Algorithms for Bivariate Medians and a
Fermat-Torricelli Problem for Lines

Greg Aloupis ®* , Stefan Langerman? , Michael Soss "
Godfried Toussaint ?

aSchool of Computer Science, McGill University, 3480 University Street, rm. 318,
Montreal, QC, H3A 2A7, Canada

b Chemical Computing Group, Inc.

Abstract

Given a set S of n points in R?, the Oja depth of a point @ is the sum of the areas of all
triangles formed by @ and two elements of S. A point in R? with minimum depth is
an Oja median. We show how an Oja median may be computed in O(nlog® n) time.
In addition, we present an algorithm for computing the Fermat- Torricelli points of
n lines in O(n) time. These points minimize the sum of weighted distances to the
lines. Finally, we propose an algorithm which computes the simplicial median of S
in O(n*) time. This median is a point in R? which is contained in the most triangles
formed by elements of S.

1 Introduction

The use of multidimensional medians as robust estimators of location has
been studied extensively by computer scientists and statisticians. In general, a
median is the location in R? which maximizes a certain depth definition with
respect to a data set. Desirable properties for a median include invariance
to affine transformations, monotonicity, and a high breakdown point, which
measures how much a data set must be altered to move a median towards
infinity. Applications include data description, multivariate confidence regions,
p-values, quality indices, and control charts [1]. An introduction to the topic
including definitions and properties of the most common medians is given

* Corresponding author.

Email addresses: athens@uni.cs.mcgill.ca (Greg Aloupis),
s1@cgm.cs.mcgill.ca (Stefan Langerman), soss@chemcomp.com (Michael Soss),
godfried@cs.mcgill.ca (Godfried Toussaint).

Preprint submitted to Elsevier Science 6 November 2002

in [2]. For a recent account on the computational complexity of computing
some of these medians, see [3]. For an extensive survey of depth measures
used in nonparametric statistics, see [4]. Below, we include descriptions for
the Oja median [5] and for the simplicial median of Liu [6].

Let S = {s1,...,5,} be a set of data points in R?. The Oja depth of a point 0
in R? with respect to S is the cumulative volume of all simplices formed by 6
and a subset of d elements from S. To find the Oja depth of § in R?, we sum
the areas of all triangles formed by € and two points of S. The Oja median is
any point in R with minimum Oja depth.

The simplicial depth of a point # in R? with respect to S is the number
of closed simplices formed by d 4+ 1 elements of S that contain 6. To find
the simplicial depth of # in R?, we must find how many triangles formed by
triples of points in S contain #. The simplicial median is any point in R? with
maximum simplicial depth.

Both medians are invariant to affine transformations. It has been shown [7]
that the Oja median may have a small breakdown point for certain data
sets, although previously it was suspected that its breakdown point was near
optimal. We are not aware of any published results concerning monotonicity
or the breakdown point of the simplicial median.

Rousseeuw and Ruts [1] presented an algorithm for computing bivariate sim-
plicial depth in O(nlogn) time. The same technique was discovered indepen-
dently by Khuller and Mitchell [8] and by Gil, Steiger and Wigderson [9]. A
matching lower bound was presented in [10]. Rousseeuw and Ruts mentioned
that their algorithm leads to a straightforward computation of the simpli-
cial median in O(n®logn) time since only the O(n*) intersection points of
segments between pairs of data points need to be checked. They also briefly
described how their methods can be used to speed up the algorithm of Ni-
inimaa, Oja and Nyblom [11] for computing the Oja bivariate median from
O(n®) to O(n°logn) time. This time complexity was improved by Aloupis,
Soss and Toussaint [12,3]. They proved that the Oja depth function is convex
and that the minimum is on an intersection of lines formed by data points.
The minimum depth on a line could be computed in O(n?) time, and in this
time the side containing the median could be determined. This allowed the
median to be found with O(n) binary searches, in time O(n?®logn).

Roy Barbara [13] referred to the set of points with minimum sum of weighted
distances to n given lines as the Fermat-Torricelli points of the n lines. Fermat
and Torricelli are known for first solving the problem of finding a point which
minimizes the sum of distances to three given points [14-16]. The generalized
problem with n points also bears their name, though it is also known as the
problem of computing the geometric 1-median. For other generalizations of

the Fermat-Torricelli problem, see [17,18].

Barbara proved that a Fermat-Torricelli point of n lines may always be found
on one of the intersections of the lines. He then suggested computing the
weighted sum for each intersection point, which is straightforward to do in
O(n®) time using O(n) space.

