4. Conclusions

We have presented an optimal algorithm for determining the visibility of a polygon from a
given edge. In the case where a polygon is not visible from aruedgies natural to define &eak
visibility polygon V(P, uv) as the set of all points Bfvisible from at least one point om. An open
problem which is a natural extension of our work, would be to develop a linear algorithm to find
V(P, uv). Another interesting open question would be to determine a minimal set of edges from
which P is visible. It is known that in the worst case a guard may have t¢ Ri5® | locations in
order to observe amsided polygon (Chvatal [9]). A final, more general problem than that consid-
ered here is: given a polygon does there exist an edge from which the polygon is weakly visible.
The corresponding problem for strong and complete visibility can be solved in linear time by using
the kernel finding algorithm of Lee and Preparata [5]. One of the motivations for this paper relates
to the notion of “external visibility” of polygons (Toussaint [10]). Our algorithm may be used to
determine in linear time whether a polygon is externally visible.
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procedure VISIBILITY
call PREPROCESS
call RIGHTSCAN
call LEFTSCAN
for i = 1tondoif r; left of |; terminate “no visibility”;
F Pyl < P
fori=2ton-1doifr;isleftofrdor — rj;
if lj is right ofl do | — I;;
if | =p,andr =p, terminate “complete visibility”;
if | is left ofr terminate “strong visibility from”l, “to,” r;
terminate “weak visibility”;
end
It can be easily verified that VISIBILITY runs in @)(time. Thus, we may state the main re-
sult of the paper.
Theorem 3.1: The procedure VISIBILITY determines in Q(ime whetheP is weakly, strongly,
or completely visible from a given edge.

As a final point of interest, we give another characterization of visibility from an edge. Recall
from Lemma 2.4 tha® is weakly visible from uv if and only if every vertex d? is weakly visible
from uv.

Theorem 3.2: P isstrongly visible from uv if and only if for every pair of vertices i, there is a
point onuv from which they are visible.

Proof: Lety andzbe two vertices oP visible fromuv. We defind,, ry, |, r, as before. If and
z are visible from some poimt [J uv, it follows thatlyry n |,r,# L. Thus, if every pair of
verticesy, zis visible from a point i, it follows that every pair of segmentg,, I.r, has
a non-empty intersection. From Helly’s theorem [8] we have that

gn O
uvngn lreo#z0d
(k=1 U

The theorem now follows from Lemma 2.3.
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Lemma3.1: If at someiteration, RIGHTSCAN terminates in step 2), then sis not visible from
uv.

Proof: If RIGHTSCAN terminatesin step 2), then rst is aleft turn and xst is aright turn. The
situation isillustrated in Fig. 6. Suppose that sisvisible from uv, and consider any visibility
line sw from sto uv. Thisline enters the closed polygonal region bounded by H = rs [0 RC(s,
r). If v=r we have an immediate contradiction. Since the visibility line sw lies between st
and sx, w cannot lieon uv. If v £ r, then uv n H = [, and by the Jordan Curve Theorem, sw
must leave the region H. Hence, sw intersects RC(s, r), contradicting the fact that itisavisi-
bility line. Hence, sis not visible from uv, proving the lemma.

Lemma 3.2: If at some iteration, RIGHTSCAN terminated in step 4), then t is not visible from
uv.

Proof: Suppose RIGHTSCAN terminatesin step 4) with ry O uv and suppose t isvisible from a
point w [J uv. Then the line segment tw intersects the internal convex path from t to v; see
Fig. 7. Since xst is aleft turn, it follows that vertex sliesinside the polygon T = tw [ LC(t,
w). Thus, w # v, v O T, and the Jordan Curve Theorem implies that the chain RC(s, V) inter-
sects the line segment tw, contradicting the fact that t is visible from w. Thus, t is not visible
from uv.

Lemma3.3: If both RIGHTSCAN and LEFTSCAN terminate normally, and for every vertex t
of P, ryisto theright of I, then r; and |, are, respectively, the right and left intercepts of t.

Proof: Consider any vertex t of P, and assume that the conditions of the lemma hold. Let w be
any point in theinterval l;r;. We will show that wt liesinside P. Suppose that the chain RC(t,
V) crosses wt. Then the internal convex chain from t to v must cross tw. But, by construction
tr; lies to the right of tw and therefore the convex chain from t to v must cross try. Thisis a
contradiction, thus RC(t, v) does not cross tw. Similarly, the left chain LC(t, u) cannot cross
tw, and hence tw liesinside P.

On the other hand, consider any point w [ ryv with w # ry. Then by the argument of Lemma
3.2, tw crosses the convex chain fromt to v and hence RC(t, v). Thus, wis not visible from t.
Similarly, if w O ul; with w # |, then tw intersects LC(t, u) and wis not visible from t.

