Simple Proofs of a Geometric
Property of Four-Bar Linkages

Godfried Toussaint

April 12, 2001

Technical Report No. SOCS-01.4, School of Computer Science, McGill Uni-
versity, April 2001.

Abstract

We consider the relationship between the lengths of the two diag-
onals in the four-bar planar linkage. For convex and crossing linkages
one diagonal increases if, and only if, the other decreases. On the
other hand, for non-convex simple linkages one diagonal increases if,
and only if, the other increases. We present simple elementary proofs
of this geometric property. The proofs are simpler than existing pub-
lished proofs, they illustrate the application of Decartes’ principle of
instantaneous centers of rotation, and they have pedagogical value.

1 Introduction

We consider the planar four-bar linkage or polygon of four sides where the
angles of the vertices are allowed to change but the lengths of the edges are
preserved during any motion. Such a mechanism is a fundamental compo-
nent of many machines [5], [10], [13]. In addition it offers a relatively simple
motion that forms a primitive for proving more general motions about com-
plex chain linkages that serve as models for robot arms [12], knots [16], and
molecules in polymer physics [23] and molecular biology [8]. In addition such
primitive motions are used in proving geometric properties about polygons

in general [18], [22], [12].



The planar four-bar linkage has been studied for a long time in the field
of kinematics [5], where one of the bars (or its end points) was attached to
the ground or other fixed parts of space. In this setting only three bars ro-
tate. Indeed in the 19th century the four-bar linkage was called the three-bar
linkage [17], [4]. Historically, the main aspect of linkages investigated was
their capacity to generate a large variety of complicated curves from simple
circular motion [7]. Depending on the relative lengths of the four bars, there
are 27 different types of planar four-bar linkages that fall into 8 basic cate-
gories [13]. A curve is usually generated by the apex of a triangle (coupler)
whose base is attached to the “floating” edge of the linkage. The Hrones-
Nelson book [10] illustrates more than seven thousand different forms of the
coupler curve! More recently there has been growing interest in describing
and visualizing the configuration spaces of the linkages [11], [15].

The motion of the planar four-bar linkage is well understood and equa-
tions describing how one angle changes as a function of another are avail-
able [17], [4], [9]. Although the motions of the quadrilateral’s edges relative
to each other do not change when we fix different edges, the behavior with
respect to the fixed edge changes radically. The process of changing the fixed
edge in a given four-bar linkage is called inversion and gives much insight in
the overall behavior of the linkage [5]. Additional insight can be obtained
by analyzing the linkage with a type of inversion that does not appear to be
used in kinematics but which is used frequently in robotics. Consider the
four-bar linkage with vertices A, B, C' and D in counterclockwise order as
illustrated in Figure 1. Rather than fixing an edge of the linkage we fix a
vertex, say A and a half line starting at A and proceeding through the vertex
C opposite A. The motion is now determined by translating C' along this
half line. This motion is known as a line-tracking motion [12].

In the kinematics literature the linkage is analysed in terms of how one
angle varies as a function of the angle of an adjacent vertex. For example,
in Figure 1 (a) if we fix edge AD on the plane and rotate edge C'D about
D we are interested in what happens to the angle at A. However, one can
equivalently analyse the linkage in terms of legths of diagonals rather than
angles. Consider first a two-bar linkage chain ABC'. Propositions 24 and 25
of Book 1 of Euclid’s Elements state that the acute angle ABC' increases if,
and only if, the distance between its endpoints AC also increases [6]. This
property of a two-bar chain linkage is also known as the caliper lemma [20].
Returning to Figure 1 (a) we see that angle D increases if, and only if,
diagonal AC increases and angle A increases if, and only if, diagonal BD
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Figure 1: The three types of four-bar linkages. (a) convex, (b) concave and
(¢) crossing.

increases. Therefore instead of examining the behavior of angle A relative to
angle D we may examine how diagonal DB varies as diagonal AC changes.
In the following we will make copious use of this caliper lemma without
bothering to refer to it every time it is invoked.

The fundamental geometric property of four-bar linkages may be ex-
pressed by the following theorem. We assume throughout that the linkage
is not degenerate (is in general position) in the sense that no three of its
vertices are collinear.

