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of Greek mathematics. The work presented here suggests a new way of examining old constructive
mathematics and a new way for historians of mathematics and philologists to do their research.

The work presented here also has implications for education. It has already been argued that
Euclidean construction problems provide an excellent method of teaching high school students
constructive proofs of existence theorems [Av89]. The work presented here suggests that Euclid-
ean constructive geometry can be used as an ideal medium for teaching many of the most modern
concepts concerning the design and analysis of algorithms, to high school students. For easy prob-
lems the students can prove that Euclid’s constructions are valid for all possible inputs. For more
difficult problems they can search for constructions that require fewer steps. Finally, for real chal-
lenging problems they can search for constructions that require the fewest number of steps.
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tion presented also in Pedoe [Pe76].
Algorithm CO: [Compass Only version]

Input: Let A be the given point, and BC the given straight line. {Thus it is required to place
at the point A (as an extremity) a straight line equal to the given straight line BC.} See Fig.
8.2.

Begin

Sep 1. Draw a circle with center A and radius AB.

Sep 2: Draw a circle with center B and radius BA. {the two circles intersect at D and E.
Sep 3: Draw a circle with center D and radius DC.

Sep4: Draw a circle with center E and radius EC.

These two circles intersect at C and X where X is the desired reflection point of C across
the imaginary line through DE and XA is the desired length.

End

In the spirit of Proclus we invite the reader to supply the proofs of correctness of the above
two constructions.

0. Conclusions

We mention in closing that even the 20th cenfiigorithm CO pales by comparison with
Algorithm Euclid from the point of view of robustness with respect to singularities. Consider for
example the case where point A happens to lie at a location equidistant from BAdgdr@hm
Euclid executes in this case as easily as in any other since everything is well defined. Without spe-
cial flag-waving code howevélgorithm CO could crash attempting to draw a circle with radius
zero and then intersecting two circles one of which has radius zero.

One apparent difference between modern and classical computational geometry concerns
the issue of lower bounds on the complexity of geometric problems. Although Lemoine [Le02] and
others were concerned with defining primitive operations and counting the number of such opera-
tions involved in a construction they did not ever appear to have considered the question of deter-
mining the minimum number of operations required to solve a given problem under a specified
model of computation. For example, if we define 1) drawing a line and 2) drawing a circle, as the
primitive operations allowed under the straight edge and compass model of compAigten,
rithm Euclid takes nine stepglgorithm M S takes six steps whereAsgorithm CO takes only
four steps. Its non robustness not withstanding)gerithm CO optimal? In other words is four
a lower bound on this problem?Asgorithm Euclid the optimalobust algorithm? It is not diffi-
cult to argue that at least three steps are required. We conjecture that in fact four are always neces-
sary.

This research suggests that perhaps the chaotic situation described here with respect to Eu-
clid’s second proposition exists also for his other propositions involving cases and indeed for all
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straight line.

Algorithm MS: [Mirror  Symmetry
version]

Input: Let A be the given point, and
BC the given straight line. { Thusitis
required to place at the point A (asan
extremity) a straight line equal to the
given straight line BC.} SeeFig. 8.1.

Begin

Sep 1. Draw acircle with center A
and radius AB.

Fig. 8.2 Illustrating the construc-
tion with compasses only.

Sep 2: Draw acircle with center B

and radius BA.

Sep 3. Draw alineL through the intersection points D and E of the two circles produced
insteps1and 2.

Sep 4. Draw acircle with center C that intersectsline L at points F and G.
Sep 5. Draw acircle with center G and radius GC.
Sep 6: Draw acircle with center F and radius FC.

Thesetwo circlesintersect at C and H where H is the desired reflection point of C across L
and HA the desired segment.

End

Recall that in 1672 Jorg Mohr and in 1797 the Italian geometer Lorenzo Mascheroni inde-
pendently proved that any construction that can be carried out with a straight edge and a compass
can be carried out with a compass alone. The reader may wonder how on earth we can draw aline
segment of length BC with one extremity at A without using a straight edge. Strictly speaking we
cannot and therefore in constructions with compasses alone we require only that in order to draw
aline or line segment two points on the line or the two endpoints of the line segment be specified.
Such apair of pointsclearly specifiesaline or line segment, asthe case may be, in an unambiguous
manner. Thus we are actually simulating a line or line segment by two points. In this senseiit is
more appropriate to state the Mohr-Mascheroni theorem as. any construction that can be carried
out with a straight edge and a compass can be simulated with a compass alone. The above con-
struction based on the principle of mirror symmetry uses both a straight edge and a compass. It is
fitting to end this discussion by presenting a construction, also based on the mirror symmetry prin-
ciple, that uses acompass only. We present the one described in [Ho70] which isthe first construc-
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of the text.

Accordingly, this French translation cor
tains the following description &tep Jrefer to
Algorithm Euclid and Fig. 4.1] Prolongeons
DA suivant AE et BD suivant BFThis literally
means “Extend DA following AE and BD fol-
lowing BF.” Note that the first half of this state
ment (extend DA and BD) is ambiguous and re
resents a step towards agreement with the ph
ing of the texts of the 17th, 18th and 19th Centt
English texts. The complete statement is nev
theless saved by explicitly mentioning the A al
B in AE and BD, respectively. One can easily €
vision these references to A and B being dropy
during the next translation.

A literal translation of the same Gree
text y|e|ded the fO”OWing fOStep 3*Let lines F|g 8.1 |||ustrating the mirror Symmetry
AE, BF emerge outwards colinear to lines D. method for solving proposition 2.
DB.” Note that this is considerably more preci

than the French version and is in agreement with the correct algorithms discussed earlier.

In conclusion, it is ironic that in Kayas’ translation the desire to be true to the spirit of Eu-
clid leads him on the road to betray Euclid. This suggests that although literal translations may falil
miserably for poetry they may be essential for mathematics and computer science. The best remedy
however is for the translator to possess an understanding of the deep structure of the proof.

8. L ate 20th Century Algorithms

For the sake of comparison, contrast and completeness we offer in this section two alternate
modern constructions that are fundamentally different from all those considered by Euclid, Heron,
Proclus and the other Greek and subsequent commentators as well as the plethora of 19th and early
20th century text-book writers. These are based on the notiairrof symmetry.

