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complexity of his algorithm is considerable. While he did not provide a complexity analysis, it is
obvious from Fig. 1 that only the step for findingC (which is then fed into PROCEDURE CNN to
take the place ofD) already takes O(n3) time, wheren is the size ofD. Forn = 100,000 as in OCR
applications, this is not feasible. Furthermore, Tomek was not aware that he had re-discovered, in
the definition of subsetC, the idea ofGabriel neighbors well known in the biological sciences
[GS69]. Given a set of pointsD, a pair(x,y) in D is called aGabriel pair if all the remaining points
in D lie outside the circle whose diameter is determined by (x,y). The reader can easily verify that
this definition is equivalent to that in Fig. 1. In addition, if a Gabriel pair is connected by an edge,
then the (now well known) Gabriel graph is obtained [MS80], [JT92] for which an O(n log n) time
algorithm in the plane is now known and for which efficient expected time algorithms now exist
in all dimensions using Voronoi diagrams [AB83], [Au91] or heuristics [TBP84]. The difference
between the (complete) Gabriel graph ofD and that computed in Fig. 1 is that in the complete
Gabriel graph all pairs inD are candidates whereas in Fig. 1 only pairs that belong to different
classes are included inC. More recently, a condensing scheme based on computing the complete
Gabriel graph ofG was proposed in [TBP84] where data points that have the property that all their
Gabriel neighbors belong to one and the same class are then deleted fromD to yield the final con-
densed setE. Note that this procedure is equivalent to using the initial subsetC defined by Tomek
as thefinal condensed setE, and doing away with CNN altogether. Whereas the algorithm of
Tomek runs in at least O(n3) time, the algorithm in [TBP84] runs in time closer to O(n2). For more
information concerning the efficient computation of other proximity graphs such as the relative
neighborhood graph the reader is referred to [JT92].
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works in the same manner as CNN but instead of moving toE data points from the completeD,
only data points fromC are used. Tomek then describes an algorithm for computingC in the form
of a FORTRAN IV flow chart which is duplicated in Fig. 1.

Tomek then states the followingtraining-set-consistency theorem for which he includes an
induction “proof” in the Appendix.

Theorem: All points in D are correctly classified by the NN rule using subsetC.

3. The Counter-Example

We now show that the above claimed theorem is not valid. Consider a setD consisting of
six data points distributed as in Fig. 2. Let {p1, p2, p3} denote points from class 1 and {q1, q2, q3}
denote points from class 2. The points are shown with their correspondingx andy coordinates.
Now consider the algorithm of Fig. 1 executing on this setD. The only pair of points (pi, qj) which
satisfies both distance criteria tested in the innermost loops in Fig. 1, is (p3, q3) and hence the set
C = {p3, q3}. Now consider howC classifiesD using the nearest neighbor (NN) rule. It is clear
from the distance relations that both p1and q1 are miss-classified. Therefore subsetC is nottrain-
ing-set consistent. The counter-example in Fig. 2 can be easily extended to hold for any number of
data points greater than six by adding additional points on both ends beyond p1 with y-coordinate
equal -1 and beyond q1 with y-coordinate equal +1. Furthermore, in this way the resulting proba-
bility of error in classifyingD with C can be as high as desired.

4. Concluding Remarks

Training-set consistency not with standing, Tomek’s experiments demonstrated that in
practice the modification of CNN may work better than CNN because fewer data points were kept
and they more closely approximated the boundary of the NN-rule. However, the computational

q3(0,-1)

Fig. 2: A counter-example to Tomek’s consistency theorem.

p1(-20,-1)

p2(-10,+2)

p3(0,+1)

q2(10,-2)

q1(20,+1)
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2

DO 4 I=1,N

DO 3 J=1,M

Z=0.5(X(I) + Y(J))

DO 1 I1=1,N

DIST(X(I1),Z) ≤ DIST(X(I),Z)

1

3

4

DO 2 I1=1,M

DIST(Y(I1),Z) ≤ DIST(X(I),Z)

