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Abstract ; fﬁq
Sharp lower bounds are derived for the P (nl, ™) = /hl Ty / /P(X/Cl) P(X/Cz) dx
divergence between two distributions and the probabil-
ities of misclassification of three decision rules. = [ P(X) V?(Cl/x) P(Cz/x) dx
The three decision rules considered are the optimal
Bayes rule, the nearest neighbour rule, and the "pro- =/ BX) o(X) dx, )
portional prediction" randomized decision rule. It is and wlP(X/Cl)
shown that the randomized rule yields a probability of  J(T1»Tp) = / [MP(X/C)) - m,P(X/C,)] log m,P&/C,) ¥
misclassification equal to the asymptotic nearest P(C. /X)
neighbour error rate. The bound between the Bayes = f P(X) [P(CI/X) - P(CZ/X] log ??61727 ax
error rate and the divergence is more general than the 2
= [ P(X) J(X) dX. (%)

Kullback bound and, unlike the latter, is distribution
free. The bounds are used to obtain sharp inequalities
between measures of probabilistic dependence between
features and classes in the multi-class pattern recog-
nition problem. The bounds lead to sharp inequalities
between the divergence and various information and
Finally,

the divergence is related to the least-mean-square-

distance measures found in the literature.
error design criterion in pattern recognition.

1. Introduction

Consider the two-category pattern class-
ification problem. Let P(X/Ci) denote the class-con-
ditional probability density function of the feature
1 i=1,2. The

Bhattacharyya coefficient and the divergence are def-

vextor X conditioned on the class C

ined, respectively, by

o = J JEIC) P/, dx e

and P(X/C,)
J =17 [P(X/Cl) - P(X/Cé)] log §T;ﬂ?3' dXx. (2)
£, 2

These measures are well known in the pattern recog-
nition literature [1] and are useful for feature sel-
ection when the underlying distributions are Gaussian
because they are much easier to evaluate than the error

probability.
1

Let class Ci

T i=1,2, ﬂl + T, = 1.

general measures than (1) and (2) above, as follows:

occur with a priori probability

It is useful to define more

It follows that p(1/2,1/2) =p/2 and J(1/2,1/2)=3/2. In
(3) and (4) P(X) is the mixture distribution and is
given by
P(X) = P(X/C;) my + P(X/Cy) m, .

In this paper, the divergence is related to the prob-
abilities of misclassification of three well known dec-—
ision rules. These relationships are important when
one would like to know what performance can be expect-
ed from a decision rule when features have been selec-
ted using the divergence. The first decision rule is
the optimal Bayes rule. Given a feature vector X from
some unknown pattern P, P is classified as belonging
to class c, if P(Ci/X) > P(Cj[x) , 1=1,2, i#j. This
rule gives the minimum possible probability of mis-
classification [2] which is given by

Pe =/ min [ P(X/Ci) LA ] dx , i=1,2

= [ P(X) min [ P(cllx), P(czlx) ] dx

=/ P(X) P (X) dX . (5)
The second decision rule considered here is the near-
est neighbour rule ( NN-rule). Let {X,0} =

{xl,el; X5,005 oee ; XN,ON} be the set of N pattern

samples available, where Xi and O, denote, respectiv-

i
ely, the feature vector or measurement information and

the label or classification information of the ith
It is assumed that each Gi associated
with Xi is the correct label, i.e., the pattern

pattern sample.

samples have been correctly pre-classified. Let
(xn,en) € {X,0} to be the sample nearest to the un=

known X. P is then classified as belonging to the




class associﬁQed with the label © . Cover and Hart [3]
have shown that as N + » the asymptotic nearest neigh-
bour error rate, denoted by R, is given by

R S [2P(X/C1) nl P(X/CZ) ﬂz / P(X)] dX
TP (X) [ZP(CI/X) P(CZ/X] dx

SP(X) R(X) dX . (6)

The third decision rule under investigation is the
randomized decision rule. Let the class-conditional
distributions be known as in the deterministic Bayes
rule. Given a feature vector X from some unknown
pattern P, P is classified as belonging to Class Ci’
i=1,2, by a flip of a biased coin which indicates Ci
with probability P(Ci/X). This type of decision rule
tends to produce a distribution of classifications more
similar to the original distribution than does the
deterministic Bayes rule and is also known as proport-
ional prediction [4]. The probability of misclass-
ification using this rule, denoted by R for reasons
that will become épparent, can be derived as follows,
For any given value of X, C1 occurs with probability
P(Cl/X) and it is decided to belong to class C2 with
probability 1 - P(CI/X) .
probability P(CZ/X) and it is decided to belong to

class C; with probability 1- P(CZ/X) . Hence, for a

Similarly, C2 occurs with

given value of X the resulting probability of misclass-
ification is given by

R(X) = P(Cy)/X) [ 1 - P(Cy/X) 1+ P(C;/X) [1-P(C,/X)]
ZP(Cl/X) P(CZ/X) ¢))
Taking the expected value of (7) with respect to P(X)
yields . ’

