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Abstract

In this paper we consider constrained versions of the Euclidean minimax facility
location problem. We provide an O(n + m) time algorithm for the problem of con-
structing the minimum enclosing circle of a set of n points with center constrained
to satisfy m linear constraints. As a corollary, we obtain a linear time algorithm for
the problem when the center is constrained to lie in an m-vertex convex polygon,
which improves the best known solution of O((n + m)log(n + m)) time.

We also consider some constrained versions of the maximin problem, namely an
obnoxious facility location problem in which we are given a set of n linear constraints,
each representing a halfplane where some population may live, and the goal is to
locate a point such that the minimum distance to the inhabited region is maximized.
We provide optimal ©(n) time algorithms for this problem in the plane, as well as
on the sphere.
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1 Introduction

In a classical facility location problem [10] we are given a set of n points C' in the plane
representing n customers, plants to be serviced, schools, markets, distribution sites or
any other locations, depending on the context in which the problem is embedded, and it
is desired to determine the location X (find another point in the plane) where a facility
(service, transmitter, dispatcher, etc.) should be located so as to minimize the Euclidean
distance from X to its furthest customer. Such a minimaz criterion is particularly useful
in locating emergency facilities, such as police stations, fire-fighting stations and hospitals
where it is desired to minimize the worst-case response time. This problem has an elegant
and succinct geometrical interpretation: find the smallest circle that encloses a given set
of n points. The center of this circle is precisely the location of X. This problem is
known in the literature under various names such as the minimum spanning circle or the
Euclidean 1-center problem. It has a long history and was posed originally in 1857 by
Sylvester [25]. This geometric setting together with the fact that the smallest enclosing
circle of C' is determined by either a pair or a triplet of points in C' immediately suggests a
naive, brute-force, method for obtaining a solution: (1) for every pair of points determine
its diametral circle, (2) for every three points determine the circle they uniquely define,
(3) for every circle thus formed determine if no other points lie outside it and (4) out of all
such “full” circles select the smallest encountered. This algorithm has a time complexity
of O(n*). An improved adaptive algorithm for this problem was proposed by Bass and
Schubert in 1967 [2] which runs in O(h*+nlogn) time, where h is the number of extreme
points of the convex hull of C. In 1972 Elzinga and Hearn [9] proposed a more efficient
algorithm that runs in O(n?) time (includes a linear test which might be performed a
linear number of times).

Shamos [23], Shamos and Hoey [24] and Preparata [20] were the first to discover
O(nlogn) time algorithms, a considerable improvement over the O(n?) solution of Elzinga
and Hearn [9]. The algorithms in [23] and [24] have a step in which they compute the
diameter of the set with an invalid diameter-algorithm and a counter-example to this
diameter algorithm is given by Bhattacharya and Toussaint [4]. In spite of this default it
is shown in [4] that the minimal spanning circle algorithm proposed in [23] always yields
the correct solution, and two alternate O(nlogn) time algorithms are also given there.
Independently, Lee [15] proposed a similar O(nlogn) time algorithm. See also the survey
by Lee and Wu [16]. Finally, Megiddo [17] found an optimal O(n) algorithm for solving
this problem. His solution, based on the prune-and-search technique, has been extended
in [8, 18] to solve optimally the generalized weighted version of the problem in any fixed
dimension. Several other generalizations of the problem have been considered as well
where non-Euclidean metrics are used and where the facility is not a point but either a
line, a polygonal path or a polygonal region. For a survey of these generalizations and
more recent results the reader is referred to [21, 22].

While much has been done on such unconstrained versions of the classical problem,
little has been done for the case when additional constraints are present. Megiddo studied
the case in which the center of the smallest enclosing circle is forced to lie on a straight
line, as a fundamental step in his solution to the unconstrained problem. Some work has
been done for the 2-dimensional problem where the center is constrained to lie in a given
simple or convex polygon [6].