As before let A be the given point and let BC be the desired length to be transferred so that
A is at an extremity. Without loss of generality let B be the chosen extremity and refer to Fig. 8.1.
The idea is to first construct a line L that perpendicularly bisects the segment AB and subsequently
perform a mirror symmetry transformation of the segment BC with line L as the axis of symmetry.
Note that A and C may or may not be on the same side of L depending on the particular case of the
input configuration at hand. In either case we reflect C about L to obtain our desired result. Note
also that Euclid’s construction does not necessarily yield a transferred length that is symmetrical
about L.

Proposition 2. To place at a given poiifas an extremifya straight line equal to a given
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but the proofs are very often replaced by instructions for proofs or outlines of proofs.”
Adelard of Bath writeStep 3as follows:
“Protrahanturque linee DA et DB directe usque ad L et G.”

His actual letters are different and are here substituted to match those of Fig. 4.1 for ease
of discussion. As a minor aside, there is an error (probably typographic?) in this manuscript, i.e.,
L and G are actually reversed. More seriously, E and F are nonexistent, as are the references to pro-
ducing the lines AF and BE, and the literal translation reads “Draw forward (extend) lines DA and
DB until L and G.” Here we see the sentence so similar to the one that pervades the 17th, 18th and
19th Century English textbooks that reads “produce lines DA and DB until L and G.” Thus one
possibility is that Adelard of Bath is responsible for introducing the error. However, it is known
that in the 4th Century Theon of Alexandria’s recension oEtementsinvolved altering the lan-
guage in some places and sometimes supplying alternative proofs. Furthermore, according to
Busard [Bu83] all the manuscripts of tRementknown until the 19th Century were derived from
Theon’s text. Therefore it is possible that Theon is the culprit here. On the other hand Adelard of
Bath translated his manuscript from the Al-Hajjaj manuscript in Arabic. Therefore one may won-
der if Al-Hajjaj is to blame. However it is generally considered that the Arabic manuscripts are
quite trustworthy and other Latin translations of Arabic manuscripts, such as that of Gerard of Cre-
mona have a correct algorithm. Therefore the finger seems to point in the direction of Adelard of
Bath.

7. The Problems of Language Tranglation

There are at least two ways in which a correct algorithm may, after some historical evolu-
tion, become an incorrect algorithm. A mathematician such as Theon of Alexandria, in writing a
textbook may offer an alternate algorithm and if he does not understand the deep structure of the
algorithm may substitute an incorrect one in its place. Another more likely event is that a translator
(who may not even understand the shallow structure of the algorithm, or who may be totally de-
pendent on the figure to make sense out of it) inadvertently gives an incorrect translated algorithm.
It seems quite probable that a translator such as Adelard of Bath, looking at the figure, may have
thought that ppending AE in a straight line with A3 a rather clumsy way of stating thab
should be extendednd may have substituted the new phrasing without realizing that an ambiguity
has been introduced. The reader may doubt that with such simple and elementary descriptions of
algorithms as are found in Eucliddementsa translator can become a traitor. An example will
remove any doubt.

The most accurate and definitive Greek version oEleenentsthe Heiberg edition, was
translated in 1978 into French [Ka78]. The book [Ka78] contains, very conveniently, all the prop-
ositions in both Greek and French side by side. The introduction contains an interesting discussion
on the problems of translation which we paraphrase in part.

It is no doubt easier to make a literal translation but such an attitude leads to seri-
ous inconveniences for understanding the text. The linguistic differences between
Greek and French on one side and the evolution of the mathematical vocabulary on
the other are liable to lead the reader into confusion. In the hope of presenting a
directly accessible manuscript we have opted for a free translation remaining as
true as possible to the text but attaching more importance to the spirit than the letter
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the following “trick” makes the essence “jump out of the page at you.” We fix the construction in-
stead and for this fixed construction we “look” at all possible input configurations. The crucial part
of Euclid’s construction (missing in Pedoe’s algorithm [Pe76] and missed by most of Euclid’s fol-
lowers) is thecone determined by the rays DE and DF and making an angle of 60 degrees at D.
This cone ismplicitly constructed by the resulting concatenation of the equilateral triangle DAB
and the extensions constructedsigp 3 from A to F and B to E. This cone is as large as desired
and always subtends 60 degrédserefore consider such a cone as fixed in space and refer to Fig.
6.1. Now point A must always lie on one ray DF. Also line segment BC must always have its end-
point B on the other ray DE. With the compass anchored on B Euclid’s construction first marks off
a point G on BE such that BG equals BC. Then with the compass anchored on D it marks off a
point L on AF such that DL equals DG. It is clear that for all possible configurations of points A
and line segments BC the construction is valid. Variation in the distance between A and B does not
change the essence of the proof. Furthermore, all possible relative positions of segment BC with
respect to point A retain their property of cutting BE at G. It does not matter whether BC is greater
than, less than or equal to AB. Neither does it matter if C lies on AB or DB or for that matter if it
coincides with point A or D! Therefore the algorithm is well defined and executes in all possible
cases. Since in all cases DB equals DA it follows that the algorithm yields the correct solution in
all cases as well.

This then is the logic behind Euclid’s proof and, we might add that, Bertrand Russell
[Ru51] and Dunham [Du90] not withstanding, it holds without the need of a figure. One wonders
if Russell’s critique of Euclid is based on the ambiguous and/or incorrect algorithms written down
by 19th century Oxford and Cambridge trained scholars such as [Sm1879], [HS1887] and
[Tal895] or either on the 12th century Latin manuscript of Gerard of Cremona or Peyrad’s pre-
Theonian manuscript, where unambiguous and correct versions of Euclid’s second proposition ap-
pear that do not depend on a figure. We see at once Euclid’s brilliance in the extension of DA and
DB in the directions of A and B to create ttome with apex at D rather than in the direction of D
as done by Proclus for example. It is also easy to see with the aidafrthibat indeed there are
no proper cases here at all. The cases fabricated and considered by Euclid’s commentators are ar-
tifacts of a lack of understanding of the underlying logic which, it is conjectured, Euclid had in
mind when writing this construction and proof. In light of the culturally established belief held by
so many that Euclid’s proofs only hold for certain cases together with the fact that almost all mod-
ern versions of the construction are either ambiguous or downright incorrect, it is easy to under-
stand why Pedoe [Pe76] picks only one such case and claims to give Euclid’s original proof althou-
gh it is missing the crucial construction of ttame mentioned above.

