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DG(si,rj/P) and select the maximum such distance encountered.

end

Theorem 4.5.1: Algorithm GEODES C-MAX-DIST computesGD,,(S,R) in O(n log n +h4h,
log n) time.

Proof: The correctness follows from lemma 4.5.1 and the complexity is a straight forward conse-
guence of using the algorithms discussed previously in each of the three steps. Q.E.D.

Corollary 4.5.1: If S and R are two simple n-vertex polygons instead of sets of point&then
max(S:R) can be computed in time O(n log log hyh, log n).

Proof: If S and R are simple polygons then tieedesic hulls CH;(S/P) andCH4(R/P) can be

computed in linear time plus T(n), the time taken to triangulate a simple polygon, by theorem 3.3.1.
Since T(n) = O(n log log n) [TV87], the result is immediate. Q.E.D.

5. Conclusion

We have presented an algorithm for computing the geodesic convex hull of a set of sites
(points) S inside a simple polygon P in O(n log n) time and illustrated how it can be applied to ob-
tain efficient algorithms for computing a variety of geodesic distance properties of sets inside P.
We should add that a recent result of Aronov, Fortune, and Wilfong [AFW88] may provide a dif-
ferent approach to solving these problems. They demonstrate an algorithm for compuiting the
thest-site geodesic Voronoi diagram of a set of n sites in an n-gon in time O(n log n). The use of
this Voronoi diagram in conjunction with point location algorithms may yield alternate algorithms
with time complexity O(n log n). On the other hand, such an approach seems more complicated in
practice than the geodesic convex hull approach proposed in this paper. Another open problem
concerns the complexity of computi@id(Q/P) where Q is a simple polygon. We showed here
that CH(Q/P) can be computed in linear time if a polygon triangulation algorithm is available to
triangulate the region between P and Q. Is it possible to cor@pl{@/P) in linear time?
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can be computed in O(log n) time.
Sep 3: For each site s; in S compute h query geodesic distances D(s;,y/P) wherey varies
over all convex vertices of CH(S/P), for each s; maximizing over y and finally
minimizing over i.
end

Using the algorithm of Guibas and Hershberger [GH87] in step 2 it is clear that the com-
plexity of this algorithm is dominated by step 3. Therefore we have the following result.

Theorem 4.4.2: Algorithm GEODES C-MEDIAN-2 computes the geodesic median of aset Sina
polygon P in O(nh log n) time.

45  Themaximum geodesic distance between two setsin P

In this section we consider the problem of computing the maximum geodesic distance be-
tween two sets of sitesin P. Accordingly, let S= {sl, 52,...,sn} andR = {rl, r2,...,rn} be the two

sets, each of cardinality n. Note that it is not important that [IS[+ [R [Ibut this simplifies the com-
plexity expressions.

Definition: The maximum geodesic distance between S and R in P, denoted by GD |, (SR), is
the maximal geodesic distance between an element of S and an element of R, i.e.,
GCDppax(SR) = max  max {DG(si,rj/P)}
i ]
wherei,j =1,2,...,n.

Lemma4.5.1: GD,,,,,(SR) isdetermined by apair of elementss;, y suchthat s, isaconvex vertex

of CH;(S/P) and y isaconvex vertex of CH(R/P).

Thislemmaimmediately suggests the following algorithm for computing GD 5, (S,R).

Algorithm GEODES C-MAX-DIST

Input: A simple polygon P and two sets of sitesSand R lying in P.
Output: ~ The geodesic maximum distance between Sand R, GD, 5, (SR).
begin

Sep 1 Compute the geodesic hulls CH;(S/P) and CH(R/P).

Sep 2: Preprocess P so that given two query pointsx,y in P the geodesic path between them
can be computed in O(log n) time.

Sep 3: For every pair of sitess; in Sand rj in R such that they are convex vertices of their

respective geodesic hulls compute h h, geodesic distance queries of the form
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us to improve on the brute-force algorithm in two different ways.

Lemma 4.4.1: The geodesic median of Sin P is determined by a pair of sitesin S one of which
must be a convex vertex of CH(S/P).