C = C ∪   {X(I),Y(J)}

END

NOYES

NOYES

Fig. 1: Flowchart for obtaining C which is equal to the null
set at the beginning. It is assumed X(i), i=1,...,N and Y(j),
j=1,...,M are the data points in D from classes 1 and 2, re-
spectively.
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is a simple modification of the latter. To simplify notationand for ease of comparison, from here
on we adopt Tomek’s notation. Therefore let D denote the original data set {X,Θ} and E the re-
sulting condensed set {X,Θ} E. The basic idea is to pick an arbitrary point fromD and place it in
an originally empty set E. Then the remaining points inD are classified by the NN-rule usingE
and those that are classified incorrectly are added toE. This procedure is iterated until no more data
points are transferred fromD to E. The justification for the method is that if a point is miss-classi-
fied it probably lies close to the decision boundary and therefore should be kept. The following is
Tomek’s description of Hart’s CNN rule. It should be noted that this pseudo-code description did
not appear in Hart’s paper where an English version is described. Furthermore, there appears to be
a typographical error in Tomek’s description. To correspond with Hart’s CNN the last statement
should readgo to (c) and notgo to (b).

PROCEDURE CNN

begin

(a) pass← 1,

(b) choosex ∈ D randomly,D(1) = D - {x}, E = {x},

(c) D(pass +1) =∅, count← 0,

(d) choosex ∈ D(pass) randomly, classifyx by the NN-rule usingE,

(e) if classification in (d) is correct,

then D(pass +1) =D(pass +1)∪ x,

else E = E ∪ x, count← count + 1,

(f) D(pass) =D(pass) - {x},

(g) if D(pass)≠ ∅ go to (d),

(h) if count = 0

then Exit

else pass← pass + 1,go to (b)

end

2. Tomek’s Modified Condensed Nearest Neighbor Rule

Tomek argues that CNN keeps too many points that are not near the decision boundary be-
cause of its arbitrary initialization step. In order to combat this he proposes as his second modifi-
cation of CNN a preliminary pass ofD to select a special subset ofD calledC. Then his method
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tain a probability of error as close to optimal as desired ifk is chosen appropriately. In proving the
above result Cover and Hart [CH67] originally invoked some restrictions on the underlying distri-
butions but more recently Devroye [De81] and Stone [St77] proved the above results forall distri-
butions. These strong performance bounds, together with the transparent simplicity of the rule,
make it very attractive. However, the apparent (but misguided) necessity to store all the data
{ X,Θ} and the resulting excessive computational requirements, have unjustly discouraged many
researchers from using the rule in practice.

     In order to combat the storage problem, and resulting computation, many researchers,
starting with Hart [Ha68], proposed schemes for “condensing” the original data {X,Θ} (also re-
ferred to in the literature as “reducing,” “thinning,” “editing,” “pre-processing” and “prototype se-
lection”) so that fewer feature vectors need be stored. We should point out that more recently a
more standardized terminology is being applied to this type of operation. For example, Devijver
and Kittler [DK82] make a distinction between, on the one hand, eliminating outliers and overlap-
ping prototypes in an attempt to improve the classification error and, on the other hand, recovering
the nearest neighbor decision boundaries with an ideally minimal subset of prototypes. The former
they callediting and the lattercondensing.

Denote the condensed subset of {X,Θ} by { X,Θ} E. At least a dozen other examples of con-
densing schemes have been proposed in the literature[Ri75], [To76a], [To76b], [Sw72], [GK79],
[FP70], [Ul74], [Ga72], [Ch74], [FM84]. All these techniques have several weaknesses in com-
mon. For one, they aresequential in nature and the resulting {X,Θ} E is a function of theorder in
which {X,Θ} is processed. Secondly they all attempt to obtain a condensed set that will determine
only approximately the original decision boundary inRd that is determined by {X,Θ}. To this end
they use heuristics which often complicate the algorithms, in some cases requiring a great deal of
computation if a minimal-size condensed set is required, and generally result in rather involved
procedures that are very difficult to analyze theoretically. Furthermore, it has been shown that ob-
taining minimal size condensed sets with some of these algorithms is in fact NP-complete [Wi92].
While some of the schemes [Ha68] result in a condensed set that istraining-set consistent (i.e.,
{ X,Θ} E classifies all objects in {X,Θ} correctly), none of the above yield a condensed set which
is decision-boundary consistent (i.e., {X,Θ} E defines precisely the same decision boundary inRd