We close this section with a conjecture as to how it came about that so many of the 17th,
18th and 19th Century English textbooks contain an incorrect algorithm for Euclid’s second prop-
osition. | believe the answer may lie in the famous Latin translation (of an Arabic manuscript by
Al-Hajjaj) due to Adelard of Bath [Bu83].

Amongst the most well known medieval English translators of EuchtEsents was
Adelard of Bath in the 12th Century. Actually Adelard of Bath’s name is associated with three dis-
tinct versions of th&lements and according to Busard [Bu83] it was version Il “that became the
most popular of the various translations of Bhements produced in the 12th Century and appar-
ently the one most commonly studied in the schools.” Furthermore, this version is apparently the
least authentic. In the words of Busard [Bu83] “not only are the enunciations differently expressed
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structure behind Euclid’s proof.

First we should remember that when
cases did in fact exist Euclid used figured{o
lustrate a construction and proof rather than
make acase statement. In the words of Heath
[He28]:

“To distinguish a number of

cases in this way was foreign to

the really classical manner.

Thus, as we shall see, Euclid’s

method is to give one case only,

for choice the most difficult,

leaving the reader to supply the

rest for himself. Where there Fig. 6.1 lllustrating the proof of Eu-

was a real distinction between clid’s Proposition 2 for all cases.

cases, sufficient to necessitate a
substantial difference in the proof, the practice was to give sepacateations
and proofs altogether.”

This is indeed the social convention followed even today in computational geometry where
the phrase “the remaining cases can be proved in a similar way” is seen in almost every published
paper in the most scholarly of journals.

It is conjectured though that Euclid sawHroposition 2 no cases because fundamentally
there aren’'t any. Furthermore, if the reader will follow through Euclid’s original algorithm in all
the possible “fabricated” cases enumerated in the previous section he or she will find that the algo-
rithm is well defined in the modern sense and will execute correctly and terminate with the correct
solution. Furthermore, the proof of correctness also follows through. This cannot be said of any of
the subsequent algorithms and proofs offered by Heron, Proclus and the other Greek commentators
of Euclid nor the 19th century English scholars. It should be mentioned here that one logical (out-
of-context) situation consists @lase 1.1.1 in which the point A lies at one endpoint of segment
BC. Clearly in this pathological situation an equilateral triangle cannot be constructed on AB and
the algorithm would be undefined and fail to execute. However, the context of the situation, i.e.,
the purpose of the problemtwstransfer a distance. If A coincides with either B or C then there is
notransfer of distance, the problem does not exist, or if you like, the answer, namely segment BC,
is already known at the start. Therefore, the algorithm is clearly intended to work for all points A
on the plane except B and C.

The reader may experience an interesting effect upon actually carrying out Euclid’s con-
struction and proof for all the cases enumerated above, and thaEis ¢ka experience in which
theessence, semantics, or deep structure behind Euclid’s constructias made manifest. Once this
happens it is transparently clear that Euclid’s algorithm and proof of correctness are valid for all
cases one could possibly imagine. In fact in the view expressed here it becomes clear that funda-
mentally there are indeed no cases.

It is difficult to grasp the essence of the algorithm-proof by fixing an input configuration
and then analyzing variations in constructions as in the work of the Greek commentators. However
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between B and C.

Some of the above cases (but certainly not all') were discussed by the Greek commentators
and are included in the work of Proclus [Mo70]. Usually a proof that Euclid’s algorithm worked
correctly was then provided for the particular case at hand. Sometimes thelgctgdm given
by Euclid was changed to handle the special case. For example, for a particular input configuration
in Case 2.1with the distance between A and B less than the distance between B and C, Proclus
objects to Euclid’s algorithm because line segment BC “gets in the way” of the construction of tri-
angle ABD above segment AB (see Fig. 5.1). In the words of Proclus, “for there is not room.” Hea-
th [He28] notes that Heron of Alexandria circa 100 A.D. in his commentary dflg¢heentsalso
sometimes used constructions different from Euclid’s to circumvent objections of this type. The
algorithm of Proclus [Mo70] for this particular case follows (see Fig. 5.1).

Begin

Step 1 Let a circle be drawn with center at B and distance BC.

Step2: Let the lines AD and BD be produced to F and G.

Step3: With centre at D and distance DG let the circle GE be described.
[Exit with AE as the solution.]

End

Note how Proclus has changed the clear line-extension statements of Euclid’s algorithm to
the ambiguous statements (Let the lines AD and BD be produced to F and G.) found in the 19th
century accounts and that the correctness of the construction is made to depend on the figure!

Another fascinating manuscript is an Arabic book titledthe Resolution of Doubts in Eu-
clid’s Elements and Interpretation of Its Special Meanwgsten in 1041 A.D. by lbn al-Hay-
tham. A copy of this book made in 1084 A.D. was found in the University of Istanbul Library
[Hal041]. As the title suggests this is not a translation dEkmentdut a discussion about well
known criticisms of Euclid’s work. In discussing Euclid’s second proposition al-Haytham discuss-
es four basic cases in terms of the type of input: (1) point A is either B or C, (2) A lies on the line
segment BC, (3) A lies on the line passing through BC, and (4) A lies outside the line passing
through BC. In addition to these he has a very strange case that does not appear to have been men-
tioned anywhere else and this is the case when the line segment BC and the point A are separated
by a valley or a river so that the line joining the points A and B cannot be drawn! His solution to
this last case is most puzzling, for he writes that the way to handle this case is to measure the line
segment and redraw it in the neighborhood of the point, after which Euclid’s procedure is then ap-
plied! It would appear that Ibn al-Haytham was not lacking a sense of humor in his mathematical
writings.