R=/P(X) R(X) dX, (8)
which is the same as the asymptotic nearest neighbour
error rate of (6). This equivalence between the NN-
rule and the proportional prediction randomized rule
( PPR-rule ) has not made its appearance in the liter-
ature and provides added insight into the deterministic
NN-rule.

boundary into the region for Class Ci the NN-rule will

When an unknown X is far from the decision

almost always choose class Ci unless a maverick is near
X. In the PPR-rule mavericks are explained by the fact
that P(Ci/X) is hardly ever equal to one. On the other
hand, when X lies around the decision boundary it is
likely to have nearest neighbours of either class. In
terms of the PPR-rule one chooses Ci with probability
P(Ci/X) which is close to 0.5 when X is close to the

decision boundary.

In this paper a generalized version of the
inequality of Hoeffding and Wolfowitz [5] is derived.
Using this inequality lower bounds are derived for Pe

and R in terms of J. It is shown that the bounds.for

28

Pe are tighter than existing bounds. In addition,
sharper lower bounds are derived for the divergence J
in terms of Pe and R, Their relation to the Kullback

bound is discussed. The bounds are applied to dependT
ence measures between features and classes, equivocat-
ion measures, and distance measures found in the

literature. The divergence is finally also related to

the least-mean-square-error design criterion.

2. An Inequality Between J(wl,nz) and,p(ﬂl,nz)

The divergence between two distributions
occurring with a priofi probabilities ™ and T, can

be written as
P(X/Cz) T

P(X/Cl) 1

P(X/C )
1’ "1 }
PIC) 7, ®

3
N

J( L n2) = -mE { log

-7, E { log

2
where Ei denotes expected value with respect to P(X/CQ.
Since log x is a convex upward function (f}), Jensen's

inequality applied to (9) gives

‘ \ . P@X/cy) T,
J( T "2) 2 -2 L log El{ 5?27617—;1
P(X/Cl) ™
-2 Ty log E2 { f?i7€;7_F; } o,

which, in turn, yields
S .
JC s ) 2 m log [ of Tyamy)/ ]
=2 m, log [ o( "1’"2)/ LOY (10)
Expanding (10) and recombining terms yields the desired
result given by

J( s "2) 2 -2 [ H(m) + log o( T "2) 1, (11)
where H(7m) is the entropy function given by
H(m) = - m log =T, log T, . 12)
When n= T, = 1/2, H( m ) = log 2 and (11) reduces
to
J 2- 4logop (13)

which is a well known inequality due to Hoeffding and
Wolfowitz [5]. Hence (11) is a generalization of (13)
to take into account the a priori probabilities.

3. Lower Bounds for R and J

Although there exists a lower bound on R(X)
in terms of J(X) no bounds are available, in the
literature, between R and J. Horibe [6] showed that

2

Rz.z[p("]_:"z)]:

from which it follows that

log o "1’"2) < log R/2 . (14)

Substituting (14) into (11) yields




R > exp [ -2 H(") | J( “19 "2) ] (15)
For = = 1/2, (15) reduces to
R > (1/2) exp [-3/21, (16)
where the equality holds for both J=o0 and J== .
Chitti Babu [7] showed that
R(X) 2 (1/2) [1-3 (X/2] . an

Taking expected values of both sides of (17) yields a

second lower bound on R in terms of J as shown below.

R> @2)I[1- J(“ls T12)/2 1 18)
For T, =Ty =1/2, (18) reduces to
R 2 1/2-3/8, 19

where the equality holds when J=o. Both (16) and (19)
are illustrated in Fig. 1. It is observed that, for J
< 3.2, (19) is the sharper bound. On the other hand,
for J 2 2, (16) is sharper.
terms of R that is sharper than both (16) and (19) is

given in (20) and (21).