Theorem 1 For convex and crossing four-bar linkages one diagonal increases
if, and only if, the other decreases. In contrast, for simple non-convex [link-
ages one diagonal increases if, and only if, the other increases.

Although the statement of Theorem 1 may be novel, the result itself is
not new. It is implicit in the complicated equations that relate adjacent
angles of the linkage, and is contained in most kinematics books [13]. In
fact, explicit elementary proofs of this theorem have been published for both
the convex [1] and simple non-convex [3] cases. In this note we provide very
simple proofs of the theorem for all three types of four-bar linkages.



2 The Convex Four-Bar Linkage

Aichholzer et al., [1] give an elementary proof of Theorem 1 for the case
of convex linkages. Their proof however makes use of the Cauchy-Steinitz
Lemma [19]. There are many published elementary proofs of this lemma but
most are very long [21]. Even the shortest proof [19] selected for its elegance
to adorn the pages of Proofs from the BOOK [2] adds unnecessary length,
indirectness and complexity to the proof of Theorem 1. Here we provide two
simpler shorter proofs that do not use the Cauchy-Steinitz Lemma.

2.1 First proof

In this proof we fix neither an edge nor a vertex. The proof works just as
well for a “floating” linkage.

Consider a linkage ABCD as in Figure 1 (a). Assume C A increases. Then
the internal angles at B and D must increase. Now the internal angles at A
and C' cannot remain fixed, for then diagonal DB would remain fixed and the
linkage would be rigid, contradicting the fact that AC increases. Therefore
the internal angles at A and C either increase or decrease. Both angles
cannot increase because then all four internal angles would increase violating
the fact that the sum of the internal angles of any convex quadrilateral equals
27. Finally, one angle cannot increase while the other decreases, for then by
Euclid’s caliper lemma, D B would both increase and decrease simultaneously,
which is impossible. Therefore both angles must decrease causing DB to
decrease.

2.2 Second proof

The second proof of Theorem 1 we present below is slightly longer than the
first but it gives more insight into the motion. It also illustrates the approach
we will use to prove the theorem for the more difficult cases of non-convex
linkages. This approach uses Descartes’s principle of instantaneous centers
of rotation [14].

Let us consider vertex A to be fixed at the origin and assume without
loss of generality that vertex D is located on the positive y-axis. Refer to
Figure 2. We will prove the theorem by holding edge AD fixed in the plane.
In this setting links AB and DC rotate about A and D, respectively. We
want to prove that if AC increases then DB decreases. To this end we
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Figure 2: Illustrating the second proof with edge AD fixed by means of
instantaneous centers of rotation.

examine the direction of instantaneous rotation of the “floating” edge BC.
Since AC increases so does angle ADC'. In the figures we indicate increasing
and decreasing angles and diagonals by “4+”7 and “—7 signs, respectively.
Therefore C' rotates counter-clockwise with respect to D. The locus of centers
of instantaneous rotation for C is the line Lpc that contains D and C.
Similarly, since B rotates about A and moves orthogonally to AB the locus
of centers of instantaneous rotation for B is the line L 45 that contains A and
B. The intersection point O of these two lines is the instantaneous center of
rotation for the edge BC'. If O lies to the left of the y-axis as in Figure 2,
then the edge BC rotates in a counter-clockwise manner with respect to O
and so does B with respect to A. If O lies to the right of the y-axis the edge
BC rotates in a clockwise manner with respect to O but B still rotates in a
counter-clockwise manner with respect to A. If O lies at infinity, as happens
when DC' and AB are parallel, then C'D translates in a direction orthogonal
to Lap with a +y component. In all cases angle BAD decreases. Therefore
diagonal DB decreases.



Figure 3: A crossing linkage with edge AB fixed and O as the instantaneous
center of rotation of edge C'D.

3 The Crossing Four-Bar Linkage

For the crossing four-bar linkage a short and simple proof is obtained by fixing
one of the edges in the plane. Accordingly, let AB be the fixed edge and refer
to Figure 3. We shall prove that if one of the diagonals, say BD, increases
then the other diagonal AC' must decrease. If BD increases then so does
angle BAD. Since AB is fixed it follows that D rotates counter-clockwise
with respect to A. Now the locus of centers of instantaneous rotations for
D is the line containing AD, and for C the line containing C'B. Therefore
the instantaneous center of rotation for the “floating” edge DC is O, the
intersection of the line segments AD and BC'. Therefore edge C'D rotates
counter-clockwise with respect to O. Therefore C' rotates counter-clockwise
with respect to B. Since AB is fixed, angle ABC decreases and so does
diagonal AC.