6. Euclid’s Algorithm Reconsidered

It is clear from the above discussion that Euclid’s followers were concerned that perhaps
Euclid’'s algorithm and proof of correctness did not hold for all possible configurations of the input
to the problem. | will argue that the commentators themselves succumbed to the fallacy of “going
by the figure” even more than Euclid himself and that they missess@sncesemantic®or deep
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algorithm is designed to work only for inputs

in general position, it should also be able to
handle singularities such as when point A lies

on the segment BC or A is equidistant fromB €
and C. Similarly, a proof of correctness must
establish that in all situations the algorithm

will yield the correct solution. Euclid had the

habit, as is well illustrated by Fig. 4.1, of in- '
cluding only one figure to illustrate the con- '
struction and proof. It is only natural that a

reader may thus wonder on stepping through ‘
the algorithm on the given figure whether the G/ ~—X
same steps would work on a completely dif- F

ferent figure. The same reader may even be

skeptical as to whether the arguments in the

proof of correctness would carry over with Fig. 5.1 Proclus’s figure for the proof of a

the same letters used as labels of crucial Subcase o€ase 2.1 of Proposition 2.

points derived during the construction. This

in fact appears to have been the reaction of early Greek commentator&lehtess who criti-

cized Euclid for leaving out cases that they discovered missing and then supplied accompanying
proofs of their own. An in depth commentary of Euclid’s elements and subsequent criticisms made
against it was written down in the 5th century by Proclus [Mo70]. Proclus himself does not usually
criticize Euclid and on several occasions actually comes to his defense. In the words of Glenn Mor-
row [Mo70]:

“When in the proof of a theorem Euclid uses only one of two or more possible cases,

as is his custom, Proclus will often prove one or more of the omitted cases; some-
times he simply calls attention to them and recommends that his readers, “for the

sake of practice,” prove them for themselves. Sometimes he gives an alternative
proof of a theorem devised by one of his predecessors for the obvious purposes of
showing the superior elegance or appropriateness of Euclid’s demonstration.”

It is instructive to illustrate some of the objections that early Greek commentators had and
how they resolved them. First we note that indeed one can conjure up many special cases of an ini-
tial configuration of point A and line segment BC. For exampése 1: A may lie on the line col-
linear with BC orCase 2: A may lie on one side of the line collinear with BCQOase 1 A may lie
on the line segment BC&se 1.1) or off the line segment B&Chse 1.2). If A lies on BC then in
Case 1.1.1it may lie on an endpoint of BC or @ase 1.1.2 on the interior of BC, and in the latter
case we have two more cases depending on whether A is closer to B or closer @ase. 112
where A lies off segment BC, A could be closer t&€CBs¢ 1.2.1) or to C Case 1.2.2). Furthermo-
re,Case 1.2.1 divides into two more cases depending on whether the distance between A and B is
greater than or less than the distance between B @as€2 in which A lies off the line collinear
with BC can also be divided into cases using a variety of criteria. For example we might consider
two cases depending on whether the line segment BC lies in the inBasei2(1) or the exterior
(Case2.2) angle that triangle ABD makes at D. Finally each of these two cases determine two more
cases depending on whether the distance between A and B is greater than or less than the distance
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ing Peyrard enough time to finish his translation [Pe1819]. In Peyrard’s manuscript which he em-
phasizes is a literal translation, the cru@tdp 3s written as “Menontes droites AE, BZ dans la
direction de DA, DB,"and is thus in agreement witigorithm Euclid described above.

5. Casesin Constructions and Proofs

The above discussion brings up naturally the general question of the anatyase s
Euclid’s constructions, modern computational geometry, and geometric proofs in general. We
should note here that when we talk aboagestoday we generally mean equivalence classes of
input configurations rather than instances of the construction sequence resulting from a set of
choices made as a result of the ambiguities of the algorithm’s description, as are the case classifi-
cations in Taylor [Ta1895] and Lardner [Lal1861]. An algorithm must be specified unambiguously
and should execute correctly for all inputs it was designed to handle. Much criticism has been
heaped on Euclid over the past two thousand years for his alleged sloppiness in his constructions
and proofs concerning the question of cases. For one thing he has been blamed of giving proofs of
correctness that depend severely on the figure accompanying the proof. For example according to
Bertrand Russell [Ru51]:

“A valid proof retains its demonstrative force when no figure is drawn, but very
many of Euclid’s earlier proofs fail before this test... The value of his work as a mas-
terpiece of logic has been very grossly exaggerated.”

Again, in the words of William Dunham [Du90]:

“Admittedly, when he allowed himself to be led by the diagram and not the logic

behind it, Euclid committed what we might call a sin of omission. Yet nowhere in

all 465 propositions did he fall into a sin of commission. None of his 465 theorems
is false.”

Finally, in the words of Felix Klein [KI39]:

“Euclid... always had to consider different cases with the aid of figures. Since he
placed so little importance upon correct geometric drawing, there is real danger that
a pupil of Euclid may, because of a falsely drawn figure, comddtsaconclu-

sion.”

A proposition that has a plethora of cases and that has been the subject of much criticism
of Euclid is in factProposition 2 the topic of this paper. It will be argued here using this proposi-
tion as a “case” study that much of the criticism of Euclid regarding case analysis stems from a lack
of deep understanding of his original work due in part to the writings of the early Greek commen-
tators of theElementssuch as Heron and Theon of Alexandria and others reviewed by Proclus
[Mo70] in the 5th century and exacerbated by a 12th century Latin translation of an Arabic manu-
script by Adelard of Bath [Bu83] and many English scholars of the 19th century. Furthermore, if
we judge the original algorithm and proof of correctness of Eudidiposition 2using today’s
highest standards in the field of computational geometry Euclid deserves praise for his brilliance.

Consider then Euclid’s second propositidio: place at a given poirfas an extremifya
straight line equal to a given straight lin€learly an algorithm for carrying out this task has to
execute, i.e., be well defined for all inputs, i.e., for all possible line segments BC and all points A
no matter how they are positioned with respect to each other in the plane. Furthermore, unless the
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texts where it is asked to extend DA and DB the phrasa Sinaight line withDA, DB” is absent
because the direction is obviously implied by the extension of the sides of the equilateral triangle.
In Algorithm Euclid on the other hand extensions emanating from A and B may do so in any di-
rection and thus the phrase &rstraight line wittDA, DB” is provided for precision. The skeptical
reader may nevertheless at first glance insist that the straight line AE may be produced in a straight
line with DA in such a way that D lies in AE (in other words, AE emanating from A in the opposite
direction as that shown in Fig. 4.1). However, it is obvious that if this were the case intended, Eu-
clid would have used the phrase “ltke¢ straight line DE be produced in a straight line with AD.”

No room is left here for choosing the direction of the extensions of DA and DB as is clearly the
case inAlgorithm 19C.

