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1. INTRODUCTION. In a planar four-bar linkage (quadrilateral) the
angles of the vertices are allowed to change, but the lengths of the edges are
preserved during any motion. Consider, for example, the four-bar linkage in
Figure 1, where A and B are fixed in the plane. Rotating the bar AD about
A causes the bar BC' to rotate about B.

[Figure 1 about here]

Such a four-bar linkage has been studied for a long time in the field of
kinematics [6], where AD is called the driver, 6 is the input angle, and ¢ is the
output angle. In this setting only three bars move. Indeed, in the nineteenth
century the four-bar linkage was often called the three-bar linkage [4], [23].
If the driver link AD is much shorter than the other three links, then it is
free to make full 360 degree turns. On the other hand, if the “floating” link
CD is much shorter than the others, the motions of the input and output
links are severely restricted. Depending on the relative lengths of the four
bars, there are twenty-seven different types of planar four-bar linkages that
fall into eight basic categories [17].

In kinematics the main interest has been to use four-bar linkages to gen-
erate curves by converting the circular motion of the driver link AD to other
types of motions [17]. One of the earliest such linkages (the so-called Watt
linkage) was patented by the engineer James Watt in 1784 [15]. It was de-
signed to produce nearly straight lines and applied to his steam engines. The
Watt linkage is depicted in Figure 2, where AD acts as the fourth link. The
point P, midway between B and C', moves vertically in a nearly straight line
in the neighbourhood of the position shown.

[Figure 2 about here]
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Figure 1: A four-bar mechanism often used in kinematics.

Figure 2: The Watt linkage for nearly straight line motion.



Figure 3: Tchebychef’s linkage for nearly straight line motion.

The work of Watt, with its potential for applications in mechanics, gen-
erated a flood of activity in the design of mechanisms for generating approx-
imately linear motion. The first mathematician to attack the problem was
Tchebychef, a professor at the University of St. Petersburg. His linkage
(circa 1850) is depicted in Figure 3, where again AD acts as the fourth link.
Here, the point P midway between C' and B moves horizontally in a nearly
straight line [17].

[Figure 3 about here]

Another mechanism was proposed by Roberts [23] in 1875. Roberts’s
linkage is radically different from the designs of Watt and Tchebychef, in
that the curve is drawn with the aid of the apex of a triangle (the so-called
coupler) whose base is attached to the “floating” edge of the linkage. The
linkage of Roberts is seen in Figure 4. The point P, the apex of triangle
BC P, moves horizontally in a nearly straight line [17]

[Figure 4 about here]

The foregoing linkages can be used to generate a variety of interesting
non-linear curves by moving the fixed points A and D closer or further apart,
or by changing the lengths of the links. If the Watt linkage is allowed to
execute its complete motion, the point P traces out a figure known as Watt’s
curve. A special case of this curve is the well-known lemniscate of Bernoulli.



Figure 4: Roberts’s linkage for nearly straight line motion.

Furthermore, if the point P is moved away from the center of the link on
which it lies, one obtains a more asymmetric variant of Watt’s curve, such
as the one depicted in Figure 5. Note that the asymmetric figure eight and
the circle in which it is enclosed are both part of the curve!

[Figure 5 about here]

A coupler attached to the “floating” edge of the linkage allows the gen-
eration of coupler curves of even greater complexity and variety [8]. The
Hrones-Nelson book [12] illustrates more than seven thousand different forms
of the coupler curve! A particularly simple coupler, depicted in Figure 6, is
obtained by extending the segment DC' to a point P so that CP = C'B, and
DP is a single rigid bar. If BC'= CD and AB = AD the resulting isoceles
linkage provides an alternate method to generate Bernoulli’s lemniscate.

[Figure 6 about here]

The most complicated looking curves are obtained when the coupler is a
triangle, as in Roberts’s linkage for approximate straight-line motion. With
links of suitable lengths and a triangle of suitable size one obtains the curve
f with three self-intersections represented in Figure 7. This curve is called
the three-bar sextic curve by Morley [21] and received much attention in the
late nineteenth and early twentieth centuries.