In this paper we consider constrained versions of the problem. We provide an O(n+m)



time algorithm for the problem of the minimum enclosing circle with its center constrained
to satisfy m linear constraints. As a corollary, we obtain a linear time algorithm for the
problem when the center is constrained to lie in an m-vertex convex polygon, which
improves the best known solution of O((n + m)log(n + m)) time [6]. As a byproduct of
our technique, we also show that the smallest circle enclosing n points with the constraint
that the circle must pass through a given point or that the circle must be tangent to a
given line can be solved in ©(n) time.

We also consider some versions of the mazimin problem, that can be considered as a
dual of the previous one, namely an obnoxious facility location problem, in which we are
given a set of linear constraints, each one of them representing a halfplane where some
population may live, and the goal is to locate a point such that the minimum distance
to the inhabited region is maximized. Such a maximin criterion es particularly useful in
locating obnoxious facilities, such as nuclear plants, chemical factories, and waste disposal
centres.

Geometrically, the problem consists of finding the largest circle enclosed in the convex
polygon implicitly given by the intersection of the halfplanes defined by a set of linear
constraints. The center of this circle is the location of the obnoxious optimal facility. We
provide an O(n) time algorithm for this problem in the plane, as well as on the sphere.

2 Locating Minimax Facilities

In this section we study some two-dimensional constrained versions of the minimax fa-
cility location problem. We provide an optimal linear time algorithm that locates the
minimum enclosing circle of a set of points, with center constrained to satisfy a set of
linear constraints. This result can be applied in particular when the center is constrained
to lie in a convex polygon. Finally, we indicate how a similar technique can also be applied
to optimally solve other related problems, such as finding the minimum spanning circle
with the constraint that the circle must pass through a given point or that the circle must
be tangent to a given line.

The algorithm we present is simple and direct. It follows a prune-and-search strategy
that will be used again in the other algorithms of this section. This underlying common
scheme is inspired by Megiddo’s algorithm for finding the minimum spanning center with-
out constraints in [17]. The strategy of Megiddo in [17, 18] was independently studied
and improved by Dyer in [7, 8] and has been applied with success by Bhattacharya et al.
in [3, 14] to obtain optimal algorithms for the intersection radius of sets of lines, segments
and convex polygons. The basic idea of our algorithm is the following:

1. Solve the problem in one less dimension (in this case, with the constraint of having
the center of the minimum spanning circle lying on a given line), determine whether
or not the solution to the original problem lies on the line and, if it does not,
determine which side (halfplane) of the line it belongs to.

2. Apply this result recursively to reduce the size of the original problem.

Let us see first the details of step 1.

Lemma 1 Given a line s, by solving the problem restricted to s it is possible to find the
center of the minimum spanning circle of a set of n points in the plane, constrained to



belong to the intersection of a set of m halfplanes, if it lies on s, or to decide on which
side of s it lies, in optimal ©(n +m) time.

Proof: In the first place, we want to decide whether or not the center of the minimum
circle that contains a given set of n points {py,...,p,} while satisfying a set of m linear
constraints, a;z + b;y +¢; > 0,7 =1,...,m, lies on s. If it does, we need to find it. If it
does not, we need to know on which side of s it lies. We can use the following algorithm:

1. Detect if the line s and the constraint polygon intersect, and determine on which
side of s the polygon lies in case they do not intersect:

(a)

Determine both the intersection of all upper and all lower halfplanes (left and
right, if s is vertical) with boundary line parallel to s. Each such intersection
is either a halfplane or the whole plane (when the set of intersected halfplanes
is empty). If their intersection with s is empty, then the constraint polygon is
itself empty. If s lies in only one of these intersections, the side of s containing
the constraint region is determined. In s lies in both intersections, proceed to
the next step.