At this point one may wonder about the authenticity and correctness of the accounts of
Heiberg [He1883], Heath [He28], and Dijksterhuis [Di55]. Here we should point out that the Greek
text by Heiberg is considered to be tadinitiveedition. It consists of portions taken from different
Greek manuscripts spanning the 9th to 12th centuries and considered by philologists to be the most
authentic. There also exist several interesting Latin manuscripts which are translations of Arabic
manuscripts. Perusal of the first printed edition of the Latin translation of the Arabic (Ishag-Thabit)
version of Euclid’€Elementdelieved to be made by the monk Gerard of Cremona in Toledo dur-
ing the 12th century [Bu84] following its discovery in Bagdad, would also appear to be more con-
vincing than examining English texts of the 17th, 18th and 19th centuries. Indeed, apart from the
fact that the letters E and F in Heath [He28] are absent in [Bu84] and their role subsumed by L and
G, respectively, the algorithms and proofs of correctness found in [He1883], [He28], and [Di55]
are identical to that found in the 12th century Latin manuscript. This 12th century algorithm is a
Latin translation of an Arabic translation of a Theonian Greek manuscript. In fact all Arabic trans-
lations are believed to descend from the 4th century recension by Theon of Alexandria. Anyone
who has played the translation game may wonder how this version compares with early Greek
manuscripts with respect to the crucaep 3which states (referring to Fig. 4.1) “Lete straight
lines AE, BF be produced in a straight line with DA, DB1"dnother 12th century Sicilian Latin
translation (of unknown authorship) of Eucli®&ementsmadedirectly from the Greek [Bu87]

Step 3s stated as follows:

“Educanturin directo rectis DA et DB recte AE et BF.”

This translates to “Leafbrth the straight lines AE and BF in a straight line with (in the
direction of) the straight lines DA and DEinhd is thus in agreement with the Gerard of Cremona
version and Heiberg’s definitive edition.

As a final piece of evidence thatgorithm Euclid described above is indeed Euclid’s
original algorithm we consider the so-called manuscript P, the Vatican manuscript No. 190. Until
1804 all manuscripts of EuclidElementavere believed to be descended from Theon’s 4th centu-
ry recension. When Napoleon conquered Italy he stole from the Vatican a Greek manuscript (No.
190) of Euclid’sElementsvhich he kept in the King’s Library in Paris. F. Peyrard, a professor at
the Lycee Bonaparte, wanted to write a definitive French version &lémeentsusing the best
Greek manuscripts at his disposal and towards that end obtained access to the King’s Library.
There he found manuscript No. 190 and to his astonishment discovered he had in his hands a pre-
Theonian 10th century manuscript. In the mean time the Allied Forces defeated Napoleon and
forced France to return all stolen works of art. On the request of the French government the Pope
made Peyrard a happy man by granting an extension of the return date of the manuscript thus giv-
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rithm went up in smoke.

In spite of the criticism often directed at Euclid, one may find it difficult to believe that he
could have been guilty of an oversight such as that suggested by Pedoe’s version of his algorithm.
On the other hand the consensus of descriptions exemplifiadthgbyithm 19C given by English
scholars such as Lardner [Lal1861], Todhunter [To1876], Smith [Sm1879], and Hall and Stevens
[HS1887] as well adlgorithm T of Taylor [Tal895] and those of the 18th and 17th centuries may
make the reader wonder whether Euclid’s original algorithm did suffer from similar defects. How-
ever, established authorities on Euclid such as Heiberg [He1883], Heath [He28] and Dijksterhuis
[Di55], have an algorithm significantly different from the ones thus far described. The figure in
these three works is given in Fig. 4.1. and the algorithm is given below. We omit the proof of cor-
rectness as it is exactly the same as that given by Pedoe.

Proposition 2:  To place at a given point (as an extremity) a straight line equal to a given
straight line.

Algorithm Euclid: [Heath’s version as well as the original version according the 12th
century manuscript of Gerard of Cremona]

Input: Let A be the given point, and BC the given straight line. {Thus it is required to place
at the point A (as an extremity) a straight line equal to the given straight line BC.} Fig. 4.1.

Begin

Sep 1: From the point A to the point B let the straight line AB be joined.

Sep 2: On AB [usingAlgorithm 1] let the equilateral triangle DAB be constructed.
Sep 3: Let the straight lines AE, BF be produced in a straight line with DA, DB.
Sep 4. With centre B and distance BC let the circle CGH be described.

Sep 5: With centre D and distance DG let the circle GKL be described.

Exit with AL as the solution.

End

Note that in Fig. 4.1 the length of BC is indeed larger than the distance between A and B
and Pedoe’s version of Euclid’s algorithm would not work in this case. However, for a reason mys-
terious (I will offer a conjecture later) Pedoe leavesay 3 in the above version of Euclid’s al-
gorithm. This crucial step in Euclid’s algorithm constructs the extensions of DA and DB in direc-
tions E and F, respectively, thus ensuring that whether or not the length of BC is larger than the
distance between A and B, the algorithm continues to “execute” and the figure remains the same
in the sense that point G exists and lies on BF. Note the significant difference between the manner
in which DA and DB are to be producedAigorithm Euclid as compared tAlgorithm 19C and
Algorithm T. In the latter two algorithms the ambiguous instructions state thatddseof the
equilateral triangle DA and DB are to be produced. In Algorithm Euclid on the other hand the
statement in Step 3 concerning the extension of DA and DB is unambiguous. It &tettédse “
straight lines AE, BF be produced in a straight linewith DA, DB.” In other words it specifies that
(1) the extensions are to emanate from A and B (the endpoints of the base of triangle DAB) and (2)
they should be collinear with (in a straight line with or in the direction of) DA and DB. In all other
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tinction (according to the claim on its front page) of
containing the first English translation from Latin.
This appears to contradict the belief that the first
English translation of Euclid’€lements to be
printed was translated by H. Billingsley, printed by
the famous English printer John Day and issued in
1570 [Ar50], [Sh28]. What is worth noting about
the algorithms in all three of these texts, however,
is that 1) they are all identical to each otheljkd
Algorithm 19C, they are ambiguous but, @)like

all other algorithms | have encountered, they begin
not by connecting point A to one of the endpoints
of segment BC but by constructing a circle of radi- G
us BC centered at one of the endpoints of BC. Then
in the second step point A is joined to the endpoint
selected as the center in the previous step. Note that  Fig- 4.1 Euclid’s figure for the proof
this ordering circumvents the problem tiAdgo- of Proposition 2 according to Heath.
rithm T has withSeps 1 and2 and furthermore al-

lows us to ignore Lardner’s caveat intended to resolve it.