[Figure 7 about here]
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Figure 5: An asymmetric variant of Watt’s curve.

Figure 6: A four-bar linkage with a coupler C'P that traces Bernoulli’s lem-
niscate.



Figure 7: The general sextic coupler curve.

In more recent years there has been growing interest among mathemati-
cians and biologists in describing and visualizing the configuration spaces of
these linkages [14], [22], [19]. The configuration space of a linkage is the to-
tality of all its admissible realizations. As an example, consider the four-bar
linkage in Figure 1 with link AB fixed and assume that it is a trapezoidal
linkage with DA = AB = BC =1 and DC < 1. Such a linkage is often
described in terms of the two angles 6 (the input angle) and ¢ (the output
angle) that the rotating links make with the z-axis (the so-called transmis-
sion function). In [22] and [19] it is proposed to visualize the configuration
space of the linkage as a curve in the two-dimensional space of the input
and output angles. Such a curve for the trapezoidal linkage is pictured in
Figure 8, where the angles § and ¢ vary from zero to 27. The curves marked
b are for a linkage with the length of C'D =~ 0.85, whereas those marked
a have CD = 0.42. It is imediately evident from Figure 8 that the curve
for such a linkage is made up of two disconnected pieces, implying that the
configuration space consists of two disconnected components. Thus there are
two configurations of the four-bar linkage with these link lengths such that
the linkage cannot move from one configuration to the other while remaining
in the plane, without taking the linkage apart.

[Figure 8 about here]
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Figure 8: Visualization of the trapezoidal four-bar linkage via its transmission
function.

As the preceding discussion suggests, the motion of the planar four-
bar linkage is well understood and equations describing how any one angle
changes as a function of another are readily available [4], [11], [23]. Although
the motions of the quadrilateral’s edges relative to each other do not change
when we fix different edges, the behavior with respect to the fixed edge can
change radically. For example, as pointed out earlier, in a linkage such as
that shown in Figure 1 but with DC' much shorter than the other links and
AB fixed, the motion of the linkage is severely restricted. Imagine fixing
AD instead of AB. Link DC may now realize full rotations about D. This
process of changing the fixed edge in a given four-bar linkage is called in-
version and gives much insight into the overall behavior of the linkage [6].
Additional insight is obtained by analyzing the linkage with a type of in-
version that is used frequently in robotics, where it is called a line-tracking
motion [16]. Consider the four-bar linkage with vertices A, B, C, and D in
counterclockwise order as illustrated in Figure 9. Rather than fixing an edge
of the linkage, we fix a vertex, say A, and a half-line starting at A and pro-
ceeding through the vertex C' opposite A. A line-tracking motion is realized
by translating C' along this half-line.

Whereas in the kinematics literature the linkage is analyzed in terms of
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Figure 9: The three types of four-bar linkages: (a) convex, (b) concave, and
(c) crossing.

how one angle varies as a function of the angle of an adjacent vertex, one
can equivalently analyze the linkage in terms of the lengths of the diagonals.
Consider first a two-bar linkage chain ABC'. Propositions 24 and 25 of Book
1 of Euclid’s Elements state that the internal angle at B in triangle ABC
increases if and only if the distance between its endpoints A and C also
increases [7]. This property of a two-bar chain linkage is also known as the
caliper lemma [26]. Returning to Figure 9a we see that angle ADC increases
if and only if diagonal AC' increases, and angle DAB increases if and only
if diagonal BD increases. Therefore, instead of examining the behavior of
angle DAB relative to angle ADC', we may examine how diagonal DB varies
as diagonal AC changes. In the following sections we will make copious use
of this caliper lemma without bothering to refer to it every time it is invoked.