Lemma 3.4: If both RIGHTSCAN and LEFTSCAN terminate normally and for some vertex t of
P, ryisto the left of I;, then t isnot visible from uv.

Proof: Consider any point w [ uv. If wliesto theright of r,, then by the argument of Lemma3.2,
tw intersects the chain RC(t, v). On the other hand, if wisto theleft I;, then tw intersects the
chain LC(t, u). But w must either lie to the right of r; or to the left of |; under the conditions
of the lemma. Thus, tw intersects P and since w was arbitrary, t in not visible from uv.

We can now state an algorithm for determining edge to polygon visibility.



whiletop # 1 and rstisaright turn
dotop — top-1;s — STACK(top);
if top# 1thenr — STACK(top-1); end;
4) (Compute right intercept and test whether it lies on uv)
Computethe intercept r; of the half-line from t through s with the line through uv;
If ry O uv then terminate “no visibility”;
5) (Store t and move to next vertex)
top — top+l; STACK(top) « t;r — s;
S~ it « t+1;
iftzngoto?2.

The procedure LEFTSCAN issimilar. The correctness of the algorithm follows from the fol -
lowing four lemmas.

internal
.. convex path .-
“fromttovez




is easily seen that the vertices in reghoare visible fronv if and only if they are in sorted angular
order abouti. The same applies to regiBnwith vertex replacing vertex Lett be the intersec-

tion, if any, of the left extension o, and the boundary &. Similarly, letw be the intersection,

if any, of the right extension aiv and the boundary &. Define a new polygo@ by C = {t, u, v,

w, LC(w,t)}. Referring to Fig. 5C ={t, u, v, 4, 5, 6, 7}.C has the property that all of its vertices

lie on the same side of the line through A polygon with such a property is said to betandard

form, and our main algorithm will be designed to work on such polygons. It is easy to construct a
linear routine PREPROCESS that: 1) pRts standard form, and 2) for each verkeix regions

A andB, either computes, = |, =u orv, or determines thatis not visible fromuv. The details of

such a routine will be omitted.

The main algorithm consists of two scans of the verticés wfich is in standard form. In
the first scan we traverse the polygon freto u in a clockwise orientation, successfully comput-
ing right intercepts. If we find a verteowhose right intercept does not lie in the segrgnthen
we terminate with “no visibility.” The scan procedure uses a stack to keep track of what may be
considered an “internal” convex hull of verticeddbetweerv and the current vertex Given the
convex path betweenandv we may readily find the right intercegtby: 1) finding the vertex’
adjacent tox on the convex path tg and 2) extending the line througk to intersect the line
throughuv. If ry lies in the segmeniv we proceed to the next vertex; otherwise we terminate the
“no visibility.” The second scan is fromto v in counterclockwise orientation, in which we com-
pute the left intercepts.

We make the simplifying assumption that the verticd® afe numbered 1 toin clockwise
order aroundP, and the edgav in question is the edge joining vertexo vertex 1. The only data
structure required is a stack called STACK which can hold mgetements. Given three points

= (%, Vi), S= (%, ¥;), andt = (x, Yi), let
S=XYi - ) * Y% - X)) + VX Y%

We say thatst is aright turn if Sis negative, and thast is aleft turn if Sis positive. The
three points areollinear whenevelSis zero. We can now present the algorithm RIGHTSCAN.

procedure RIGHTSCAN
1) (Initialize)
r « STACK(1) < 1;
s « STACK(2) « 2;
t— 3;Vve 1;u« n;top « 2;
2) (See ift is contained in the convex path determined so far)
X « s1;
if rstis a left turnand xst is a right turrthen terminate “no visibility”;

3) (If rstis a right turn, backtrack the stack to make the path convex)



The above propositions suggest an algorithmic approach for determining polygonal visibili-
ty. For each vertex try to compute the right and left intercepts. If each vertex isvisible, we can use
the intercepts to test for strong and/or complete visibility. These ideas are formulated in the next
section.

3. An Algorithm for Edge-Polygon Visibility

Aswe have seen in Section 2, we can determine visibility from agiven edge uv from aknowl-
edge of theright and left intercepts of each visible vertex. In this section we show how to compute
these interceptsin O(n) time.

Thefirst step is a preprocessing step that we use to put the polygon in “standard form.” This
step ssimplifies the main algorithm, yielding an easier proof of correctness. Consider the polygon
P in Fig.5. It is clear that the vertices in region A are visible from edge uv if and only if they are
visible from vertex u. Furthermore, the right and left intercepts of such vertices are the vertex u.
We observe that if P is visible from uv in any sense, then the boundary of P can cross the line
through uv at most once to the right of v, and at most once to the left of u. When thisisthe case, it




Fig. 3.