Intersect the line s with all the upper halfplanes with respect to the direction of
s. The result will be a ray whose origin will be determined by one or at most
two halfplanes, depending on whether s intersects the associated polygonal
region in an edge or a vertex (notice that in a degenerate case with redundant
constraints, the vertex may be determined by more than two halfplanes, but
only two of them may be relevant, and they can be easily detected). Proceed
the same way with the lower halfplanes.

If the two rays are disjoint, the intersection of s and the constraint polygon is
again empty. The intersection of the (at most) four halfplanes that determine
the two rays indicates on which side of s the constraint polygon lies (in some
cases, it may indicate even the emptiness of the polygon). If the two rays have
a common segment, call it s’, and proceed to the next step.

2. Solve the s'-constrained problem, that is, start by finding the minimum spanning
circle of py,...,p, with center on s. If it belongs to &', it is the s-optimum. Oth-
erwise, the s'-optimum is located at the segment’s endpoint closest to it (this holds
by convexity).

3. Let us call o the s’-constrained solution. In any case, the oracle finds the point p;
that determines the maximum distance to o. There are two possibilities:

(a)
(b)

If o is the s-restricted solution, then p; determines the halfplane where the
solution to the original problem lies (Figure 1).

If o is the endpoint of the segment s’ which lies closer to the s-restricted
solution, then the halfplane where the solution to the original problem lies
is found in the following way: Consider the edge of the polygon through o,
and orthogonally project p; onto it (or its prolongation). The projection point
indicates the direction that minimizes the distance to p;, and hence indicates
which side of s allows to improve the radius of the solution circle (Figure 2).
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Figure 1: How to determine the solution halfplane when the s-restricted solution
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Figure 2: How to determine the solution halfplane when the s-restricted solution
does not belong to the polygon.

Two remarks must still be made at this point:

e It may happen that the edges through the point o are two (when o is a vertex
of the polygon). In this case, both of them must be considered in the previous
explanation.

e It may also happen that the points at maximum distance from o are more
than one. If they all indicate the same halfplane as the solution one, this is the
solution halfplane. If at least two of them indicate opposite solution halfplanes,
then the optimim point o just found is the global optimum.

This algorithm takes O(n + m) time. Clearly step 1 can be solved in O(m) time. In step
2, the center of the minimum spanning circle constrained to lie on a line can be found in
O(n) time using Megiddo’s algorithm in [17]. Finally, for step 3, O(n) time suffices, as it
consists essentially in determining the maximum distance from the segment constrained
optimum to the set of points. Il

Let us see now how the original problem can be solved.

Theorem 2 The minimum spanning circle of a set of n points in the plane, with center
constrained to satisfy a set of m linear restrictions, can be found in optimal O(n + m)
time.

Proof: We want to solve the problem of finding the minimum circle that contains a
given set of n points {p1,...,p,} and whose center satisfies a set of m linear constraints,
a;x +by+c; >0,72=1,...,m. From Lemma 1 we know that we can use as an oracle
a linear time algorithm that can decide on which side of a given line the solution to the
problem lies. We can then solve the problem using the following algorithm:



1. Take the n points of the initial set, pq,...,p,, and pair them up. Consider the
orthogonal bisectors of the segments they form. Refer to Figure 3.

(a) Form the set B of the z-coordinates of all the vertical bisectors.

(b) Consider the angle « that each of the remaining bisectors forms with the hori-
zontal positive halfline, —7/2 < o < 7/2, and compute the median value of all
these angles. Then take the direction obtained as horizontal (by a coordinate
change that does not modify the vertical direction).

(c) Pair each negative slope bisector with one of positive slope, such that each pair
of bisectors intersects in a point ¢; and at most one bisector is left unpaired
(use horizontal bisectors if necessary).

Figure 3: How to obtain the points ¢; from the p;.

(d) Form the set By of the y-coordinates of all the remaining horizontal bisectors.

(e) Consider the set C of the z-coordinates of all the intersection points ¢;, and
the set C'5 of their y-coordinates.