[Figure 9 about here]

The fundamental geometric diagonal-property of four-bar linkages may be
expressed as follows (it is assumed that the linkage is in general position in
the sense that no three of its vertices are collinear): for convex and crossing
four-bar linkages one diagonal increases if and only if the other decreases;
for simple nonconvex linkages one diagonal increases if and only if the other
also increases.



Although the explicit statement of this property may be novel, the result
itself is not new. It is implicit in the complicated equations found in most
kinematics books that relate adjacent angles of the linkage [17]. In fact,
explicit elementary proofs of the diagonal-property have been published for
both convex [1] and simple nonconvex [3] linkages. In this article several novel
and simple proofs of the diagonal-property for all three types of linkages are
presented.

For applications of the four-bar linkage to many areas of science and en-
gineering the reader is referred to a rich literature. Four-bar linkages form
fundamental components of many machines [6], [12], [17] and biological mech-
anisms [22].

For example, the convex four-bar linkage is popular as a rear suspension
frame of mountain bicycles. One such design is depicted in Figure 10. The
rear portion of the bicycle forms a four-bar linkage ABC D, where A is the
location at which the rear wheel is attached. If the front of the bicycle is
considered fixed, then so is the link BC'. Therefore D is free to rotate about
C, and A is free to rotate about B. A spring connecting f on the front
portion of the bike to e on link C'D of the linkage acts to dampen the motion
of A, thus providing shock absorption.

[Figure 10 about here]

The crossing four-bar linkage is present in the human knee joint, where
the anterior and posterior cruciate ligaments connecting the upper femur and
the lower tibia cross each other, as depicted in a lateral view in Figure 11.
Here the femur and tibia play the role of the links C'B and AD, respectively,
in the Tchebychef linkage. This configuration allows the femur to roll on the
tibia, thus reducing friction. Some artificial knee joint prosthetics also use
the crossing four-bar linkage in their designs [10].

[Figure 11 about here]

The concave four-bar linkage is also found in a large variety of biological
mechanisms, especially the feeding apparatus of many fishes [22]. For exam-
ple, the horse-mackerel incorporates an isoceles, force-amplification linkage
depicted in a ventral view in Figure 12. In this linkage AB = AD and
BC = CD. If we consider A to be fixed on the z-axis, then muscles move
C either left or right also along the z-axis, in a line-tracking motion. A
horizontal force applied at C' results in an amplified vertical force at B and
D.



Figure 10: A convex four-bar linkage rear suspension for mountain bikes.

Figure 11: The crossing four-bar linkage in the human knee joint.
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Figure 12: The concave isoceles four-bar linkage in the feeding mechanism
of the horse-mackerel fish.

[Figure 12 about here]

The four-bar linkage also offers a relatively simple motion that forms
a primitive operation useful for proving more general motions for the re-
configuration of complex multilink linkages. Such linkages serve as models
for robot arms [16], [5], knots [20], and molecules arising in both polymer
physics [30], [27] and molecular biology [9]. In addition, such primitive mo-
tions are used in proving geometric properties about polygons in general [24],
[29]. For example, a common problem that arises in these applications is:
given two configurations of the same n-bar linkage in d > 2 dimensions, is it
possible to reconfigure one into the other? Several variants of the problem
are obtained by specifying which motions are allowed and which constraints
must be satisfied. In [24], [20], and [16] the links of the linkage are allowed
to self intersect during reconfiguration, whereas in [3] and [5] they are not.
The standard technique for establishing that one configuration may be trans-
formed into another is to show that any configuration may be transformed
into a canonical configuration. One can then follow the path from the first
configuration to the canonical configuration, and from there backwards to
the second configuration. An attractive canonical configuration for a link-
age is one in convex position. Thus the crucial problem becomes: given a
polygonal linkage P = (p1,p2, ..., ) in d dimensions, specify a sequence of
motions that transforms P into a convex polygon in some plane. Here, the
p; represent the vertices of the polygon, in the same way that the letters A,
B, C, and D did in the preceding for the special case of the four-bar linkage.
One of the steps repeatedly used in [24] to convexify the linkage P identi-
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Figure 13: Convexifying a barbed polygon with repeated application of the
four-bar mechanism.