Lemma2.3: Suppose all vertices éf are visible fromuv. P is strongly visible fronuv if and
only if

Ipafpi N ol pp 0o N gy nuv# O

Proof: If P is strongly visible fromuv, then there existswa [J uv such that every vertex éfis
visible fromw. Thus,w U |, fori =1, 2,...n and the intersection (1) is non-empty.

On the other hand, suppose (1) is true and le¢ some point in the intersection. By the re-
marks preceding Proposition 1, we need only show that every boundary g@iistw§ible
from w. Letst be any edge d®. Since botls andt are visible fromw, Lemma 2.1 implies
that the entire edgis visible fromw. Thus, the entire boundary®is visible fromw, prov-

ing the “if” part of the lemma.

The following lemma completes our characterization of edge visibility.

Lemma2.4: P is weakly visible fronuv if and only if every vertex oP is weakly visible from
uv.

Proof: The necessity of the condition is implied by the definitions. For the sufficiency, by Pro-
position 1 we need only consider a pginh the boundary d?. We will show thay is visible
from some point onv. Suppose lies on the edgg. Thensis visible from some poird [
uv andt is visible from some poirit 0 uv. There are two cases depending on whether or not
ss andtt’ intersect insidé. These cases are illustrated in Fig. 4(a) and (b).

If ss does not intersedt’, then by the argument used above, the quadrilateral must lie
insideP, and hencg is visible fromuv. In case (b), supposs intersectdt’ at q insideP. It

follows that edgefy, gs, &, ands'q, gt’, t's all lie in P. Therefore, the trianglessgt’ and sgt

lie insideP. Now extend/ throughq to a pointy’ on uv. It follows thatyy’ lies insideP, hence
y is visible fromuv.



U’ isvisiblefrom some point u” on uv. There are two cases depending on whether or not u'u’’
intersectsV'v'’, and these areillustrated in Fig. 2(a) and (b). In case (a), consider the smple
polygon T{v'’, u’, u’, y, V'}. We may assume that y does not lie on either the line segment
u'u’ or thelinesegment v'v'’, for otherwise the proposition isimmediate. It is clear that the
boundary of P cannot intersect the visibility linesv'v'’ and u'u’’. Similarly, by construction
the boundary of P cannot intersect yv or yu'. Thus, T liesinside P. Since T is apentagon with
only one reflex vertex, namely, v, it follows that y is visible from any boundary point of T,
and hencefromVv'’u’’. In case (b), suppose u'U’’ intersectsv'v'’ at g inside P. It follows that
the possibly degeneratetriangle T={u’’, q,Vv''} liesinside P. If y I T then we are done. Oth-
erwise, by construction Q = {Vv', y, u’, g} isaquadrilateral that also liesinside P. Extend y
through gto apointy’’ on edge uv. Thenyy’ liesinside P and y isvisible from uv. Sincey
wasany pointin P, the®if” part of the proposition follows. The“only if” part followstrivially
from the fact that the boundary of P is contained in P.

We will assume for convenience that the origin of our coordinate system is at u and that the
edge uv lies along the positive x-axis. Following Shamos [4], we denote by V(P, x) the visibility
polygon of x, which isthe set of all pointsin P visible from x. Between any two vertices x and y of
P there exists two chains of vertices: the left chainLC(x, y) and the right chainRC(x, y). In LC(X,
y) theinterior of P liesto theright asthe vertices are traversed from x to y, whereasin RC(x, y) the
interior of the polygon liesto the left.

Let x be any vertex of P that is visible from some point, say w, on the segment uv. We define
the right interceptr, as that point on uv farthest to the right of w that is visible from x, or equiva-
lently, from which x is visible. We define the left intercept, as that point on uv farthest to the left
of wthat isvisible from x. These definitions are illustrated in Fig. 3. Note that the possibly degen-
eratetrianglexr,l, liesinsideP. It ispossiblethat r, = vand |, = u. In fact, thiscondition is satisfied
for all vertices x if and only if P is completely visible from uv, as we now demonstrate. To avoid
boundary conditions, we definer,=r,=vandl,=1,=u.

Lemma2.1: Letstbeany edge of P, and let x be any pointin P. Then if both sand t are visible
from x, so isthe entire edge st

Proof: Consider the triangle T = {X, s, t}. By the hypothesis of the lemma, the boundary of P
does not intersect the open segments xsand xt. Since stisan edge of P, it followsthat T lies
inside P. Hence, the lemmafollows.

Lemma?2.2: Piscompletely visiblefromuy, if andonly if, for all verticesx of P, r, =vandl, = u.

Proof: If Piscompletely visible from uv, then for every vertex x of P, x must be visible from u
andv, sor, =vand ly, = u, thus proving the “only if” part of the lemma.