Algorithm GEODES C-MEDIAN-1

Input: A simple polygon P and a set of points Slying in P.
Output: ~ The geodesic median of S, M;(S/P).
begin
Sep 1. Compute CH(S/P).
Sep2:  Triangulate CH;(S/P) to obtain T(CH(S/P)).
Sep 3: Preprocess T(CH(S/P)) using O(n) space and O(n log n) time to support O(log n)-
time point-location queries.
Sep4:  Determinefor each triangle in T(CH(S/P)) which points of Sit contains.

Sep 5. For each site s; in S compute SPT(s;,CH(S/P)), record the furthest neighbor of s;
encountered and the accompanying distance, and identify the sites that minimize

this distance over all the sites S

end

Each of the first four steps can be done in O(n log n) time with the procedures discussed
earlier in the paper. In step 5, we have a triangulation of P available and thus we can compute
SPT(s;,CH(S/P)) in O(n) time for each site using the algorithmsin [EI85] and [GHL ST]. We have

thus established the following theorem.
Theorem 4.4.1: Algorithm GEODES C-MEDIAN-1 computes the geodesic median of aset Sina
polygon Pin O(n2) time.
We may also follow a different route to obtain an adaptive algorithm as follows.
Algorithm GEODES C-MEDIAN-2
begin
Sep 1: Compute CH;(S/P) and identify its h convex vertices.

Sep 2: Preprocess P so that given two query pointsx,y in P the geodesic path between them
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Fig. 12: Illustrating the proof of theorem 4.3.1.

isdenoted by R;(S/S). Moreprecisely, for any sites; in P definethe covering radiusof Sfroms, as:

C,(S5) = max {dg(s;y)},
y

wherey variesover dl sitesin S. Then the geodesic median of Sisasitein Sfor which
Ra(S/S) = min{C (S')},
S

Wheresi variesover al sitesin S.

It is clear that we can compute the geodesic median in O(n3) time using sheer brute force
if Pistriangulated first. Before we present two more efficient algorithms for computing M;(S/P)

we introduce some more notation, a definition and alemma.

Definition: The shortest path tree of apolygon P (with respect to apoint x), denoted by SPT(x,P),
isthe union of GP(x,v/P) over al verticesv of P.

It is easily shown that SPT(x,P) is a planar tree rooted at x. This tree has n nodes, namely
the vertices of P, and its edges are straight segments connecting these nodes. It has been shown by
ElGindy [EI85], and later independently in [GHL ST] for amore restricted case, that given amono-
tone subdivision of P thistree can be computed in linear time. It follows from the fact that the fur-
thest geodesic point in P from x must be a vertex of P that it can be computed in linear time if
SPT(x,P) isgiven. The following lemma, which follows directly from the previous results, allows
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arise depending on whether (i) g lies behind e, (ii) g lies between e and f, or (iii) g lies ahead of f,
on L. Consider first sub-case (ii). From Pythagoras’ theorem we may conclude that (1) GP(d,a/P)
is longer than GP(g,e/P) GP(e,a/P), (2) GP(d,c/P) is longer than GP(g[fIF3P(f,c/P), and (3)
GP(d,b/P) is longer than GP(g,h/B)GP(h,b/P). Therefore in this sub-case g is a better location
for the geodesic center than is d, a contradiction. Similar arguments establish that in sub-case (i)
vertex e is a better location for the geodesic center whereas vertex f is better for sub-case (iii).
Cases 2.2 and 2.3: C4(S/P) lies in aide or anend pocket. The proof for these two cases is similar

to that for the previous case. However, it may not be possible in this case to traverse vertices e and
f (see Fig. 12) by aline L that does not intersect the interior of the geodesic trigiagted?. How-

ever if Bj[a,b,c] intersects the interior Aidef we can construct a new triandlde’f’ such that e’f

is parallel to ef and Fa,b,c] does not intersect the interior/lde’f’, by constructing e’f’ through
that vertex of B[a,b,c] lying inAdef that maximizes the perpendicular distance to L in the direc-
tion of d. The arguments @fase 2.1.2 can then be applied fhde’f’ to complete the proof.