4 The Simple Non-Convex Four-Bar Linkage

An elementary but somewhat technical two-page proof of Theorem 1 for
simple non-convex four-bar linkages was given by Biedl et al., [3]. In this
section we first give a much simpler and shorter 8-line proof which, like
theirs, holds one edge fixed in the plane. Then we prove the theorem for the
more difficult line-tracking motion. Although the second proof is a longer
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Figure 4: A simple non-convex linkage with edge AD fixed and O as the
instantaneous center of rotation of edge BC.

case-analysis, it gives additional insight into the behavior of the linkage. In
particular, it flushes out the more difficult case when all four edges rotate
in the same direction with respect to the plane. Finally, we present a third
more elegant proof which adds a third diad (two-bar linkage) forming a six-
bar linkage and then applies the results of the convex and crossing linkages.

4.1 First proof - via edge-fixing motion

As before, let us fix edge AD in the plane and refer to Figure 4. We want to
prove that it AC increases then so does DB. If AC increases then so does
angle ADC'. Since AD is fixed C rotates counter-clockwise about D. Since
C is a concave vertex the line Lpc containing D and C' (the locus of centers
of instantaneous rotations for C') intersects the segment AB at O, the center
of rotation for the “floating” edge BC'. Therefore edge C' B rotates clockwise
with respect to O and B rotates clockwise with respect to A. Since AD is
fixed angle DAB increases and so does diagonal DB.

4.2 Second proof - via line-tracking motion

Let us consider the simple non-convex four-bar linkage ABCD in counter-
clockwise order. As before, let C' be the concave vertex, A be located at the
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Figure 5: Illustrating the proof for the line-tracking motion for Case-1.

origin of the plane, and without loss of generality let C' lie on the positive
y-axis (see Figure 5). Since the linkage is not convex at least one of B or
D must lie strictly above the line Lo which lies parallel to the z-axis and
contains C'. Without loss of generality assume B lies strictly above L.

A line-tracking motion moves C' along the ray from A in the direction of
C, i.e., the y-axis. We want to prove that it AC increases in this way with
A fixed at the origin then the other diagonal BD must also increase. Note
that the line L¢ is the locus of instantaneous centers of rotation for C. We
consider five cases for the location of D and analyze them in turn.

4.2.1 Case-1: D lies strictly above L¢

In this setting the bars AD and AB rotate about A and the loci of instanta-
neous rotations for D and B are the lines Lpy and L4pg, respectively. Since
C' translates upwards the edge C'D rotates counter-clockwise with respect
to O¢p, its instantaneous center of rotation. Therefore D rotates counter-
clockwise with respect to A and angle C'AD increases. Similarly, edge C'B
rotates clockwise with respect to O¢p, its instantaneous center of rotation.
Therefore B rotates clockwise with respect to A and angle CAB also in-
creases. Therefore angle BAD and diagonal BD also increase. In this case
two edges rotate clockwise and two counter-clockwise.
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Figure 6: Illustrating the proof for the line-tracking motion for Case-2.

4.2.2 Case-2: D lies on L¢

Figure 6 illustrates case-2 when D lies on L¢. In this case the instantaneous
center of rotation for edge C'D coincides with vertex D. Therefore D is
immobile and angle C'AD neither increases nor decreases. In fact edge AD
is in a state of transition between counter-clockwise and clockwise rotation.
However, angle CAB behaves as in case-1 and therefore angle BAD and
diagonal BD increase. In this case two edges, AB and C' B, rotate clockwise,
edge DC rotates counter-clockwise about its end point D, and edge AD is
immobile.

4.2.3 Case-3: D lies below Lo and above the z-axis

The case when D lies below Lo and above the z-axis is illustrated in Figure 7.
Recall that A lies at the origin of the plane. The diad ABC is as in case-1
and so as AC increases, B rotates clockwise as before and the angle BAC
increases. On the other hand O¢p, the center of instantaneous rotation for D,
is now located left of D and therefore D now also rotates clockwise. Since now
angle DAC decreases, it is not clear from the two internal angles at A what
angle DAB is doing. However, note that edge C'D rotates counter-clockwise
about Ocp whereas edge C'B rotates clockwise about O¢g. Therefore the
external angle at C' increases and so does the diagonal BD and the internal
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Figure T7: Illustrating the proof for the line-tracking motion for Case-3.

angle BAD. Note that in this case only edge C'D rotates counter-clockwise.
The other three edges rotate clockwise.