On the other hand, suppose for al verticesx of P, ry, = v and |, = u. Let w be any point of uv,
and let stbe any edge of P. Since both sand t are visible fromw, Lemma 2.1 impliesthat the
entire edge stis visible from w. Thus, the boundary of P, and hence P itself, is completely
visible from uv, proving the “if” part if the lemma.

The left and right intercepts are also of use in characterizing strong visibility.



2. Definitionsand Preliminary Results

Let P denote a simple planar polygon which is represented by a set of n points p4, po,..., Py
in the Euclidean plane. We assume that the points are given in clockwise order, so that the interior
of the polygon liesto the right as the boundary of the polygon istraversed. We say that aline seg-
ment lies insideP if the interior of the line segment lies in the interior of P. Similarly, a simple
polygon Q liesinside P if the interior of Q liesin the interior of P.

Two points are said to be visibleif the line segment joining them liesinside P. In this paper
we discuss visibility of P from some fixed edge uv of P. We begin by giving three natural defini-
tions of visibility from an edge.

1) P is said to be completely visiblérom an edge uv if for every z [0 P and every w 1 uv, w
and zarevisible.

2) P issaid to be strongly visiblefrom an edge uvif there existsaw [J uv such that for every
zOP,zandw arevisible.

3) P issaid to be weakly visibldrom an edge uvif for each z I P, there existsaw [ uv (de-
pending on 2) such that zand w are visible. This latter definition has appeared previously in math-
ematicsliterature[6]. In Valentine' sterminology the edge uvisa“set of visibility” of P. In[6] Val-
entine characterizes minimal sets of visibility. For additional types of external visibility of setsin
two and higher dimensions, see Buchman and Valentine [7].

These definitions areillustrated in Fig.1. Asmotivation for the definition, consider the place-
ment of aguard on edge uv, whose job isto observe the entire polygon P. If P iscompletely visible
from uyv, the guard can be positioned at any location on uv. If P is strongly visible from uv, then
there always exists at least one fixed location w on uvfrom which the guard can observe P. Findly,
with only weak visibility, it is necessary for the guard to patrol along some section of uvin order
to observe the entire polygon.

Lee and Preparata [5] have found alinear algorithm for determining the kernel of a polygon.
Their algorithm can also be used for testing both strong and complete visibility. First find the ker-
nel and then determine its intersection with the given edge uv. The algorithm given in their paper
does not appear to be useful in determining weak visibility.

We will begin by making a simplification which is intuitively satisfying. We will show that
apolygon P isvisible in any of the three senses given above if and only if the boundary of P is
visible in the corresponding sense. Thisfact follows easily from the definition in the cases of com-
plete and strong visibility.

Proposition 1 P isweakly visible from uvif and only if the boundary of P isweakly visible
from uv.

Proof: Supposethat the boundary of Pisweakly visiblefrom uv. Let y be any point intheinterior
of P. Wewill show that y is visible from some point on uv. (1)

First, extend uyto the nearest point u’ on the boundary of P. Similarly, extend vy to the near-
est point v’ on the boundary of P. By assumption, V' isvisible from some point v’ [ uvand
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Fig. 1. (&) Complete visibility. (b) Strong visibility. (c) Weak visibility.




An Optimal Algorithm for Determining the Visbility of a
Polygon from an Edge

David Avis
and
Godfried Toussaint,

ABSTRACT

In many computer applications areas such as graphics, automated cartography, image
processing, and robotics the notion of visibility among objects modeled as polygons
is arecurring theme. This paper is concerned with the visibility of asimple polygon
from one of its edges. Three natural definitions of the visibility of a polygon from an
edge are presented. The following computational problem is considered. Given an n-
sided simple polygon, isthe polygon visible from a specified edge? An O(n), and thus
optimal, algorithm is exhibited for determining edge visibility under any of the three
definitions. The paper closes with an interesting characterization of visibility and
some open problemsin this area.

Index Terms - Algorithms, computational complexity, computational geometry, com-
puter graphics, hidden line problems, image processing, robotics, simple polygon, vi-
sibility.

1. Introduction

The notion of visibility in geometric objectsis one that appearsin many applications: the hid-
den line problem of graphics[1], in image processing [2], surveillance, and control of robots [3].
Severa papers[2], [4], [5], [11], [12] have appeared concerning the problem of visibility in a po-
lygonal region from afixed point. In this paper we discussed what might be termed the “jail-house’
problem, i.e., the problem of polygonal visibility from an edge. It is convenient to imagine aguard
or robot patrolling a portion of the boundary of a polygonal region. It is natural to ask under what
circumstances the entire region can be observed. In this paper we introduce three natural defini-
tions of visibility from an edge of apolygon. Our main result isalinear algorithm for determining
whether or not a given polygon isvisible, under any of the definitions, from a given edge.
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