2. Consider the halfplanes determined by the linear constraints and pair them up.
Always pair an upper halfplane (that is, a halfplane a;x + b;y + ¢; > 0 having b; > 0)
with another non parallel upper halfplane, and a lower halfplane (that is, a halfplane
a;x + by + ¢; > 0 having b; < 0) with another non parallel lower halfplane. When
two upper or two lower halfplanes are parallel, one of them is redundant and can
be discarded. Halfplanes whose equation is a;x + ¢; > 0 (vertical halfplanes) can be
classified as upper or lower halfplanes by considering the sign of their a; coefficient.
This process will pair up all the halfplanes, except possibly at most two of them (an
upper one and a lower one).

3. Consider the intersection points d; of all the pairs of linear restrictions. Form the
set D; of the z-coordinates of all the intersection points d;, and the set D, of their
y-coordinates.

4. Compute the median value ,, of all the y-coordinates y € Bo U Cy U Dy. Apply the
oracle of Lemma 1 to the horizontal line y = y,,, determining whether the center of
the solution circle lies on, above or below the line. If it lies on the line, the oracle
will find it, and we are done. Else, suppose that the subroutine has determined that
the solution to the general problem lies below the line y = y,,.

5. At that point, we can discard a point p; for each y € B, belonging to the halfplane
opposite to the solution (Figure 4). Take any y € B, (i.e. corresponding to a
horizontal bisector) with y > y,,,. One of the two points p; that define the bisector
must be redundant, namely the lower one, as it is certainly placed closer than the
other to the center of the solution circle, and hence cannot determine it.
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Figure 4: How to discard a point p; for each horizontal bisector lying in the
upper halfplane.

6. Replace C; (respectively D) by its subset C] (D)) containing the x-coordinates
of all the points ¢; (d;) whose y-coordinates y € Cy (Ds) belong to the halfplane
opposite to the solution (in the example, the upper one).

7. Now compute the median value z,, of the z-coordinates z € B; U C] U D}, and
apply the subroutine to the vertical line x = x,,. This determines if the center of
the solution point lies on the line, in which case we are done. If it does not, the
oracle determines on which of the four quadrants the center of the solution circle
lies. Suppose that it lies in the lower right quadrant with respect to the lines y = y,,
and z = z,,.

8. Then, it will be possible to discard a point p; for each x € B; U C] that belongs to
the halfplane opposite to the solution, as well as a linear restriction a;z+b;y+c¢; > 0
for each € D] that belongs to the same halfplane. Let us consider this discarding
process in more detail.

(a) Each x € B; corresponds to a vertical bisector. If < x,,, then one of the two
points p; that define the bisector is redundant, namely the right one, for it is
certainly placed closer than the other to the center of the solution circle and
hence cannot determine it (Figure 5).

solution

=

X=Xm

Figure 5: How to discard a point p; for each vertical bisector lying in the
left halfplane.

(b) Each z € C] with x < z,, corresponds to a point ¢; lying in the upper left
quadrant. So, the positive slope bisector through c¢; does not intersect the
solution quadrant (the lower right one). This means that one of the two points
p; that determine this bisector (in this case, the lower right one) is closer than
the other to the center of the solution circle, and cannot determine it (see
Figure 6).

(¢) Each z € D} with z < x,,, corresponds to a point d; lying in the upper left
quadrant. There are three possible situations for the pair of constraints that
intersect at d;:
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Figure 6: How to discard a point p; for each ¢; lying in the upper left
quadrant.

e The lines determining the two halfplanes have non negative slope: in this
case, both constraints are irrelevant for the solution of the problem and
can be discarded (Figure 7), for they cannot intersect the quadrant that
contains the solution point.