In section 2 we propose an optimal O(n) time algorithm to find a Fermat-
Torricelli point of n lines. It is not difficult to see that this also leads to an
O(n?) time algorithm for computing the Oja median of n points. We further
reduce this complexity to O(nlog®n) in section 3, with certain techniques
developed recently by Langerman and Steiger [19]. Finally, in section 4 we
present an algorithm for computing the simplicial median in O(n*) time and
O(n?) space.

2 The Fermat-Torricelli Points of n Lines

As mentioned above, Barbara [13] proved that it suffices to consider the in-
tersections of n lines in order to find their Fermat-Torricelli point. Here, we
provide a shorter proof:

Lemma 1 One of the intersection points of a set L of n lines must be a
Fermat-Torricelli point of L.

PROOF. Each cell formed by the arrangement of the n lines can be consid-
ered to be a linear program, where the feasible region is determined by the
edges of the cell, and the function to be minimized is the weighted sum of dis-
tances to the n lines. Because this is a linear function, if a Fermat-Torricelli
point is located within a given cell, one of the vertices of the cell must also be
a Fermat-Torricelli point. O

Fact 1 The sum of two or more linear functions is linear.
Fact 2 The sum of two or more piecewise-linear functions is piecewise-linear.
Fact 3 The sum of two or more convex functions is convex.

Let Dr(p) denote the function whose value at a point p in the plane is the
sum of weighted distances from p to a set L of n lines. In other words we have

Dy(p) =Y De(p)

lel

where Dy(p) is the distance from p to a line /. The minimum value D* of the
function Dy, occurs at a Fermat-Torricelli point of L, by definition.

Lemma 2 The function Dy is piecewise-linear and convex, and the linear
pieces correspond to the cells of the arrangement of L.

PROOF. Dy(p) is a sum of piecewise-linear convex functions, so the proof
follows from facts 1-3. O

Lemma 3 The minimum value of Dy, along any line £ may be found in O(n)
time. In the same time bound, we can determine which side of £ contains a
Fermat-Torricelli point.

PROOF. Compute the intersection points of ¢ with all lines of L in O(n)
time. Let the weight of any given line in L be sin(«), where « is the acute
angle formed between the line and ¢. Thus for any point on ¢, D; becomes a
weighted sum of distances to all intersection points on ¢. In other words, the
point p with minimum value of Dy, along ¢ is equal to the weighted univariate
median of n points, which can be computed in O(n) time. p is a point where
¢ intersects one or more lines of L.

Since Dy, is convex, by computing a gradient vector at p in O(n) time, we can
determine which side of £ contains D*. This is done as follows: for each line m
in L which does not contain p, form a unit vector orthogonal to m and directed
away from p. This represents the optimal direction to move from p in order to
minimize the distance to m. Let g be the sum of these vectors. If only one line
in L contains p, then we project g onto this line. We know that D decreases
from p in the direction of this projection, and thus we know which side of ¢
contains D* (if the projection has zero magnitude then p is a Fermat-Torricelli
point, by convexity). If, instead, p is on the intersection of two or more lines
in L, we then repeat the entire procedure on two new parallel lines which are
located symbolically above and below £. The minimum on each of these lines
will intersect only one line in L. Therefore one of them will indicate that D*
is located strictly to one side of ¢, or they will indicate that D* is on ¢ which
means p is a Fermat-Torricelli point. O

Our algorithm for computing a Fermat-Torricelli point of n lines continuously
shrinks a region, inside which we know that a Fermat-Torricelli point is lo-
cated. This is done by carefully selecting certain lines and determining which
side of these lines contains the point. While doing so, we implicitly obtain the
same information for larger sets of lines in L. Explicit knowledge of the bound-
aries of this region is not necessary. At the end of the algorithm, we know, for
all but a constant number of the lines in L, on which side a Fermat-Torricelli

point lies. Thus by checking the intersection points of a constant number of
lines, we can find a Fermat-Torricelli point.

Let K be the set of lines in L for which we know on which side a Fermat-
Torricelli point lies. Initially, K is empty. Let U be the complement of K.
We can compute a partial gradient belonging to the lines in K. This partial
gradient may be updated in constant time for each new line introduced to K.
Thus we can use only O(|U|) time to determine which side of a line contains a
Fermat-Torricelli point, by slightly modifying the procedure of lemma 3. The
modification merely involves taking the partial gradient into account while
computing the point p on a line. Essentially the lines in K are substituted by
a single line, and contribute a single weight.

