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4.   Applications

Meisters’ [Me] Two-Ears Theorem was motivated by the problem of triangulating a simple
polygon. In fact Meisters suggests a greedy, but concise algorithm to achieve this goal, i.e., “find
an ear and cut it off.” Continued application of this operation to the smaller remaining polygon
yields eventually a triangulation. A naive implementation of this procedure yields an algorithm

with running time O(n3). The results presented here show that the greedy ear-cutting approach to
triangulating a simple polygon can be implemented in O(n2) time.

In [To] a new algorithm for triangulating a simple polygon is proposed that runs in time
O(n(1+t0)), t0 < n, where t0 denotes the number of triangles in the triangulation that share no edges

with the polygon. The algorithm first finds a diagonal as a starting place after which the main pro-
cedure is applied twice to the two remaining sub-polygons. The results of this note suggest a more
elegant and concise implementation of this algorithm, i.e., find an ear as an initialization step and
then apply the main procedure only once.
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(pi,pi+1,y) are empty then so is (pi-1,pi,pi+1) which is a contradiction. Suppose y lies inside of tri-

angle (pi-1,pi,pi+1). Since triangle (pi-1,pi,y) is empty, pk+1 does not lie in triangle (pi-1,pi,y).

Similarly, pk does not lie in triangle (pi,pi+1,y). Therefore there is no place for segment pkpk+1.

Case 2: Since z = pi-1, pk does not lie between rays piy and pipi-1. Similarly, pk+1 does not lie

between rays piy and pipi+1. Since pk+1 lies in the same half-plane defined by ray(pi) as pi-1 and

pk and pi+1 lie in the other there is no place for segment pkpk+1. Q.E.D.

Lemma 4: Finding a vertex pj such that (pi,pj) is a diagonal can be done in linear time.

Proof: It is clear that the construction described in the proof of Lemma 3 can be implemented to
run in linear time. Q.E.D.

3.   The Algorithm

We now describe the algorithm. The recursive function FindAnEar takes as input a good
sub-polygon and a vertex. Initially we call FindAnEar with the simple polygon P and any vertex
of P.

ALGORITHM FindAnEar (GSP,pi)

Given a good sub-polygon GSP of a polygon P and a vertex pi of GSP this algorithm reports a prop-

er ear.

1. If pi is an ear report it and exit.

2. Find a vertex pj such that (pi,pj) is a diagonal of GSP. Let GSP′ be the good sub-polygon

of GSP formed by (pi,pj). Relabel the vertices of GSP′ so that pi=p0 and pj=pk-1 (or pj
= p0 and pi = pk-1 as appropriate) where k is the number of vertices of GSP′.

3. FindAnEar(GSP′, k/2)).

END FindAnEar

The correctness of the algorithm follows from Lemmas 1, 2 and 3.

Theorem: Algorithm FindAnEar runs in O(n) time.

Proof: Clearly Step 1 can be done in time linear in the number of vertices in GSP. By Lemma 4,
Step 2 can also be done in time linear in the number of vertices in GSP. On the first two calls to
FindAnEar, GSP has O(n) vertices. Consider any subsequent call. Let k be the number of vertices
in GSP. We have i = k/2 and (p0,pk-1) the cutting edge of GSP. Consider Step 2. If 0 ≤ j ≤ i-2

then GSP′ = (pj,pj+1,...,pi). Otherwise, i+2 ≤ j ≤ k-1 and GSP′= (pi,pi+1,...,pj). In either case, GSP′
contains no more than k/2 + 1 vertices. Q.E.D.
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tersection point of ray(pi) with the boundary of P. Note that is done simply by testing each edge of

the polygon for intersection with ray(pi). Let y be the intersection point on edge (pk,pk+1). It is

clear that y must exist and that y ≠ pi-1 or pi+1. Note that the line segment (pi,y) lies entirely inside

P. Thus if y is a vertex then (pi,y) is a diagonal. Suppose y is not a vertex. Then pk+1 and pi-1 lie

in one of the half-planes defined by ray(pi) and pk and pi+1 lie in the other. We will show that if

triangle (pi,y,pk+1) does not contain a vertex pj such that (pi,pj) is a diagonal of P then triangle

(pi,y,pk) does.

Let R = {pr ∈ P such that pr lies in triangle (pi,y,pk+1), k+1 < r < i}. If R = ∅ then by the Jordan

Curve Theorem and the fact that line segment (pi,y) lies entirely inside P, the interior of triangle

(pi,y,pk+1) is empty. If pk+1 ≠ pi-1 then (pi,pk+1) is a diagonal. Otherwise let z = pi-1. If R ≠ ∅
then for all pr ∈ R compute ∠ypipr and let z be the vertex that minimizes this angle. By choice of

z, the interior of triangle (pi,y,z) is empty. Thus if z ≠ pi-1 then (pi,z) is a diagonal. Hence if no

diagonal has been found thus far then z = pi-1. Similarly define S = {ps ∈ P such that ps lies in

triangle (pi,y,pk), ι < s < k}. If S = ∅ the interior of triangle (pi,y,pk) is empty and if pk ≠ pi+1
then (pi,pk) is a diagonal. Define w analogously to z, i.e., either w = pi+1 or w is the vertex that

minimizes ∠ypips. By choice of w the interior of triangle (pi,y,w) is empty. We will show that w

≠ pi+1 and then it follows that (pi,w) is a diagonal. Recall that z = pi-1 so that triangle (pi-1,pi,y)

is empty. Assume that w = pi+1 so that triangle (pi,y,pi+1) is empty.