as {X,Θ}). Thus with the above condensing schemes we have not only the disconcerting fact that
{ X,Θ} E does not implement the originally intended decision boundary, but we do not even know
the relationship that exists, if any, between the resulting {X,Θ} E and one that is decision-boundary
consistent. Finally in 1984 an condensing scheme based on the Voronoi diagram of {X,Θ} was
discovered that was bothtraining-set consistent anddecision-boundary consistent [TBP84]. We
should point out here that although the Voronoi diagrams used in [TBP84] were based on the Eu-
clidean metric, this is not an inherent limitation of Voronoi-based condensing schemes. Indeed, not
only can Voronoi diagrams with arbitrary Minkowski metrics be constructed [Au91] but with La-
guerre metrics [IIM85] and even more abstract measures [Au91], [KL87].

Before describing Tomek’s procedure we outline Hart’s CNN rule since the former method

Pe Pe NN( ) Pe 2 M
Pe

M 1–
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 A Counter-Example to Tomek’s Consistency Theorem for a
Condensed Nearest Neighbor Decision Rule*

Godfried T. Toussaint

School of Computer Science
McGill University

Montreal, Canada H3A 2A7

Abstract

The condensed nearest neighbor rule (CNN) was proposed by Hart [Ha68] as a
method to reduce the storage requirements of the original data setD for the efficient
implementation of the nearest neighbor decision rule in pattern classification prob-
lems. Tomek [To76a] suggested two modifications of CNN in order to improve its
performance. As a first step in Tomek’s second method he computes a subsetC of
D, for subsequent use in CNN, and claims thatC is training-set-consistent, i.e., that
all data points inD are correctly classified by the nearest neighbor rule usingC. In
this note we provide a counter-example to this claim. We also analyze Tomek’s al-
gorithm in the context of more recent graph-theoretical condensing schemes.

1. Introduction

In the non-parametric classification problem we have available a set ofn feature vectors
taken from a collected data set ofn objects (patterns) denoted by {X,Θ} = {( X1,θ1), (X2,θ2),...,
(Xn,θn)}, whereXi andθi denote, respectively, the feature vector on theith object and the class
label of the ith object. The labelsθi are assumed to be correct and are taken from the integers
{1,2,...,M}, i.e., the patterns may belong to one ofM classes. One of the most attractive non-para-
metric decision rules is the so-callednearest-neighbor rule (NN-rule) [CH67], [De81]. LetX be a
new object (feature vector) to be classified and letXj

*∈{ X1, X2,..., Xn} be the feature vector closest
to X, where closeness is measured by, say, the Euclidean distance betweenX andXj

*  in Rd. The
nearest neighbor decision rule classifies the unknown objectX as belonging to classθj

* .

Let Pe
n (NN) = Pr{ θ ≠ θj

*} denote the resulting probability of misclassification (error),
whereθ is the true class ofX, and letPe (NN) denote the limit of Pe

n (NN) asn approaches infinity.
It has been shown by Cover and Hart [CH67] that asn goes to infinity the asymptotic nearest neigh-
bor error is bounded in terms of the optimal Bayes errorPe by:

Therefore the asymptotic probability of error of the nearest neighbor rule is close to opti-
mal. Furthermore, with a suitable modification of theNN-rule (the so-calledk-NN-rule) we can ob-

* This research was supported by grants NSERC-OGP0009293 and FCAR-93ER0291.