Fig. 1. Lines passing through the shaded region are in U.

In figure 1 the solid lines are in K, so we know that a Fermat-Torricelli point
is located within the shaded region. This means that we may express the
weighted distance to the solid lines as a gradient vector. This gradient is valid
within the entire shaded region. Regardless of where the Fermat-Torricelli
point lies, the gradient tells us which is the optimal direction to move in order
to minimize the sum of distances to the solid lines. Once a line is placed in K
we only need to update the gradient in constant time, never having to worry
about this line for the remainder of our algorithm. Note that even though we
are continuously shrinking the shaded region, there is no explicit knowledge
of its boundaries, and some intersection points of lines in U may be outside
the shaded region but still be processed. However, the total gradient vector
will only be computed at intersection points within the shaded region, where
the partial gradient is valid.

We say that two lines {£4,¢5} form an equitable partition of a set L of n lines
in R? if each quadrant determined by ¢4 and /5 is guaranteed not to intersect
roughly a quarter of the lines in L. Langerman and Steiger [19] have shown
that an equitable partition always exists and may be computed in O(n) time.
They do this by considering the dual plane, where the n lines are mapped
to n points. After constructing a vertical line v which splits the dual points
evenly, they compute a ham-sandwich cut h. Thus the lines v and h form
quadrants in the dual plane, each containing at least 7§ points. If A is the in-
tersection of v and h, and B is a point at infinity on h, then the lines £4 and /5
in the regular plane, which have A and B as duals, form an equitable partition.

Algorithm FT

(1) Compute an equitable partition {£4,lp} of U.

(2) Find which quadrant determined by the lines /4 and /g contains a Fermat-
Torricelli point.

(3) Determine which lines in U do not intersect the quadrant.

(4) Add to K the lines found in step 3, and update the gradient vector
representing the distance to all lines in K.

(5) Go to step 1 if |U] is still larger than some constant. Otherwise evaluate
the function Dy, on each intersection point of the lines in U.

Steps 1, 2 and 3 take O(|U|) time in each iteration, and step 4 takes O(n)
time in total. Since a constant fraction of the lines is pruned by each iteration,
we have the following theorem:

Theorem 4 Algorithm FT computes a Fermat-Torricelli point of n lines in
O(n) time.

3 The Oja Median

In this section we provide an algorithm for finding the Oja median of n points
in O(nlog®n) time and O(n) space. Before doing so, we point out that the
technique of algorithm F'T may also be used to find the Oja median in O(n?)
time.

Suppose S = {s1, 5,...,5,} is a set of data points in R?, L is the set of lines
formed by all pairs of points in S, and A is the arrangement of L.

Lemma 5 The Oja depth of a point 0 with respect to S can be expressed as
a weighted sum of the distances from 6 to each line in L.

PROOF. By definition, Oja depth is the sum of the areas of all triangles

(0,s4,8;), where 1 < i < j < n. The area of each triangle may be expressed
as 3bh, where b is the distance from s; to s; and h is the orthogonal distance
from the point 6 to the line 5;5;. O

Corollary 6 To compute the Oja median of a set of points S it suffices to
consider only the vertices of corresponding arrangement A.

PROOF. The proof follows from lemma 1. O

Corollary 7 The Oja depth function is conver.

PROOF. The proof follows from lemma 2. O

Since the Oja depth function can be described as a weighted distance function
to O(n?) lines, we can use algorithm FT to obtain the Oja median in O(n?)
time.

Let fs(p) : R?> — R be a function for which:

e The minimum of fg is on a vertex of A.
e Given a point q, in time T'(n) we can find a halfplane H determined by a
line through a where fs(q) > fs(a) for all ¢ € H.

Langerman and Steiger [19] have proved the following theorem:

Theorem 8 The minimum f* of fs and a vertex x of A with fs(x) = f* may
be computed in O(T(n)log’n + nlog®n) time.

We prove that the bivariate Oja depth function, for which the minimum is the
Oja median, satisfies the properties of fs, with 7'(n) = O(nlogn).

The following lemma concerns computing the gradient of the Oja depth func-
tion at a point in O(nlogn) time. Specifically, we describe a simplified version
of a technique proposed by Rousseeuw and Ruts [1].

Lemma 9 The Oja gradient at a point 6 may be computed in O(nlogn) time.