fies a portion of P that forms a four-bar linkage, and then convexifies this
four-bar portion. To initialize the overall procedure, consider the first three
links of the linkage: p1, pa, p3, ps- Pretend for the moment that (py, py) is also
a link. Therefore Q = (p1,p2, ps3,ps) is a spatial quadrilateral. If @ is not
planar, then make it so with a pivot along one of its two diagonals. If () is
not convex, consider it as a four-bar linkage with the diagonal (py, ps) as the
fixed edge (the rest of the polygon is connected to the vertices of this edge,
p1 and py). This four-bar linkage may now be convexified by rotating one of
the bars incident to the fixed phantom edge (p1,ps). This procedure yields
a plane convex quadrilateral with possibly many more (as yet unexamined)
edges connecting ps to p;. The remaining edges are processed one at a time
as follows. Advance one edge to ps to introduce triangle T = (p1,p4,p5). I T
is not coplanar with the quadrilateral @), then pivot @ about diagonal (py, ps)
to make it so. The resulting plane pentagon must now be convexified if it is
not convex. Thus every time an edge is advanced, a triangle is “glued” to a
growing polygon that is maintained to be convex in some plane.

[Figure 13 about here]

Figure 13 shows one case of this generic step when the vertex py, is intro-
duced. The portion of the linkage processed thus far, P, 1 = (p1,p2, ..., Pk_1),
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forms a plane convex polygon. The new vertex p, introduces a triangle
(p1,Pr_1,pk) separated from Py ; by the line L. A convex polygon with a
triangle attached to one of its edges in this way is called a barbed polygon.
In the case depicted in Figure 13, the polygon Py = (p1,pe, ..., pr) has two
concave vertices at p; and pg_;. Therefore one of these, say p;, may be
selected for convexification. To this end, insert a phantom edge (po,Pr—1)
and consider the polygon P' = (py,ps,...,pk—1) as a rigid body attached
to (p2,pk—1). The portion of P not yet processed, P" = (pg,Pr+1,---,P1),
is considered to be rigidly attached to (pg,p1). The shaded quadrilateral
@ = (p1,p2, Pk—_1,Pr) behaves as a planar four-bar linkage. Hence, by rotat-
ing (p2, p1) counterclockwise about p,, the angle at p; may be straightened.
A similar procedure may be used to straighten vertex px_i, and repeated, if
necessary, to convexify the entire polygon Py, before advancing to the next
vertex Pr4i.

2. THE CONVEX FOUR-BAR LINKAGE. Aichholzer et al. give
in [1] an elementary proof of the diagonal-property for the case of convex
linkages. Their proof, however, makes use of the Cauchy-Steinitz lemma [25].
There are many published elementary proofs of this lemma, but most are very
long [28]. Even the shortest proof [25], selected for its elegance to adorn the
pages of Proofs from the BOOK [2| (pp. 64-65), adds unnecessary length,
indirectness, and complexity to the proof of the diagonal-property. Here we
give two simpler, shorter proofs that do not appeal to the Cauchy-Steinitz
lemma.

In the first proof neither an edge nor a vertex is fixed. The proof works
just as well for a “floating” linkage.

Consider a linkage ABCD as in Figure 9a. Assume that C'A increases.
Then the internal angles at B and D must increase. Now the internal angles
at A and C cannot remain fixed, for then diagonal DB would remain fixed
and the linkage would be rigid, contradicting the fact that AC increases.
Therefore the internal angles at A and C' either increase or decrease. It is
not possible for both angles to increase, because then all four internal angles
would increase, violating the fact that the sum of the internal angles of any
convex quadrilateral equals 27. Finally, one angle cannot increase while the
other decreases, for by Euclid’s caliper lemma, DB would then both increase
and decrease simultaneously, which is impossible. Therefore both angles must
decrease, causing DB to decrease.
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Figure 14: Illustrating the second proof for convex linkages with edge AD
fixed via instantaneous centers of rotation.