Case 1: pi is a convex vertex. Since pi is not an ear at least one vertex of P lies in triangle (pi-

1,pi,pi+1). Suppose y lies outside of triangle (pi-1,pi,pi+1). Since triangle (pi-1,pi,y) and triangle

y

pi

pi-1 pi+1

pk+1

pk

Figure 1. Constructing a diagonal.

ray(pi)
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the right as the edges are traversed.
A vertex pi of a simple polygon P is called an ear if the line segment (pi-1,pi+1) lies entirely

in P. We say that two ears pi and pj are non-overlapping if the interior of triangle   (pi-1,pi,pi+1)

does not intersect the interior of triangle (pj-1,pj,pj+1). Meisters [Me] has proven the following

theorem.

Two-Ears Theorem: Except for triangles every simple polygon has at least two non-overlapping
ears.

A good sub-polygon of a simple polygon P, denoted by GSP, is a sub-polygon whose
boundary differs from that of P in at most one edge. We call this edge, if it exists, the cutting edge.
A proper ear of a good sub-polygon GSP is an ear of GSP which is also an ear of P.

Lemma 1: A good sub-polygon has at least one proper ear.

Proof. Let (pi,pj) be the cutting edge of GSP. By the Two-Ears Theorem GSP has at least two non-

overlapping ears. It cannot be the case that the only ears of GSP are pi and pj since these would

overlap. Thus some other vertex of GSP is an ear and it is a proper ear. Q.E.D.

The strategy of the algorithm is as follows. Given a polygon P on n vertices, split it in O(n)
time into two sub-polygons such that one of these sub-polygons is a good sub-polygon with at most
n/2 + 1 vertices. This splitting step is the crucial step in the algorithm. Subsequently, apply the
algorithm recursively to this good sub-polygon which, by Lemma 1, is guaranteed to have a proper
ear. The worst case running time of the algorithm is given by the recurrence T(n) = cn + T(n/2 +
1), where c is a constant, which has solution T(n)∈ O(n).

We require several lemmas which concern the splitting step. The line segment joining two
non-consecutive vertices pi and pj of P is called adiagonal of P if it lies entirely inside P.

Lemma 2: A diagonal of a good sub-polygon GSP splits GSP into one good sub-polygon and one
sub-polygon that is not good.

Proof. GSP contains exactly one edge, the cutting edge, which is not an edge of P. The cutting edge
is entirely contained in one of the sub-polygons formed by the diagonal. Then the other sub-poly-
gon is a good sub-polygon since it consists of edges of P and the diagonal which becomes its cut-
ting edge. Q.E.D.

The proof of the following lemma is a generalization of Levy’s proof of the existence of
diagonals [Le].

Lemma 3: If vertex pi is not an ear then there exists a vertex pj such that (pi,pj) is a diagonal of P.

Proof: Given a vertex pi which is not an ear we will show how to construct a diagonal (pi,pj). Refer

to Figure 1. Construct a ray, ray(pi), at pi that bisects the interior of∠pi-1pipi+1. Find the first in-
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ABSTRACT

It remains as one of the major open problems in computational geometry, whether
there exists a linear-time algorithm for triangulating a simple polygon P. Yet it is
well known that a diagonal of P can easily be found in linear time. In this note we
show that an ear of P can be found in linear time. An ear is a triangle such that one
of its edges is a diagonal of P and the remaining two edges are edges of P. Applica-
tions of this result are indicated.

1.   Introduction

The triangulation of simple polygons has received much attention in the computational
geometry literature because of its many applications in such areas as pattern recognition, computer
graphics, CAD and solid modeling. Nevertheless, it remains as one of the major open problems in
computational geometry, whether there exists a linear-time algorithm for triangulating a simple
polygon P. The fastest algorithm to date is due to Tarjan & Van Wyk [TV] and runs in O(n log log
n) time, where n is the number of vertices of P. On the other hand, it is well known that several
linear-time algorithms exist for finding a single diagonal in P and most polygon triangulation al-
gorithms incorporate one of these as a subroutine [To]. Although finding a diagonal is straightfor-
ward, its simplicity is deceiving, and, as shown in [Ho], several published algorithms are in fact
incorrect. In this note we generalize this result to finding an ear. We show that an ear of P can be
found in linear time. An ear is a triangle such that one of its edges is a diagonal of P and the re-
maining two edges are edges of P. Two applications of this result are indicated.

2.   Preliminaries

A polygon P is a closed path of straight line segments. A polygon is represented by a se-
quence of vertices P = (p0,p1,...,pn-1) where pi has real-valued x,y-coordinates. We assume that

no three vertices of P are collinear. The line segments (pi,pi+1), 0 ≤ i ≤ n-1, (subscript arithmetic

taken modulo n) are the edges of P. A polygon is simple if no two nonconsecutive edges intersect.
We assume that the vertices are given in clockwise order so that the interior of the polygon lies to