PROOF. Sort the data points {s1,..., s,} radially in an anti-clockwise order
about 0. Let v; be the vector from 6 to s;. Every pair of data points s;, s;
contributes a vector to the gradient. The magnitude of this vector is equal to
the distance from s; to s; and it is directed orthogonally from gTs; away from
f. Thus we wish to sum all vectors {Ts;, where s; is in the open halfspace to

the left of v;. The resulting vector must then be rotated clockwise by an angle
of . In figure 2 the vectors summed for ¢ = 1 are shown dashed.

Fig. 2. Oja gradient calculation: the vectors summed for s;.

The sum of these vectors may be expressed as

(vg —v1) + (v3 —v1) + (v4 — v1) + (v5 — V7).

In general, if k& points are to the left of v;, the sum of vectors A; is

i+k
Ai = —k'Ui + Z (] (1)

j=i+1

where j is taken modulo n. A; may be computed in O(n) time. Let £ be a line
through 6 and s;. Rotate ¢ counterclockwise through the sorted list of points.
Every time £ encounters a point, we add or subtract its vector from the vector
sum in equation 1, depending on whether the point is entering or exiting the
open halfspace to the left of £. We also update k and increment 7. Since each
vector will be added and subtracted once, this process takes O(n) time to
compute all remaining A;. Therefore the time complexity of this procedure is
dominated by the initial sorting step. O

We can use figure 2 to give an example of the above procedure. Initially we
have A; = —4v; +V, where V is the vector sum of vq,v3,v4,v5. When we sweep
a line through the points in a counterclockwise direction, we first encounter
$9. Thus we subtract vy from V and compute Ay = —3wvs + V. When we reach
s4, V will be equal to vs. After s, the rotating line will cross sg and s7, so vg
and v; are added to V. Therefore A5 = —2v5 + (vg + v7).

At any point p in the plane, we can compute the Oja gradient in O(nlogn)
time. The line orthogonal to the gradient determines a halfplane inside which
the Oja depth of any point cannot be less than the depth of p. Thus the Oja
depth function satisfies both conditions required by theorem 8, and we obtain
the following theorem:

Theorem 10 The bivariate Oja median may be computed in O(nlog® n) time.

Lemma 11 The points in R? with minimum Oja depth form a convex polygon
with O(n) vertices on its boundary.

PROOF. Since the graph of the Oja depth function is a convex polyhedron,
the minimum value must be at a vertex, a line segment or a face of the polyhe-
dron. If we project these objects back onto the plane, we obtain an intersection
point, a boundary segment on a cell, or a single cell in the arrangement of L.
Every data point can contribute at most two lines to the boundary of a cell, so
every cell has O(n) segments on its boundary. Thus the number of intersection
points with minimum Oja depth is O(n). O

4 The Simplicial Median

Let S be a data set of n points in R?, and I be the set of line segments
formed between every pair of points in S. In this section we provide algo-
rithms for computing the simplicial median of n points. Algorithm Simp-Med
uses O(n*logn) time and O(n?) space, or alternatively O(n*) time and space.
This algorithm essentially processes each segment in /, scanning its sorted in-
tersection points with other segments in /. If we perform a topological sweep
instead of processing each segment separately, we can reduce the complexity
of computing the simplicial median to O(n*) time and O(n?) space.

Lemma 12 7o find a point with maximum simplicial depth it suffices to con-
sider the intersection points of segments in I.

PROOF. Consider the arrangement of cells whose boundaries are segments
in I. All points in the interior of a given cell must have equal simplicial depth.
Any point on the boundary of this cell must have depth at least equal to that
of points in the interior. Finally, any vertex of the cell must have depth at
least equal to that of any point on an adjacent boundary. These vertices are
the intersection points of segments in /. O

To simplify the description of algorithm Simp-Med for computing the simpli-
cial median, assume that S is in general position, in the sense that no three
points are collinear. Later we explain how this assumption may be removed,
if desired, without influencing the time or space complexity.

Algorithm Simp-Med

(1) Calculate the simplicial depth of every data point in S.

(2) Compute the number of points which are strictly to one side of each
segment in I (each side separately).

(3) For every segment £ in I,

(a) compute and sort the intersection points of all other segments with
¢, if there are any.

(b) let MAX be the greatest depth among the endpoints of £.

(c) if there exist other intersection points on ¢, calculate the simplicial
depth d of the intersection point adjacent to one of the endpoints.
Update MAX (if MAX < d, MAX«+ d).