4.2.4 Case-4: D lies on the z-axis

Consider now the case when D lies on the z-axis and refer to Figure 8. Now
there is no instantaneous center of rotation for edge C'D. More precisely,
the center is at infinity and therefore C'D undergoes a translation as AC
increases. Since point C' translates upwards, so does D. Although edge C'D
only translates, edge C'B rotates clockwise and therefore the external angle
at C increases and so does the diagonal BD and the internal angle BAD.
In this case edge C'D translates upwards and the other three edges rotate
clockwise.

4.2.5 Case-5: D lies strictly below the z-axis

Finally, consider the case when D lies strictly below the z-axis and refer to
Figure 9. Now O¢p, the instantaneous center of rotation for edge C'D lies to
the right of C' and therefore D rotates clockwise with respect to A. Therefore
angle DAC decreases. Hence the two internal angles at A change in oposite
directions. Furthermore, the edges C'D and C'B are both rotating in the
same clockwise direction. This case is more difficult than the others because
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Figure 8: Illustrating the proof for the line-tracking motion for Case-4.

all four edges are rotating clockwise making it not obvious what happens to
the external angle at C'. We will show that edge BC rotates faster than edge
C'D thus proving that the external angle at C' and the diagonal BD increase.

Note that the relative motions of the edges with respect to each other
are preserved if instead of fixing A and translating C' upwards, we fix C' and
translate A downwards. Therefore let us cut the linkage into two diads at
A and C, rotate the diad C DA by an angle of #, and reconnect it to diad
ABC to form the new linkage AD'C'B (refer to Figure 10). Now when C
moves upwards the new edge C D’ rotates at the same speed and in the same
clockwise direction as the old edge AD. First we show that C'B rotates faster
than AD by comparing C'B with C'D’. Since in the original linkage ABC D,
vertex C' is concave, it follows that the new linkage AD'C'B is a crossing
linkage. By the results for crossing linkages, if AC increases then BD' de-
creases, thus decreasing angle BC'D'. Therefore, although both edges C'B
and C' D' rotate clockwise, edge C' B rotates faster than edge C'D’. Therefore
edge C B rotates faster than edge AD in the original linkage. Finally, note
that since both edges AD and DC rotate clockwise in the original linkage,
and as AC increases so does angle ADC it follows that AD rotates faster
than DC'. Therefore edge BC rotates faster than C'D. We conclude that the
external angle BC'D and diagonal BD increase.
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Figure 9: Illustrating the proof for the line-tracking motion for Case-5.

4.3 Third proof - via six-bar linkage construction

Case-5 in the previous proof suggests an elegant proof that has no cases and
no need for fixing either an edge or a vertex as in the previous two proofs.
It works just as well for “floating” linkages.

Consider then a concave linkage ABC' D as before with €' as the concave
vertex. Instead of cutting and reconnecting diad ADC', as was done in Case-
5 of the previous proof, we add a new diad AEC to obtain a six-bar linkage
such as that illustrated in Figure 11. This new diad lies on the same side of
line L4¢ as B does, and the lengths of its edges are chosen so that together
with D it forms a parallelogram AECD. From the same arguments used
in Case-5 of the previous proof it follows that the new diad forms with B a
four-bar crossing sub-linkage ABC'E. So the six-bar linkage contains all three
types of four-bar sub-linkages (convex, concave non-crossing and crossing).
Consider now what happens to the three four-bar sub-linkages in the six-bar
linkage when AC' increases. In the crossing linkage ABCE we have shown
that B decreases and thus so does the acute angle BCE. In the convex
linkage AEC' D we have shown that DFE decreases and thus so does the acute
angle DCE. But these two angles together with the external angle BC'D
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Figure 10: Proving that C'B rotates faster than C'D’ in Case-5.

sum to 27. Therefore the external angle BC'D and diagonal BD increase.
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