J(my, 1) 2 VIR log Il +/1- 2R \ (20)

A lower bound on J in

1- VI-2R

For ™= m, = 1/2 , (20) reduces to

2

322 /I-=® log[l-—t—————— '1'”‘] (21)
1-/I- =

These bounds follow from a result in section 4 and,
hence, their derivation is deferred to that section.
Inequality (21) is also illustrated in Fig. 1.
Although (21) gives the sharpest inequality it has the
disadvantage that it cannot be solved for R as a
function of J, which is a more useful form since J is
what is to be computed explicitly rather than R. For a
proof that (21) is sharper than both (16) and (19) see
Appendix A.

It should be pointed out that the bounds given
by (15), (16), (18), (19), (20) and (21) are not
important from the practical point of view when R is
interpreted as the asymptotic nearest-neighbour error
rate because we want to compute J only for the case of
Gaussian distributions - a situation in which we would
not use the nearest-neighbour rule. However, the
bounds are useful when R is interpreted as the error
rate of the proportional—prediction randomized decision
rule - a parametric rule which has knowledge of the
underlying distributions. From the theoretical point
of view these bounds are very important and lead to

some of the results in sections 7 - 9.

4. Lower Bounds for Pe and J

There exists in the literature a lower bound
on P in terms of J. It appears to have been derived

first by Kailath [8] and has since appeared in a

P
number of papers on feature selection and texts on
pattern recognition [9]. It is given by
B, > (/4) exp [-3/2]
where the equality holds of J = = .

(22)
This bound is
illustrated in Fig. 2 where it is seen that it is a

loose bound.

Cover and Hart [3] have shown that

R g 2° (1-B) (23)
and, hence, that
R £ 2Pe . (24)
Substituting (24) into (15) yields
Pe > exp [-2H(T®) - J( T ﬂz) ] .(25)

For m =m, = 1/2 , (25) reduces to (22) and, hence,

(25) can be considered as a generalization of Kailath's

bound. Similarly, substituting (24) into (18) yields
P, 2 (/&) [1-3Cm, /2], (26)
For m, =T, = 1/2, (26) reduces to
P, 2 1/4 - J/16 , 27
which is illustrated in Fig. 2. For J > 4 it is use-

less, but for J g% 3,2 it is sharper than Kailath's
bound and, hance, improves the latter when used in con-

junction with it.

Tighter bounds than (25) and (26) can be

obtained by using (23) rather than (24).
(23) into (15) yields

Pe (1- Pe ) > exp [ -2 H(m) - J(rl, ﬂz) ] .

Substituting

(28)

Solving (28) for P, yields

P, 2 (1/2) - (1/2) V1-4 exp[-2 H(m) - J(nl,ﬂz)] .
(29)

For m,, = m, = 1/2 , (29) reduces to

1’ 2
P, 2 (1/2) - (1/2) /1 - exp (-3/2) (30)

where the equality holds for both J=0 and J== .
Similarly, substituting (23) into (18) and solving for
Pe yields

Pe 2 /2) - ¢ J( 1"19 '“2)/8 s (31)
which for equal a priori probabilities reduces to
p, 2 /2 -/ T (32)

Bounds (30) and
(32) are also {1lustrated in Fig. 2 which shows that
(32) is sharper than (30) for J < 3.2 .

where the equality holds when Jg0.

A lower bound on J in terms of Pe which is
sharper than all the above bounds can be derived as

follows. From (4) it follows that

P(C /x)
J(x) = [ B(Cy /%) = B(C,/X ] log 515—727 (33)

+ 29




Also, from (5) it follows that
P (X) = min [ P(C;/X), P(C,/X) 1. (34)

The crucial step in the derivation of the bound is the
realization that, since J(X) is symmetrical with
respect to P(Cllx) and P(CZ/X), it can be expressed in
terms of Pe(x) as

I® = [28,(0 -11

P_(X)

e
log [l — Pe(X)] . (35)
Now consider the function

f(x) = (2x-1) log ( x/1-x))
in the interval 0 < x $ 1/2. The first derivative
of f(x) witﬁ respect to x is given by
df(x) = 2x-1 + 2x-1 + 2 log (x/(1-x)) . (36)

dx 1-x X

The second derivative is given by
d°f(x) =
dx2 x2 x & Ad-x

1-2x + 4 + 4 - 1-2x
-0

37)

It can easily be shown that (37) is non negative.
Hence f(x) and (35) are convex downward LJ functions.
For a convex downward function Jensen's inequality is
given by

E {fx } 2
where E denotes expected value.
value of both sides of (35) with respect to P(X) and

fCE{x}) , (38)
Taking the expected

using (38) yields the desired bound given by
J(my M) 2 (2P, -1) log [P /(-P) 1. (39)
For equal a priori probabilities (39) reduces to
J z2(2p,-1) log [P /Q-R) I, (40)

where the equality holds for both P =0 and Pe=l/2. As
illustrated in Fig. 2, (40) is the sharpest imequality
between J and Pe but has the disaa;antage that it can-
not be solved for Pe as a function of J. For a proof

that (40) is sharper than (30) and (32) see Appendix B.