(d) continue through the sorted list: every time an intersecting line is
left behind, subtract from d the number of points strictly behind
the line. Every time a line is encountered, add to d the number of
points strictly ahead of that line. Update MAX after encountering
each intersection.

(4) Exit with the greatest MAX value found over all segments, and the as-
sociated intersection point.

Figure 3 illustrates the logic behind step 3 of algorithm Simp-Med. Once we
know the depth of an intersection point (step 3c), we can compute all other
depths along the given segment, each in constant time. Each intersecting seg-
ment forms a triangle with every point strictly to one side. Thus every time
we encounter a segment, we enter as many triangles as there are points on
the other side of this segment. Every time we leave a segment behind, we
exit triangles formed by that segment and each point on the other side. So
in figure 3, suppose we are moving from left to right along the current line
segment, and just before encountering segment ¢, we have some value d = 10.
Upon encountering ¢, we can see that we are now inside three new triangles:
one for each point to the right of ¢. As soon as we move to the right of ¢, we
will no longer be inside five triangles. So on ¢, d = 13, and immediately after,
d = 8.

In case we have multiple segments intersecting the current line at the same
point, we may form a temporary list of these segments. When the last one is
encountered, we process the list: First we add the points to the right of each

line, then we subtract all the points to the left of each line.

Theorem 13 Algorithm Simp-Med computes the bivariate simplicial median

10

® ®
CURRENT

Fig. 3. Algorithm Simp—Med: the current line segment traversed, and an intersecting
segment ¢.

of n points in O(n*logn) time and O(n?) space or alternatively in O(n*) time
and space.

PROOF. All intersection points are checked, so by lemma 12 a point of
maximum simplicial depth is found. Step 1 takes O(n?logn) time in total since
the calculation of simplicial depth for a point takes O(nlogn) time [1,8,9].
Step 2 is straightforward to do in O(n?®) time by brute force. Step 3a takes
O(n%logn), 3b is constant, 3c is O(nlogn), and 3d takes O(n?) time (O(1) per
intersection point). Thus step 3 takes O(n*logn) once run for every segment,
and dominates the time complexity of this algorithm. The space used is O(n?)
for steps 2 and 3a. If we compute the arrangement of I in O(n*) time and
space as preprocessing, then step 3a is no longer necessary. In this case, the
preprocessing step would dominate the complexity of the algorithm. O

Instead of performing step 3 in algorithm Simp-Med, we can perform a topo-
logical sweep, which takes O(n?) time and O(n) space for n lines [20]. Thus
instead of processing each segment sequentially, we process all O(n?) segments
in parallel. Every time the sweep curve encounters an intersection point on
some segment, we process the point in the same way as step 3d. Thus we have
the following theorem:

11

Theorem 14 The simplicial median of n points may be computed in O(n?)
time and O(n?) space.

By taking advantage of the structure of the lines in this problem, we can
reduce the time complexity of certain steps in the above algorithm, although
the overall complexity is only improved by a constant factor. For example,
in step 2 we can compute the halfspace depth of every data point, but store
the points counted for every halfplane considered. We remind the reader that
the halfspace depth of a point p with respect to a set of n points is the
minimum number of points contained in any open halfplane determined by a
line through p. Halfspace depth may be computed in O(nlogn) time with a
simple algorithm by Rousseeuw and Ruts [1] (for a matching lower bound, see
[21,10]). The algorithm takes O(n) time after sorting the points radially about
p. It is possible to sort all points about each point in O(n?) time [22,23], so
the halfspace depth procedure then takes only O(n) time per data point. This
means that the time complexity of step 2 reduces to O(n?). The same applies
for computing the simplicial depth of all data points in step 1.

Finally we explain how the general position assumption may be removed.
Steps 1 and 2 are not affected. While performing step 3a for some line /,
if we encounter an intersection point which happens to be a data point, we
can simply stop processing ¢ and go to the next segment. We may do this
because the intersecting data point will form segments with both endpoints
of 7, so all points on ¢ will be processed anyway. This leaves one more case
to consider. Suppose that if we extend an intersecting segment ¢ we will find
¢ collinear points. We can determine this easily since we know the number
of points strictly to the side of ¢. It follows that we must also have more
intersecting segments collinear with ¢. If there are m such segments, then we
claim that on this intersection point we are inside @ triangles, apart from
those considered by the regular algorithm. We arrive at this number from the
following argument: With the endpoints of an intersecting segment and one of
the other ¢ points, we can form a triangle containing the intersection point.
Therefore using the two endpoints we can form ¢ — 2 such triangles. Suppose
that x is the third point for one of these triangles. Then = and one of the
endpoints will form another intersecting segment. So the same triangle will be
counted exactly one more time when the other segment is processed. Therefore
we have ¢ — 2 triangles counted for each of the m segments, and we multiply
by a factor of % to avoid counting each triangle twice.