[Figure 14 about here]

An alternate proof may be obtained by holding edge AD fixed in the plane
and using the Descartes principle of instantaneous centers of rotation [18].
Many famous mathematicians, including Descartes, have worked on a class
of curves called cycloids. When a cyclist rides a bicycle at night with a
small phosphorescent spot attached to the rim of one of the wheels, the
path that the spot describes as the bicycle moves is a cycloid. According to
Melzak [18], Descartes’s work on cycloids led him to formulate the following
principle: the instantaneous motion of a plane rigid body moving in its own
plane is a rotation about some point (possibly at infinity) acting as the center
of rotation. It should be noted that while Descartes appears to be one of the
first to use centers of instantaneous rotations in kinematics problems, the
discovery of such a center for any motion in the plane is credited to Johann
Bernoulli in his 1742 treatise Opera [13].

Referring to Figure 14, consider vertex A to be fixed at the origin and
assume without loss of generality that vertex D is located on the positive
y-axis. In this setting, links AB and DC rotate about A and D, respectively.
Consider the direction of instantaneous rotation of the “floating” edge BC'.
Since AC' increases so does angle ADC'. In the figures increasing and decreas-
ing angles and diagonals are indicated by “+” and “—” signs, respectively.
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Therefore C' rotates counterclockwise with respect to D. The locus of cen-
ters of instantaneous rotation for C' is the line Lpc that contains D and C.
Similarly, since B rotates about A and moves orthogonally to AB, the locus
of centers of instantaneous rotation for B is the line L 45 that contains A and
B. The intersection point O of these two lines is the instantaneous center of
rotation for the edge BC'. If O lies to the left of the y-axis as in Figure 14,
then the edge BC rotates in a counterclockwise manner with respect to O,
as does B with respect to A. If O lies to the right of the y-axis, then the edge
BC rotates in a clockwise manner with respect to O, but B still rotates in a
counterclockwise manner with respect to A. If O lies at infinity, as happens
when DC' and AB are parallel, then C'D translates in a direction orthogo-
nal to L with a positive y-component. In all cases angle BAD decreases.
Therefore diagonal DB decreases.

3. THE CROSSING FOUR-BAR LINKAGE. For the crossing four-
bar linkage a short and simple proof of the diagonal-property is obtained by
fixing one of the edges, say AB as in Figure 15. If diagonal BD increases,
then so does angle BAD. Since AB is fixed, it follows that D rotates coun-
terclockwise with respect to A. Now the locus of centers of instantaneous
rotations for D is the line containing AD, and for C' the line containing C'B.
Therefore the instantaneous center of rotation for the “floating” edge DC'
is O, the intersection of the line segments AD and BC'. Consequently edge
CD rotates counterclockwise with respect to O, whence C rotates counter-
clockwise with respect to B. Since AB is fixed, angle ABC' decreases and
diagonal AC' decreases with it.

[Figure 15 about here]

4. THE SIMPLE NONCONVEX FOUR-BAR LINKAGE. An el-
ementary but somewhat technical two-page proof of the diagonal-property
for simple nonconvex four-bar linkages was given by Biedl et al. [3]. In this
section three new proofs are presented. The first, like the proof in [3], holds
one edge fixed, but is much simpler.

[Figure 16 about here]

As before, fix edge AD in the plane and refer to Figure 16. If AC in-
creases, then angle ADC' also increases, causing C' to rotate counterclockwise
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Figure 15: A crossing linkage with edge AB fixed and O as the instantaneous
center of rotation of edge CD.

about D. Since C'is a concave vertex, the line Lpc containing D and C (the
locus of centers of instantaneous rotations for C) intersects the segment AB
at O, the center of rotation for the “floating” edge BC. Therefore edge C'B
rotates clockwise with respect to O, forcing B to rotate clockwise with re-
spect to A. But since AD is fixed, angle DAB increases. By the caliper
lemma, diagonal DB increases as well, completing the proof.