=

4, Euclid’s Construction According to Gerard of Cremona and Peyrard

One is naturally led to the question: which of all these algorithms is the one Euclid origi-
nally proposed? It would be easy to answer this question by looking up Euclid’s original manu-
script. Unfortunately history has made this impossible. In the year 332 B.C. Alexander the Great,
at the age of 24, conquered Egypt and founded the city of Alexandria. When, after conquering the
rest of the world, he died at the age of 33 in Babylon (just south of present day Bagdad) his generals
divided up the world into pieces amongst each other. In this way Egypt fell into the hands of Ptole-
my | in 306 B.C. Ptolemy Il created the University of Alexandria which became by virtue of its
excellent scholars (including Euclid) and its impressive library (three quarters of a million books
including Euclid’s original version ofhe Elements) the intellectual and scientific center of the
world. In 48 B.C. Julius Caesar occupied Alexandria and intended to carry a large portion of the
library with him back to Rome. The academic community held a demostration which was quickly
guelled by Caesar’s army. In the ensuing fighting Caesar set fire to the Egyptian fleet in the Great
Harbour. The fire spread to wharehouses on the docks and from there to the library at which time
many of the books were burned. More books were burned during later Egyptian revolts, one in 272
A.D. quelled by the Emperor Aurelianus and another in 295 A.D. quelled by the Emperor Dio-
cletian. In the 4th and 5th centuries goytically-correct-thinking movement, with Christianity
as the governmental dogma, became paramount in Alexandria and zealous Christian bishops began
to persecute the pagan writers (mathematicians) and their books. Bishop Theophilus in 391 A.D.
lead a Christian mob and destroyed the Temple of Serapis which housed many of the remaining
books. The last mathematician alive in Alexandria, a woman by the name of Hypatia and daughter
of Theon was torn limb from limb in the streets of Alexandria by an enraged mob led by Bishop
Cyril [La41]. Finally, the Arabs invaded Egypt in 646 A.D. and General Amr ibn-al-As burned the
remaining books allegedly because [Be71] “if the books agreed with the Koran they were super-
fluous; if they disagreed they were pernicious.” In short, in all likelihood Euclid’s original algo-



need not be produced to G. According to the algorithm therefore the solution is given by AG’
which is clearly incorrect since AG’ is smaller than AB whereas BC is greater than AB, by assump-
tion. Therefore although the ambiguitiesAdfjorithm 19C have been removed by Tayldtlgo-

rithm T does not always yield the correct solution on a glugspoint configuration depending

on which construction strategy is applied. Furtherm@aigorithm T suffers from an additional

minor bug not even presentAmgorithm 19C. Notice tha&ep 1 in Algorithm 19C does not offer
choice. HoweveAlgorithm T asks that A be connected to one of the extremities of BC, one that
we are free to choose. However, if we choose to connect A to C (rather than B as in Taylor’s figure)
then it is impossible to execuBep 2 and the algorithm crashes.

Another author, Lardner [Lal861], also follows his presentation of an ambiguous algo-
rithm identical toAlgorithm T with a discussion of how the student should be careful about diffe-
rent cases arising from the varieties of different input configurations. In his own words:

“The different positions which the given right line and the given point may have
with respect to each other, are apt to occasion such changes in the diagram as to lead
the student into error in the execution of the construction for the solution of this
problem.

Hence it is necessary that in solving this problem the student should be guided by
certaingeneral directions, which are independent of any particular arrangement
which the several lines concerned in the solution may assume. If the student is gov-
erned by the following general directions, no change which the diagram can under-
go will mislead him.”

Lardner then proceeds to present six general rules concerning what can and cannot be done
in order to ensure thétlgorithm T works correctly on all inputs. This discussion includes a case
analysis of construction strategies and, unlike Taylor [Ta1895], does not allow DA and DB to be
extended in either direction but insists that they be extended through the base of the constructed
triangle thus concluding that the solution to Euclid’s second propositidiourasases rather than
Taylor’'s eight. Another general rule, that Lardner insists should be followed, is that the center of
the circle constructed itep 3 should lie at the extremity of BC connected to ASiep 1, thus
avoiding one of Taylor’s problems.

Another variation occurs in a much earlier Scottish book on Euclidean geometry published
in 1831 by John Playfair [PI1831] which has a variatiodlgorithm 19C. In this book we are
asked to extend DA and DB to E and F respectively and thus the ambigaigoofthm 19C is
also present here. However, unlikkgorithm 19C or Algorithm T the algorithm in [PI1831] first
performs the extensions and subsequently constructs the circles.

We close this section with a note on text books of the 18th and 17th centuries. In these two
centuries combined the number of editions of Euckdiésnents published was less than half of the
number for the 19th century, about 325 and 280 in the 18th and 17th centuries, respectively. It is
also much more difficult to find copies of these earlier editions. | have held in my hands only two
editions from the 18th century [Wil1703], [Ba1705] and one from the 17th century [CI1654], hav-
ing found all three in the special collection of the library at Queens University in Kingston, Ontario.
The 1705 manuscript by Issac Barrow (from Trinity College, Cambridge) has the additional dis-



the point A a straight line equal BC.} Refer to Fig. 3.2.

Begin

Sep1l: Draw AB, the straight line from A to one of the extremities of BC.
Sep2: On it construct an equilateral triangle DAB.

Sep 3: With B as centre and BC as radius, describe the circle CEF, meeting DB (pro-
ducedif necessary) at E.

Sep 4. With D as centre and DE as radius, describe the circle EGH, meeting DA (pro-
ducedif necessary) at G.

Then AG is the straight line as required.
End

Note that Taylor is careful to add &teps 3 and4 the explicitif statements that DB and DA
are to be produced if necessary. Therefore we presume that if the construction circle CEF intersects
the sides of equilateral triangle ABD then the extension of DA need not be carried out. Unlike the
previous 19th century geometry books Taylor follows the pro&foposition 2 with the follow-
ing interesting discussion.

“It is assumed in this proposition that the straight line DB intersects the circle CEF.
It is easily seen that it must intersect in two places.

It will be noticed that in the construction of this proposition there are several steps
at which a choice of two alternatives is afforded: (1) we can draw either AB or AC
as the straight line on which to construct an equilateral triangle: (2) we can construct
an equilateral triangle on either side of AB: (3) if DB cut the circle in E and |, we
can choose either DE or DI as the radius of the circle which we describe with D as
centre.

There are therefore three steps in the construction, at each of which there is a choice
of two alternatives: the total number of solutions of the problem is therefore 2x2x2
or eight.”