From (6) it follows that

R(X) = 2 P(Cy/X) P(C,y/X) (41)
which can be written as
R(X) = 2 Pe(X) [1- Pe(X) I (42)

where Pe(X) is given by (34). Solving the Pe(X) yields

P (X) = (1/2) - /(76 - RO/ . (43)
It can easily be shown that (43) is a convex downward
function of R(X).
to P(X), of both sides of (43) yields, using Jensen's

Taking expected values, with respect

inequality,

P, 2 (1/2) - / (/4) - R/2 . (44)
Substituting (44) into (39) yields (20).

5. Relation to Kullback Bounds

The Kullback-Liebler numbers [10] are given
by iz

P(chl)
I(1,2) = / P(X/C;) log FOIC) dx (45)
and .
P(X/C,)
1(2,1) =/ P(X/CZ) log PE/O) ax . (46)
1

Let Pei denote the probability of misclassification
given class Ci, i=1,2, where Pe =m Pel + Ty Pe2 .
The Kullback bounds are given by [8], [10], [1l],

I(1,2) 2 P log [P,/ Q-P,) 1 + (1-P_;) log

[ P /P, 1, 7)
and
1(2,1) 2 Pe2 log [ PeZ/(l-Pel) 1+ (1—Pe2) log

[ a-e,)/Pp] . (48)
When the distributions are such that

f. P(X/C,) a&X = [_ P(X/C,) dX (49)

%re, egoyet

where ‘&/cie (gt PR/C) > RX/CH Y,

1,3=1,2, i#j, and Qg

is the entire feature space, then Pe1=Pe2=Pe . For
example, (49) is true for Gaussian distributions with
Adding (47) and (48), sub-
stituting Pe1=Pe2=Pe’ and using the fact that
1(1,2) + I(2,1) = J, yields

o6 > 2(2Pe -1) log [ Pe/(l-Pe) ! (50)

It is nice to know

equal covariance matrices.

which is a special case of (39).
that assumption (49) is not needed and that (50)
actually holds in general.

6. Application to Dependénce Measures

Consider the M-class problem. A measure of
the dependence between features and classes can be
obtained by measuring the distance, in some sense,
between the joint probability distribution P(X,C) and
the product of the marginals P(X)P(C). Vilmansen [12]
considers various measures of probabilistic dependence
in this way and relates them to the probability of
misclassification Pe. Two measures considered in [12]
are the Kolmogorov dependence, first proposed by

Hoeffding [13] and, given by

M
D (X,0) = I, S [P(x,C;) - P(X) 1ri| dx , (51)
and the Joshi dependence, first proposed as a measure

of channel capacity, Joshi [14], and, given by

M
DJ(X,C) =5 S [P(X,Ci) - P(X) ﬂi] log
P(X,C,)
[F(_X)_-T] dx . (52)

The bounds between J and Pe , for the 2-class problem
derived in section 4, can be used to form sharp

inequalities between the above dependence measures for




the M-class problem.

It can easily be shown [15] that, for equal
a priori probabilities,

P, = (1/2) -V/4, (53)
where V is the Kolmogorov variational distance given by
v = s | P/C) - B(x/C)) | dx . (54)
Substituting (53) into (31), (32) and (40) yields,
respectively,
Vs o2 [1-em(-3/2) 1Y (55)
v s (a2 (56)
and
2+V
J > V log (ﬁ) . (57)

Realizing that DK(X,C) are distance measures between
two distributions in a continuous-discrete space of
dimensionality one greater than the dimensionality of
X, allows one to write (55)-(57), respectively, in the

following way.