Acknowledgements

This research was started at the Workshop on Applications of Computational
Geometry in Statistics, organized by Godfried Toussaint at the Bellairs Re-

12

search Institute of McGill University in Barbados, February 1999. We thank
all the participants for helpful discussions. Prosenjit Bose, Anna Bretcher,
Carmen Cortes, Francisco Gomez, Michael Houle, Henk Meijer, Mark Over-
mars, Suneeta Ramaswami, Peter Rousseeuw, Toni Sellares, Diane Souvaine,
Ileana Streinu and Anja Struyf. We also thank three anonymous referees for
their valuable comments.

References

[1] P. Rousseeuw, I. Ruts, Bivariate location depth, Applied Statistics 45 (1996)
516-526.

[2] C. Small, A survey of multidimensional medians, International Statistical
Review 58 (1990) 263-277.

[3] G. Aloupis, On computing geometric estimators of location, M.Sc. thesis, McGill
University (2001).

[4] R. Liu, J. Parelius, K. Singh, Multivariate analysis of data depth: descriptive
statistics, graphics and inference, Annals of Statistics 27 (3) (1999) 783-858.

[6] H. Oja, Descriptive statistics for multivariate distributions, Statistics and
Probability Letters 1 (1983) 327-332.

[6] R. Liu, On a notion of data depth based upon random simplices, The Annals
of Statistics 18 (1990) 405-414.

[7] A. Niinimaa, H. Oja, M. Tableman, The finite-sample breakdown point of the
Oja bivariate median and of the corresponding half-samples version, Statistics
and Probability Letters 10 (1990) 325-328.

[8] S. Khuller, J. Mitchell, On a triangle counting problem, Information Processing
Letters 33 (1989) 319-321.

[9] J. Gill, W. Steiger, A. Wigderson, Geometric medians, Discrete Mathematics
108 (1992) 37-51.

[10] G. Aloupis, C. Cortes, F. Gomez, M. Soss, G. Toussaint, Lower bounds for
computing statistical depth, Technical Report SOCS-01.1, School of Computer
Science, McGill University, (to appear in: Computational Statistics and Data
Analysis) (February 2001).

[11] A. Niinimaa, H. Oja, J. Nyblom, Algorithm AS 277: The Oja bivariate median,
Applied Statistics 41 (1992) 611-617.

[12] G. Aloupis, M. Soss, G. Toussaint, On the computation of the bivariate
median and a Fermat-Torricelli problem, Technical Report SOCS-01.2, School
of Computer Science, McGill University (February 2001).

13

[13] R. Barbara, The Fermat-Torricelli points of n lines, Mathematical Gazette 84
(2000) 24-29.

[14] C. Gro8, T. Strempel, On generalizations of conics and on a generalization of
the Fermat-Torricelli problem, American Mathematical Monthly 105 (8) (1998)
732-743.

[15] P. de Fermat, Abhandlungen iber maxima und minima, Ostwalds Klassiker der
exacten Wissenschaften, M. Miller (ed) 238.

[16] G. Loria, G. Vassura (Eds.), Opere di Evangelista Torricelli, Vol. 1, Faenza,
1919.

[17] L. Dalla, A note on the Fermat-Torricelli point of a d-simplex, J. Geom. 70
(2001) 38-43.

[18] Y. Kupitz, H. Martini, Geometric aspects of the generalized Fermat-Torricelli
problem, Intuitive Geometry, Bolyai Society Math Studies 6 (1997) 55-127.

[19] S. Langerman, W. Steiger, Optimization in arrangements, Technical Report
SOCS-02.7, School of Computer Science, McGill University (2002).

[20] H. Edelsbrunner, L. Guibas, Topologically sweeping an arrangement, Journal
of Computer and System Sciences 38 (1989) 165-194.

[21] S. Langerman, W. Steiger, Computing a maximal depth point in the plane, in:
Japan Conference on Discrete and Computational Geometry, November 2000.

[22] D. Lee, Y. Ching, The power of geometric duality revisited, Information
Processing Letters 21 (1985) 117-122.

[23] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag,
Berlin, 1987.

14