X=Xm

irrelevant T
congtraints Lt

v Y=Ym

solution

Figure 7: Discarding two non negative slope constraints.

e One of the lines determining the two halfplanes has non negative slope: in
this case, the associated constraint is irrelevant and can be discarded for
the same reason as above (Figure 8).
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Figure 8: Discarding one non negative slope constraint.

e Both lines have negative slope. Then, two cases must be considered (Fig-
ure 9):



— If both are lower halfplanes, then the line having greater slope cor-
responds to an irrelevant constraint to the problem, and can be dis-
carded.

— If both are upper halfplanes, then the line having smaller slope cor-
responds to an irrelevant constraint to the problem, and can be dis-
carded.

— The case in which one is a lower halfplane and the other is an upper
halfplane has been eliminated when pairing the halfplanes.

X=Xm i X=Xm
. e
— |irrdevant b
-~-L constraint irrelevant
constraint
solution | solution

Figure 9: Discarding one negative slope constraint.

We have seen that each iteration of the algorithm allows us to discard one point p;
for each horizontal bisector lying in the upper halfplane, another one for each vertical
bisector lying in the left halfplane, and another one for each intersection point ¢; lying
in the upper left quadrant. As for the linear restrictions, the algorithm discards at least
one for each intersection point d; lying in the upper left quadrant. We will prove that
in this process we discard at least a fixed fraction of the input elements, either points or
constraints, before applying the algorithm again to the reduced input.

Let by, b, c1, co, di and ds represent, respectively, the cardinality of the sets By, Bs,
C1, Cy, Dy and D,. Let ¢, and d; represent, respectively, the cardinality of the sets C!
and D}. Consider hy to be the number of y € By that lie in the upper halfplane, h; to be
the number of x € B that lie in the left halfplane, s; to be the number of x € C that
lie in the upper left quadrant, and r; to be the number of x € D] that lie in the upper
left quadrant. With this notation, the number of points p; that are eliminated from the
input is

ho + hy + 81 +171.

Since y,, and z,, are median values, the following inequalities hold:

ho +E1+E1 > %(b2+62+d2), (1)

hi+s1+11 > b+ o+ dy); (2)
together with the equalities:

C1 = Co,

dl = d27

n—+m= 2()1 =+ 2()2 =+ 462 =+ 2d2 (3)



The above relations yield a lower bound for the number of discarded elements from the
input:
2 1 I )
hy+hi+s1+r1 > hy+5(b1 +C +di) >
> h2+%b1+i(52+02+d2) - %h2 ¢
=1hy+ 3b1 4 tbo + tdo + £ (n+m) > = (n+m).

Hence, at least % of the initial elements of the input is discarded. Since the oracle runs
in linear time (by Lemma 1), the cost of each application is linear in the size of the input,
because it only requires computing the median [5, 12]. So, the total complexity of the
algorithm is

T(n+m) < O(n+m)+0(32(n+m))+0((£2)*(n+m))+O0((52)*(n+m))+- - - = O(n+m).
O

Applying Theorem 2 to the constraints determined by the ordered edges of a polygon
we obtain the following Corollary, which improves the best known solution of O((n +
m)log(n + m)) time [6]. In fact, a direct and simple solution is described in [13], but is
omitted here due to the fact that Theorem 2 is a more general result whose proof is based
on the same technique.

Corollary 3 Let P be a convexr m-gon given by its vertices, ordered as they appear on
the boundary. The minimum spanning circle of a set of n points in the plane, with center
constrained to lie in P, can be found in ©(n + m) time.

The technique that we have used to optimally solve the problem of finding the mini-
mum enclosing circle of a set of points with its center constrained to satisfy a set of linear
restrictions, can be applied to a family of problems. In each case, an oracle must be found
that decides in linear time on which side of a given line the solution to the problem lies.
When such an oracle exists, a main algorithm following the scheme of the one proposed
in the proof of Theorem 2 gives the optimal solution. We propose two examples.

Theorem 4 The minimum spanning circle of a set n of points pq,...,p, in the plane,
constrained to be anchored to a fized point q, can be found in optimal ©(n) time.