We see that Taylor's way of dealing with the ambiguities discussed above is to explicitly
acknowledge that there are eight different cases to Euclid’s proposition that depend on how the
construction is carried out, that we are free to choose any one of these eight paths through the im-
plied decision-tree, and that the sides DB and DA need not be produced if not necessary. In light
of this classification let us follow down one path of these choices on the input configuration illus-
trated in Fig. 3.2 where it assumed that the length of CB is greater than the length of CA. In our
first choice we therefore select AB as the segment on which to construct our equilateral triangle.
Our second decision will be to construct the triangle on the side shown in Fig. 3.2. Now since the
circle CEF does not intersect the triangle we extend DB which cuts the circle at the two points E
and I. According to Taylor we may now choose either DE or DI as the radius of the circle which
we describe with D as centre. Accordingly let us choose DI. Now, this circle with D as centre in-
tersects DA at G’ playing the role of G in his algorithm, and therefore, accord#eptd, DA
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the point A a straight line equal BC.}
See Fig. 3.1.

Begin
Sep 1: Join AB.

Sep 2: On AB describe an equilateral
triangle DAB.

Sep 3: From centre B, with radius BC,
describe the circle CGH.

Sep 4. Produce DB to meet the circle
CGH at G.

Sep 5: From centre D, with radius DG,

Fig. 3.2 lllustrating Taylor’s version of
Euclid’'s proposition 2.
describe the circle GKF.

Sep 6: Produce DA to meet the circle GKF at F.
Then AF shall be equal to BC.
End

This algorithm is certainly an improvement over Pedoe’s algorithm as it appears to work
correctly for some input configurations whether BC is greater than or less than BA. Nevertheless
the algorithm suffers from ambiguous stateme®ien 4 asks us to produce (extend in length) DB
to meet the circle CGH at G but it does not tell us in which direction (emerging from D or from B)
to produce DB and certainly in either direction we are bound to meet the corresponding circle con-
structed inStep 3. Fig. 3.1 shows only one possible case but had we produced DB in the direction
from B to D instead of the direction shown we would have obtained a completely different inter-
section point G. A similar problem exists witep 6.

The ambiguities observed in the algorithms described in [Sm1879], and [HS1887] which
are exemplified here aslgorithm 19C are absent in the exposition by Taylor [Ta1895], if not in
the body of the algorithm at least in the subsequent discussion where it is indicated that we are free
to choose one or the other alternative &ap 1. It is therefore instructive to examine his algo-
rithm and accompanying discussion in more detalil.

Proposition 2.  Froma given point to draw a straight line equal to a given straight line.
Algorithm T: [Taylor’'s version]

Input: Let A be the given point, and BC the given straight line. {It is required to draw from



BC. Being what it was required to do.

End of proof.

We remark here that Pedoe’s figure,
shown in Fig. 2.2, is considerably different
from those in other sources on Euclid such as
Heiberg [He1883], Heath [He28] and Dijkster-
huis [Di55] for example. Much more serious,
however, is the fact thatigorithm P given by
Pedoe is incorrect! It is clear that for a solution
to be obtained bplgorithm P it is crucial that G
the circle centered at B with radius BC intersect
DB at G. Otherwise G is undefined and the rest

Fig. 3.1 Popular 19th century figure for
the proof of Euclid’sProposition 2.

of the algorithm makes no sense. Now consider what happens when the length of BC Is greater than
the distance from A to B. Clearly the circle centered at B with radius BC will completely enclose
triangle ABD in its interior and the construction fails! In modern parlance the algorithm is not well
defined for such an input and the algorithm crashes.

3. Euclid’s Construction According to 19th, 18th and 17th Century Scholars

During the 19th century (which witnessed a total of more than 700 editidhe Bfements
published) there existed a flurry of activity in England with regards to the writing of text-books on
the topic of Euclid’sElements for use in the schools and colleges. A sample of several of these
books [Lal861], [Tol1876], [Sm1879], and [HS1887], yields a common (apart from some trivial
notational differences) algorithm and illustrative figure for Euclid’s second proposition. However,
both the algorithm and figure are quite different from Pedoe’s [Pe76]. Consider then the algorithm
according to one of these sources [HS1887].

Proposition 2: Froma given point to draw a straight line equal to a given straight line.
Algorithm 19C: [Popular 19th Century version]

Input: Let A be the given point, and BC the given straight line. {It is required to draw from



science:subroutines. In the algorithm of his second
proposition described next he ugelgorithm 1. Be-
low we give Pedoe’s description of Euclid’s construc-

tion.

Proposition 2: To placeat a given point (asan
extremity) a straight line equal to a given
straight line.

Algorithm P: [Pedoe’s version]

Input: Let A be the given point, and BC the
given straight line. {Thus it is required to place

at the point A (as an extremity) a straight line
equal to the given straight line BC.} Fig. 2.2.

Fig. 2.2 Pedoe’s figure for proving
Euclid’s Proposition 2.

Begin

Sep 1. From the point A to the point B let the straight line AB be joined.

Sep 2: On AB [usingAlgorithm 1] let the equilateral triangle DAB be constructed.
Sep 3: With centre B and distance BC let the circle CGH be described.

Sep 4: With centre D and distance DG let the circle GKL be described.

Exit with AL as the solution.

End

Proof of correctness. Then, since the point B is the centre of the circle CGH, BC is equal
to BG.

Again, since the point D is the centre of the circle GKL, DL is equal to DG, and in these
DA is equal to DB.

Therefore the remainder AL is equal to the remainder BG.

But BC was also proved equal to BG. Therefore each of the straight lines AL, BC is equal
to BG.

And things which are equal to the same thing are also equal to one another.
Therefore AL is also equal to BC.

Therefore at the given point A the straight line AL is placed equal to the given straight line



eral triangle on the straight line AB.} See

2.1. c

Begin

Sep 1: With centre A and distance AB let /A\

circle BCD be described. D E
Sep 2: With centre B and distance BA let '

circle ACE be described.

Sep 3: From the point C, in which the circ

: Fig. 2.1 Euclid’s figure for
cut one another, to the points A, B let

the proof ofProposition 1.
straight lines CA, CB be joined.

End

Proof of Correctness:

Now, since the point A is the centre of the circle CDB, AC is equal to AB.
Again, since the point B is the centre of the circle CAE, BC is equal to BA.

But CA was also proved equal to AB; therefore each of the straight lines CA, CB is equal
to AB.

And things which are equal to the same thing are also equal to one another; therefore CA
is also equal to CB.

Therefore the three straight lines CA, AB, BC are equal to one another.

