lower 
set). This division has the property that any antipodal pair of features must have one plane of support 
tangent to the upper set and one plane of support tangent to the lower set. 

A feature U (face, vertex, edge) in the upper set is antipodal to a feature L in the lower set exactly 
when U and L have supporting planes with the same slope. The upper and lower sets are transformed 
to upper and lower convex subdivisions, where each feature of a subdivision corresponds to the slopes 
of planes supporting a given feature of the polyhedron. We describe the computation of the upper 
subdivision; the lower is symmetric. Each supporting plane z --- ax + by + c is mapped to the point 
(a, b) E ~2. A face of the upper set maps to a vertex of the upper subdivision since a face has only one 
plane of support. An edge adjacent to two faces in the upper set is transformed to an edge between the 
two vertices in the upper subdivision representing the transformed faces. An edge adjacent to a face 
in the upper set and a face in the lower set is transformed to an infinite ray in the upper subdivision. 
This ray emanates from the vertex representing the upper face and is directed away from the point 
representing the lower face (see Fig. 13). The vertices of the upper set map to faces in the upper 
subdivision. The faces of the subdivisions need not be computed explicitly, since once the vertices 
and edges are computed, the faces are represented implicitly. 
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Fig. 14. The subdivisions corresponding to the transformed upper and lower sets of facets. 

Consider the overlay of the upper and lower subdivisions. A vertex f of one subdivision that lies 
in a face v of the other corresponds to a vertex-face antipodal pair of features because f corresponds 
to a face and v corresponds to a verteX. The other types of antipodal pairs similarly correspond to 
features of the overlay (see Fig. 14). In particular each of the antipodal pairs that can provide a clamp 
will be a vertex of the overlay. Therefore to generate all valid clamps, we need only consider the 
vertices of the overlay. From the overlay we can tell if the antipodal pair is of the appropriate type; 
by testing directly in the primal space, we can tell if the projection conditions of Definition 1 are met. 
Theorem 2 guarantees that at least one pair will be valid. 

Theorem 3. Every n-vertex convex polyhedron is clampable and all clamping positions can be com- 
puted in O(n + k) time where k is the number of antipodal pairs of features. 

Proof. We have outlined an algorithm whose correctness follows from Theorem 2 and the discussion 
above. We analyze the complexity of the algorithm below. Throughout this discussion, n is the number 
of vertices in the polyhedron and k is the number of antipodal pairs of features. 

Computing the upper and lower subdivisions can be achieved in O(n) time using the algorithm of 
Brown [5]. The two subdivisions can be overlayed in O(n + k) using Guibas and Seidel's algorithm 
[10]. Any edge--edge antipodal pair can be checked for validity in constant time, so total time spent 
checking edge-edge pairs is O(k). Every other possibly valid antipodal pair contains at least one facet. 
Checking a face-face antipodal pair amounts to intersecting two convex polygons, which can be done 
in O(e) time,where e is the number of edges in the two faces [14,20]. Antipodal pairs involving a 
face and a vertex or edge (i.e., as part of a second face) can be checked naively in O(e) time, where 
e is the complexity of the face. We charge the work checking antipodal pairs involving faces to the 
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edges of those faces. Since each face occurs in exactly one antipodal pair, and each edge occurs in 
exactly two faces, the total amount of work checking this second class of antipodal pairs is O(n) by 
Euler's formula. D 

4. Conclusions 

We addressed the problem of clamping a three dimensional object using parallel jaw grippers 
consisting of a pair of parallel rectangular plates. We defined a physical model of what constitutes a 
secure  grip by the grippers. We then provided a geometric interpretation of this model and subsequently 
showed that all convex polyhedra, orthogonal polyhedra and terrain polyhedra are clampable, and all 
simple polyhedra are partially clampable under this model. We also noted that orthogonal polygons as 
well as terrain polygons are clampable. We provided a linear time algorithm for determining a clamp 
on orthogonal polyhedra and terrain polyhedra and provided an O(n + k) time algorithm (where n 
is the number of vertices and k the number of antipodal pairs of features of the polyhedron) for 
determining all clamps on a convex polyhedron. 

Since there may be J'2(n 2) antipodal pairs, the algorithm here has worst case performance O(n2) .  

This is open to improvement in two ways. It would be desirable to have an algorithm sensitive to 
the total number of valid clamps, rather than the number of antipodal pairs; the existence of such 
an algorithm is an open problem. On the other hand, if only a single clamp is desired, then it is 
possible to obtain a better worst case upper bound. Chazelle et al. [7] gave an O(n 8/5+c) algorithm for 
computing the width of a set of points in 3-space. Recent work by Agarwal and Sharir [1] provides an 
O(n 3/2+~) randomized algorithm for the same problem. Both of these algorithms can be modified to 
return the antipodal pair defining the width, rather than just the numerical value. They both, however, 
use sophisticated theoretical techniques whose practicality is unclear. It remains open whether there is 
a simple o(n 2) algorithm to find a single clamp of a convex polyhedron. 

In this paper we restricted ourselves to secure grips generated by contact points in the interior of the 
grippers. Such grips are not possible for all polyhedra; for sufficiently small grippers, the polyhedron 
shown in Fig. 12 does not admit a clamp satisfying Definition 1 (and yet it does admit a stable grip). 
On the other hand, allowing clamps that rely on contact with the edge of the grippers requires a more 
sophisticated approach to analyzing the stability of a grip, as illustrated in Fig. 6. 
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