Proof: First notice that the anchor point ¢ must be external to the convex hull of the set
of points p; (or, at most, it can be placed on a vertex), for the problem to have a solution.
This situation can be detected in linear time by an algorithm of [17], by checking if ¢ is
a vertex of the convex hull of {g,p1,...,p,}. At the same time, the two neighbors of ¢ in
the hull can be obtained. Call them p; and p,.

Therefore, let us suppose that the anchor point ¢ lies in the exterior of the convex hull
(or on one of its vertices). The main algorithm is a simplification of the one proposed in
the proof of Theorem 2, for the input of the problem does not contain linear restrictions,
but only points.

As for the oracle, consider the farthest point Voronoi diagram of {q¢,p1,...,pn} [19].
The center of the minimum spanning circle that we are looking for is located on the bound-
ary of the Voronoi region of ¢. Given any line s, we can solve the s-constrained problem



by computing the intersection of s with the orthogonal bisectors of all the segments ¢p;,
obtaining the intersection of s with the farthest point Voronoi region of ¢q. Notice, also,
that the Voronoi region of ¢ is an unbounded polygonal region delimited by two halflines,
r1 and ry, that are the orthogonal bisectors of ¢p; and gps.

o If the intersection of s with the Voronoi region of ¢ is empty, then the constrained
problem has no solution. The intersection of s with 71 and 7, (the two halflines in
the boundary of the region) allows us to decide on which side of s the region lies
and, with it, on which side of s the solution lies.

e If s intersects the Voronoi region in a non empty segment, the solution to the
constrained problem is the closest point of the segment to point ¢. This point is
used to decide on which side of s the solution of the general problem lies, in a similar
way to that in the proof of Lemma 1. U

Theorem 5 The minimum spanning circle of a set of n points pq,...,p, in the plane,
constrained to be tangent to a given line l, can be found in optimal ©(n) time.

Proof: When the enclosing circle is to be tangent to a fixed line [, the problem is very
similar to the previous one, the only difference being that in Theorem 4 the Voronoi region
of the anchor point ¢ is determined by the orthogonal bisectors of the segment lines ¢p;,
whereas here the Voronoi region of the tangent line [ is determined by parabolas having
the line [ as directrix and the points p; as foci. O

3 Locating Maximin Facilities

In this section, we study two versions of a maximin facility location problem. Geomet-
rically, finding the point that maximizes the minimum distance to a given set of points
in the plane is equivalent to finding the center of the maximum circle enclosed in the
complement of that set. We provide an optimal linear time algorithm that computes the
maximum circle such that all its points satisfy a given set of linear constraints, that is the
maximum circle enclosed in a given intersection of halfplanes. This result was known [1]
for the particular case in which the circle is constrained to lie in a convex polygon given
by the ordered list of its edges, as they appear on the boundary of the polygon. The
solution relies heavily on this order, while the algorithm that we present here applies to
any unordered and possibly redundant implicit description of the polygon as an inter-
section of halfplanes. The possibility of directly approaching the problem through linear
programming was mentioned in [26]. We also provide an optimal linear time algorithm
that solves the equivalent problem on a sphere: find the maximum spherical cap enclosed
in a convex polygon defined on a sphere as the intersection of spherical halfspaces. The
problem is solved by reducing it to a dual minimax problem on the halfsphere.

Theorem 6 The mazimum circle enclosed in the intersection of a set of n halfplanes can
be found in optimal ©(n) time.