Therefore the triangle ABC is equilateral; and it has been constructed on the given finite
straight line AB. Being what it was required to do.

End of Proof

Of course neither Euclid nor Pedoe use the walgtsrithm, input, begin andend. Neither
do they use the phrasgoof of correctness nor end of proof, nor do they label separate chunks of
the algorithm with the wor&ep such-and-such. However early Latin manuscripts do preface the
construction by the wordsxempli causa and the proof byrobatio eius. We include these well
known terms found in modern computer science for clarity of layout and to delineate that these di-
visions did appear in essence in at least the earliest Arab and Latin translations of Eleslid’s
ments. The important thing is that Euclid always gave the algorithm first and the arguments to sub-
stantiate the correctness of the algorithm immediately afterwards. Even today too many writers still
publish geometric algorithms without including a proof of correctness in spite of the many geomet-
ric algorithms that have been found to be incorrect [To84]. These authors could certainly take a
lesson here from Euclid. Sometimes, as we shall see below, the algorithmil s include
unnecessary steps for obtaining the solution but these steps have the benefit of simplifying the en-
suing proof of correctness. Euclid also made use of another common practice in modern computer



space to some other location to draw a circle with the chosen radius. This operation cannot be done
with a collapsing compass. The collapsing compass is, like the other machiieEsgliaedma-

chine which allows the compass to be opened to a chosen radius and a circle drawn, but no distance
can betransferred It is as if when the compass is lifted off the work-space it collapses and thus
erases any trace of the previous aperture made. Of course more complicated machines can be ob-
tained by combining sets of simple machines. For example in Euélldieentshe uses the

straight edgeandcollapsing compasghe combination of machines 1 and 3) as his model of com-
putation. Attempts have also been made to specify the primitive operations allowed with each type
of machine [Le02] and to design constructions that require fewer operations than did Euclid’s orig-
inal constructions. Another active area of research has been to analyze and compare different ma-
chine models in terms of their computational power [Ho70], [CR81], [Av87], [Av90]. For exam-

ple, in 1672 Georg Mohr [Mol1672] and in 1797 the Italian geometer Lorenzo Mascheroni
[Mal1797] independently proved that any construction that can be carried out with a straight edge
and a compass can be carried out with a compass alone and Jacob Steiner proved in 1833 that the
straight edge is equivalent in power to the compass if the former is afforded the use of the compass
once [SA48]. To remind the reader that ste@ight edgeandcompassre not yet obsolete com-

puters we should point out that the Mohr-Mascheroni result was strengthened as recently as in 1987
by Arnon Avron [Av87] at the University of Tel Aviv.

The earliest proof of the equivalence of models of computation is due to Euclid in his sec-
ond proposition of Book | of thElementsn which he establishes that tbellapsingcompasss
equivalent in power to theompassTherefore in the theory of equivalence of the power of models
of computation, Euclid’s second proposition enjoys a singular place. However, like much of Eu-
clid’s work and particularly his constructions involving many cases, his second proposition has re-
ceived a great deal of criticism over the centuries. In this paper it is argued that it is Euclid’s com-
mentators and translators that are at fault and that Euclid’s original algorithm and proof are beyond
reproach. Since this proposition us@sposition 1to obtain a solution we begin by outlining the
latter.

2. Euclid’s First Two Propositions According to Pedoe

Pedoe [Pe76] contains a lively discussion of Euclid’s elements of geometry applied to
painting, sculpture and architecture throughout recent history and to illustrate Euclid’s method he
presents the first two propositions of Book 1 ofEismentsEarlier in the book he actually has a
completely different algorithm and proof Bfoposition 2to which we shall return at the end of
this paper. However, at this later point in the book he statesithatdf interest to read how it
appears in Euclid."Subsequently the following algorithms and proofs of correctness are present-
ed.

Proposition 1: On a given finite straight line to construct an equilateral triangle.
Algorithm 1:

Input: Let AB be the given finite straight line. {Thus it is required to construct an equilat-
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Abstract

There has been considerable interest during the past 2300 years in comparing diffe-
rent models of geometric computation in terms of their computing power. One of
the most well known results is Mohr’s proof in 1672 that all constructions that can
be executed witktraight-edge andcompass can be carried out wittbmpass alone.

The earliest such proof of the equivalence of models of computation is due to Euclid
in his second proposition of Book | of teeements in which he establishes that the
collapsing compassis equivalent in power to threodern compass. Therefore in the
theory of equivalence of models of computation Euclid’s second proposition enjoys
a singular place. However, like much of Euclid’s work and particularly his con-
structions involving cases, his second proposition has received a great deal of crit-
icism over the centuries. Here it is argued that it is Euclid’s early Greek commen-
tators and more recent expositors and translators that are at fault and that Euclid’s
original algorithm, according to Gerard of Cremona’s Latin translation of a 12th
century Arabic manuscript as well as Peyrard’s French translation of a pre-Theon-
ian 10th century Greek manuscript, is beyond reproach.

1. Introduction

In the modern comparative study of geometric algorithms it is imperative to first define the
models of computation, i.e., the characteristics of the machine that will execute the algorithms
[PS85]. A model of computation specifies the numbeiro€essors used, whether they are used
sequentially or in parallel, the primitive operations allowed and the cost associated with each of
these operations. For example, one of the preferred conceptually abstract miagalsywachines
in which many geometric algorithms are compared isRés RAM (Random Access Machine
[AHU74]) in which each unit of storage space is capable of holding a real number of unlimited pre-
cision and in which the primitive operations that can be performed in one unit of time include the
arithmetic operations consisting of addition, subtraction, multiplication and division, comparisons
between real numbers, reading from and writing into a storage location as well as perhaps some
more powerful operations such as compukitigroots, trigopnometric functions and other analytic
functions. More controversial assumptions sometimes includeeilineg andfloor functions.

In classical constructive geometry mathematicians have also been concerned with defining
the models of computation, i.e., the characteristics of the “machine” that will execute the algo-
rithms. Typical machines that have been used in the past starting with Euclid includstrd)ghe
edge, 2) theruler, 3) thecollapsing compass, 4) thecompass, 5) thefixed-aperture compass, 6) the
compass with apertubmunded fromabove, and 7) the compass with apertboended from bel ow
just to name a few [Sm61], [H070], [CR81], [Ko86]. Tdutlapsing compass deserves elaboration
here. With the regular compass one can open it, lock it at a chosen aperture and lift it off the work-