The second proof, which holds for the line-tracking motions defined in
the introduction, is a longer case-analysis, but gives additional insight into
the behavior of the linkage by fleshing out the more difficult case in which
all four edges rotate in the same direction with respect to the plane.

Once again, let C' be the concave vertex, let A be located at the origin
of the plane, and without loss of generality, let C' lie on the positive y-axis
(see Figure 17). Since the linkage is not convex, at least one of B or D must
lie strictly above the line L that runs parallel to the z-axis and contains C.
Without loss of generality assume that B lies strictly above L.

[Figure 17 about here]

A line-tracking motion moves C' along the ray from A in the direction of
C, i.e., along the y-axis. Note that the line L¢ is the locus of instantaneous
centers of rotation for C'. Five interesting cases arise depending on whether
(1) D lies strictly above L¢, (2) D lies on L¢, (3) D lies below L and above
the z-axis, (4) D lies on the z-axis, or (5) D lies strictly below the z-axis.
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Figure 16: A simple non-convex linkage with edge AD fixed and O as the
instantaneous center of rotation of edge BC'.

A y-axis

Figure 17: Illustrating the proof for the line-tracking motion for Case 1.
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Figure 18: Illustrating the proof for the line-tracking motion for Case 5.

Cases 1 and 5 are discussed in what follows. The reader is invited to supply
similar proofs for the other three cases.

Consider then Case 1, where D lies strictly above L¢, and refer to Fig-
ure 17. In this setting the bars AD and AB rotate about A and the loci of
instantaneous rotations for D and B are the lines Lp 4 and L 4, respectively.
Since C' translates upwards, the edge C'D rotates counterclockwise with re-
spect to Oc¢p, its instantaneous center of rotation. Therefore D rotates
counterclockwise with respect to A, and angle C'AD increases. Similarly,
edge C'B rotates clockwise with respect to Oc¢p, its instantaneous center
of rotation. As a result, B rotates clockwise with respect to A, and angle
C AB also increases. This demands that both angle BAD and diagonal BD
increase. Note that in this case two edges rotate clockwise, the other two
counterclockwise.

For Case 5, where D lies strictly below the z-axis, refer to Figure 18.
Now O¢p, the instantaneous center of rotation for edge C'D, lies to the right
of C, making D rotate clockwise with respect to A and thereby forcing angle
DAC to decrease. On the other hand, ABC still behaves as in Case 1. Hence
the two internal angles at A change in opposite directions. Furthermore, the
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Figure 19: Illustrating the third proof using the six-bar linkage construction.

edges C'D and CB are both rotating in the same clockwise direction. This
case is more difficult than the others because all four edges are rotating
clockwise, obscuring what happens to the external angle at C. The reader is
invited to verify that edge BC rotates faster than edge C'D, thus establishing
that the external angle at C' and the diagonal BD increase.

[Figure 18 about here]

Case 5 suggests a third, more elegant, proof that does not break down
into cases and does not require fixing either an edge or a vertex, as in the
two previous proofs.

Consider a concave linkage ABC' D, as before with C' the concave vertex.
Add a new diad AEC to obtain a six-bar linkage like the one illustrated in
Figure 19.

[Figure 19 about here]

This new diad lies on the same side of line Lyc as B does, and the
lengths of its edges are chosen so that together with D it forms a parallelo-
gram AECD. The new diad also forms with B a four-bar crossing sublinkage
ABCE. The six-bar linkage contains all three types of four-bar sublinkages
(convex, concave noncrossing, and crossing). Consider now what happens to
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the three four-bar sublinkages in the six-bar linkage when AC increases. In
the case of the crossing linkage ABCE, it was shown that E'B decreases, as
does the acute angle BCE. For the convex linkage AEC D, it was shown that
DFE decreases, and the acute angle DC'E decreases along with it. But these
two angles together with the external angle BC'D sum to 2w. Therefore the
external angle BC'D and diagonal BD both increase.
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