) [ 2 + DK(X,C)
DJ(X,C) > DK(X,C) log mm (58)
1/2
D (X,0) = 2 {1 -exp [ - D,(X,C)/2 ] ¥ (59)
DX, s [ Dy(x,0 172 (60)

The Kolmogorov dependence DK(X,C) can also be
related to the expected divergence J which is given by
M M
1#:1 jél L "j J:l.j R (61)
where Jij is the divergence between P(X/Ci) and P(X/C
It was shown in [16] that

J

P

J = 2 DJ(X,C) . (62)

This relation supports Vilmansen's conjecture [17]
that there is a close relationship between the depend-
ence of features and classes and the distance between
‘class-conditional distributions.” Substituting (62) in-
to (58), (59) and (60) yields, respectively,

_ 2 + D (X,C)
J 2 2 Dy(X,C) log ,

7= D, (%,0) (63)
DX,C) 5 2 [1- exp(-3/4) 1M, (64)

and
D (X,0) < (72 Y72, (65)

where the equality holds when classes and features are
independent.

One measure of dependence not considered in
{12] can be developed from the asymptotic nearest
neighbour error rate R, For equal a priori
probabilities R is given by
P(X/C;) P(X/C,)

R= 1 @) T R@®UC,)

dx , (66)

which, in a sense, measures the distance between
P(X/Cl) and P(X/Cz). Hence, a new measure of

dependence can be defined as

M P(x,ci) P(X) L9
Dp(X,C) = I, J PK,C) + PO 7,

&1 X . (67)

Furthermore, from the fact that [3]

P < R < 2 Pe (1- Pe )

e < b3
using (53) and similar arguments as above, it follows
that

(1/2) = D(X,0)/4 < Dp(X,0) £ (1/2) - (1/8)

2
[ Dx,0) 17, (68)
where the equalities hold for DK(X,C) =0, i,e., when

the features and classes are independent.

7. Application to Equivocation Measures

Shannon's measure of equivocation is the most
well known and, for the 2-class problem, is given by
2

H(C/X) = = [ P(X) I, P(C,;/X) log P(C;/X) dX . (69)
Not as well known is Vajda's quadratic equivocation
[18] given by 2

QC/V= -/ PO F; B(C/X) [R(C/X) - 1] dX
2 2
& [PCCy/®]° ax . (70)
Recently, Toussaint [16], [19], [20] proposed a family

=1-7P(X)

of equivocation measures given by
2 *
M (C/0 = S P L | R/ -2 ¢ e, 0D

vhere k* = 2(k+1)/(2k+1) and k=0,1,2,... . Of
particular interest here is MO(C/X) given by

2 2

£ [PC/® - 1/21° ax . (72)
It was shown in [16] that MO(C/X) is related to the

MO(C/X) = [ P(X)

asymptotic nearest neighbour error rate by the relation

R = (1/2) - MO(C/X) . (73)
It also follows that

MO(C/X) = 1 - Q/x) (74)
aad R = QC/X) . (75)

Hence, the information measure Q(C/X), which is
obtained by approximating log x by (x~1) in Shannon's
logarithmic equivocation, is also a distance measure
( the harmonic mean between P(X,Cl) and P(X,Cz) ) as
well as the asymptotic nearest neighbour error rate,
and the probability of error of the proportional
prediction randomized decision rule. Since log x <
x-1, it follows that R is bounded above by Sﬁannon's
equivocation, i.e.,

R < H(C/X) . (76)
Substituting (74) and (75) into the bounds on R in
section 3 gives sharp inequalities between the
divergence J and the various equivocation measures.
For example, substituting (75) into (15), (18), and
(20) yields, respectively,

Z1




w
i
b
n
t

It
f1
tc
ir

St

by

QC/R) 2 2 expl - 2 B(M) = I(np, 1) 1, (D

QE/x) > (@/2) [ 1 -3¢ Tys ﬂz)/Z 1 (78)
and 1+ 1-2 Q(C/X)]

J(nl,nz) > V1-2 Q(C/X) 1log .(79)
1-/1 -2 Q(C/X)l

8. Application to Distance Measures

Ito [21] proposed a family of distance
measures, called the Q-function, given by
Qu = (1/2) - (1/2) £ B(X) [P(C1/X) = B(Cy/X) ]

*
. [ P(Cl/X) - P(Cz/x) ] n dx ’ (80)
*
where n =1/(2n+1) and n is a natural number. Of
particular interest is Q0 given by
Q = (1/2) - d/2

where

d=1B® [ P(C,/D) - B(C,/D) 17 ax . (81)
Ito [21] showed that
Qy = R » (82)
Qu = P> (83)
and
Qi S Q - (84)

Substituting these results into the lower bounds for

R relates the Q-function to the divergence.