Proof: Consider the plane m, where the problem is posed, as imbedded in a three-
dimensional space. Each of the n halfplanes H; is delimited by a line h;. For each
H;, consider the plane 7; through h; that forms with 7 an angle of 45° so that the lower



Figure 10: How to construct the polyhedral region.

halfspace determined by 7; contains H; (Figure 10). The intersection of all these lower
halfspaces is a polyhedral region that satisfies the following property: for each point
r € H;, the distance from x to the line h; equals the vertical distance from z to ;. Hence,
the center of the maximum circle enclosed in the polygon P = N, H; is located in the
orthogonal projection onto 7 of the polyhedral region’s highest point. This point can be
found in optimal ©(n) time by a three-dimensional linear programming algorithm. 0

Let us consider now the equivalent problem on a sphere: no matter if we consider the
Euclidean three-dimensional distance or the geodesic distance on the sphere, the goal is
to find the largest spherical cap that satisfies a set of linear restrictions on the sphere,
that is, that is enclosed in the intersection of a set of halfspaces determined by halfplanes
containing the center of the sphere.

This problem can be reduced to a minimax problem by a polarity transformation.
Consider the center of the sphere to be the origin. Each halfspace through the center of
the sphere can be associated to the point on the sphere which is the intersection with the
external normal ray to the halfspace through the origin (see Figure 11).

0

Figure 11: The polarity associates a point to each plane through the origin.

Each spherical cap C' determines a circular halfcone D with vertex in the origin, which
is also determined by the set of all the planes that are tangent to it. The set of all the
normal rays associated as above to these planes define a new halfcone D*, and hence a
cap C* that we will call polar to C'. Clearly, D and D* are coaxial circular halfcones, and
their respective aperture angles o and o add up to m. The open halfspaces through the
origin that enclose D are exactly those whose external normal ray belongs to D*.

Let us see now how the problem can be solved using this polarity.



Theorem 7 The maximum spherical cap enclosed in a convex polygon defined on a half-
sphere as the intersection of n spherical halfspaces can be found in optimal ©(n) time.

Proof: Consider the planes determined by the edges e; of the polygon and the center of the
sphere. Associate to each of these planes its polar point p;. Consider any spherical cap C'
on the halfsphere and its polar cap C*. The following property holds: C is enclosed in the
polygon P = {ey,...,e,} if, and only if, C* encloses the set of points P* = {p1,...,pn}
(see Figure 12).

Figure 12: The cap is enclosed in the polygon if, and only if, its polar
contains the points.

The relation between the aperture angles of the associated halfcones D and D* affords
a reduction of the problem of finding the maximum cap C enclosed in the polygon P
to the problem of finding the minimum cap C* enclosing the set of points P*. Notice
that this reduction does not require the polygon to be given explicitly, but only as an
intersection of (possibly redundant) spherical halfspaces.

As for the minimax problem, it is known that the smallest cap enclosing a set of n
points on an open halfsphere can be found in ©(n) time [11]. a

It is worth noticing that the polar points to be covered by a minimum cap all lie in a
halfsphere, for it can be proved that the problem of covering a set of n points on a sphere
with a minimum spherical cap has complexity 2(nlogn) in the general case [13].

4 Conclusions

In this paper, we have used the prune-and-search technique to solve the minimax location
problem consisting in locating a point = such as to minimize the maximum distance to n
given points in the case in which the solution point is constrained to satisfy a set of m linear
restrictions, giving rise to an optimal ©(n+m) algorithm. As a corollary, we have proved
that the complexity of the problem, when the solution point z is constrained to lie in an m-
vertex convex polygon, is also ©(n+m). We have also applied the technique with success
to optimally solve in ©(n) time some other constrained minimax location problems, such
as finding the smallest circle enclosing n points, whose boundary is anchored to a given
point or tangent to a given line.

We have also considered maximin problems, in which the goal is to locate a point
x such as to maximize the minimum distance to n given halfplanes. An optimal ©(n)



solution to this problem can be found by reducing it to a linear programming problem
in three dimensions, i.e. to a minimax problem in one more dimension. The analogous
problem on the sphere can also be solved in optimal ©(n) time by a polarity that reduces
it to a minimax problem.

As a conclusion, we have obtained optimal results for some realistic constrained ver-
sions of both minimax and maximin location problems, which illustrates the power of the
prune-and-search technique.
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