Lissack and Fu [22] have investigated
feature selection and estimation of misclassification

using the separability measure

3, = 1 P | P(C/X) - P(C,/N) |* ox  (85)
for o« > 0 . It can easily be shown that
p, = @/2)-3/2, (86)
and
R = (1/2) - J2/2 . (87)

Hence, substituting (86) and (87) into the results of

sections 3 and 4 relates Ja to the divergence J.

Devijver [23], [24] has recently done a lot

of work on the so-called Bayesian distance given by

2
BE/X) = [P L, [RC/0 17 dx . (88)

It is obvious that

B(C/X) =1-R. (89)
Hence, using the results of section 3 yields sharp
inequalities between the Bayesian distance and the
divergence. For example, letting B denote B(C/X) ,
to simplify notation, and substituting (89) into (21)

yields —
1+/2B-1 l . 90)
1-Yy2B-1

J > 2 /2B-1 log [

9, Concluding Remarks

It has been shown that the probability of

misclassification of the proportional-prediction

randomized decision rule is equivalent to the error
rate of the deterministic nearest neighbour rule, asym-
ptotically. Previously, no bounds were available for R
and the divergence J. In this paper better lower
bounds are given for R and J. The tightest bound is
given by (21). However, for feature evaluation using
J, (16) and (19) are more useful. Letting

(1/2) exp[ -3/21 ,

L}

®
and

R, = (1/2) - 3/8 ,

the best lower bound recommended for future use is

R 2 max [51’52]0

-

Similar comments hold true for Pe. For Gaussian dis-
tributions, an upper bound on Pe in terms of J is

available and is given by [25]

P, (1/2) (J/4)'1/4 . (91)
Letting
Ly = (1/2) - (1/2) V' 1 - exp(-3/2)
and
L, = (1/2) -Q1/4) v I3 ,

from (30) and (32) , the best available lower bound to
complement (91) above is given by

i P, 2 max [ Ly L, Jou;
which is greatly superior to the previous available
bound, (22).

A final comment is in order as regards the
well known least-mean-square-error (LMSE) design
criterion [26] which has received a great deal of
attention in the pattern recognition literature.
Devijver [27] has shown that for a certain class of
risk functions the LMSE criterion is equal to R. Under
these conditions, (21) shows that minimizing the LMSE
is equivalent to maximizing a lower bound on the

divergence J.

Appendix A

Equation (19) can be written in the form
J > 41 - 2R) . (A1)

-

To show that (21) is sharper than (19) it must be
proved that

1+/1-2R

2 4(1-2R). (A2)
1-/1-2R

/2

Making use of the transformation [1-2R]1 =x, 0<x

2V/1-2R log {

<1, it must follow that
2x log [(1+x)/(1-x)]
which in turn yields
log [(1+x)/(1~-x)]

4x2 R

v

2x . (A3)

I

It is known that .
log [(1H/ @01 = 2 5 [1/(@-D] 27 a0)




for x2 < 1. Since x > 0, all terms in (A4) are
non negative and it follows that for k=1 (A4) reduces
to (A3), proving the result.
Equation (16) can be written in the form
J 2 =-21log (2R) .
To show that (21) is sharper than (16) it must hold
true that
2x log [(1+x)/(1-x) ] 2 - 2 log (1 - x2) ,
where x is as above. Making use of the transformation
x=2y-1,1/25 y & 1, it must hold true that
2(2y-1) log [y/(1~y)] 2 - 2 log [4y (1-y) ] . (A7)
Expanding (A7) and recombining terms results in
H(y,1-y) <
where H(y,1-y) is the entropy function.

(a5)

(46)

log 2 , (A8)
The maximum of
H(y,1-y) occurs for y=1/2 and is given by log 2, thus

proving the desired result.

Appendix B

Equation (30) can be written in the form

J 2 -2lg[4P (1-P )]. (B1)

To prove that (40) is sharper than (30) it must be
shown that
2 (2Pe—1) log [Pe/(l-Pe)] 2 -2 1log [4 P, (1—Pe)] R

which is of the same form as (A7), thus proving the
result,

Equation (32) can be written in the form

3z 4C1-22)% . (82)
To prove that (40) is sharper than (32) it must be
shown that
log [(1-x)/x] 2 2(1-2x) , (83)
for 0 < x < 1/2 . Using the transformation
x=1/(z+1), 1 < z < » , it must be shown that
log z 2 2[(z-1)/(z+1)] . (B4)
It is known that for z > 0
logz = 2 I [1/@eDIE-D/ @015, (as)
For z 2 1 , all terms in (B5) are non negative. Hence,

for k=1 (B5) reduces to (B4), thus proving the result.
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