We have therefore proved th@t(S/P) lies inCH(S/P). It follows that all paths from
C(S/P) to the convex vertices GH;(S/P) also lie irCH;(S/P) and those regions in P exterior to
CH(S/P) may be disregarded. Q.E.D.

Theorem 4.3.1 suggests the following algorithm for computing the geodesic center of S.

Algorithm GEODES C-CENTER

Input: A simple polygon P and a set of points S lying in P.
Output: ~ The geodesic center of S(S/P).

begin
Sep 1. ComputeCH(S/P) in O(n log n) time using the algorithm of section 3.

Sep 2 ComputeC;(CH4(S/P)) in O(n log n) time using the algorithm of Pollack, Sharir,
and Rote [PSR88].

end
We have thus established the following theorem.

Theorem 4.3.2: Algorithm GEODES C-CENTER computes the geodesic center of a set S in a
polygon P in O(n log n) time.

44  Thegeodesic median of Sin P

Definition: The geodesic median of S in P, denoted bW (S/P), is the site in S, not necessarily
unique, whose maximal geodesic distance to any other site is the smallest possible. Such a distance
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central-pocket

end-pocket side-pocket

Fig. 11: Illustrating geodesic polygons, essential vertices
(ab,c,d), types of pockets, and the proof of lemma4.3.2.

arise depending on whether or not d equalsd'.

Case2.1.1: d# d'. Wewill show that d’ isabetter location for the geodesic center than d is. From
lemma4.3.1it followsthat d(d', @) <dg(d, a and d5(d’, ) <d(d, ¢). From lemmas 4.3.2 and

4.3.1itfollowsthat d(d', b) <ds(d, b). Therefore a,b and c are each closer to d' than to d, a con-
tradiction.

Case2.1.2: d=d'. Let e be the vertex of GP(d,a/P) adjacent to d and let f be the vertex of GP(d,c/
P) adjacent to d, and refer to Fig. 12. Draw adirected line L through e and f (where the direction
isfrom e to f) and let h denote the intersection of L with GP(d,b/P). Since a,b,c are the essential
vertices of ageodesic triangle and b isthe vertex opposite GP(a,c/P) it followsthat h must lie ahead
of eand behind f on L. Draw aperpendicular fromdto L and let it intersect L at g. Three sub-cases
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the interior of either a central pocket, a side pocket, or an end pocket of P. In thefirst case it im-

plies GP(x,d/P) traverses the exterior of P, a contradiction. Therefore let GP(x,d/P) traverse aside
pocket of P. It follows that GP(x,d/P) must properly intersect the interior of some edge of P that

bounds the side pocket in question. Let y be such apoint at which GP(x,d/P) entersthe side pocket.
L et z be the point on another edge of P where GP(x,d/P) leaves the pocket. If GP(x,d/P) does not

leave the pocket then we have that z=d which is an instance of case three. In either situation, let
p(y,z) denote the portion of P fromy to z and let q(y,z) denote the portion of GP(x,d/P) fromy to

z. From lemma 4.3.1 it follows that both p(y,z) and q(y,z) are geodesic paths between y and z,
which contradicts the uniqueness property of geodesics. The argument for the case when GP(x,d/
P) enters an end pocket is similar. Q.E.D.

Theorem 4.3.1: The geodesic center of Sin Pisequal to the geodesic center of the geodesic con-
vex hull of S, i.e., C5(S/P) = C5(CH4(S/P)).

Proof: The geodesic center of a finite set is determined by either two or three points of the set
[AT85]. From lemma 4.2.1 it follows that given aset Sin P, the geodesic furthest site in S from
any point x in P must be a convex vertex of CH;(S/P). Therefore C(S/P) is determined by either

two or three convex vertices of CH;(S/P). On the other hand the geodesic center of apolygon Qis
determined by two or three convex vertices of Q. Therefore C(CH;(S/P)) is determined by either
two or three convex vertices of CH;(S/P). This establishes that we need only consider those sites
in Sthat are convex vertices of CH;(S/P) in computing C;(S/P). Next we prove that C(S/P) lies
in CH(S/P) and that the regions of Pthat liein the exterior of CH(S/P) can betotally disregarded
in computing C(S/P).

Case 1. The geodesic center is determined by two sitesin S. In this case the geodesic center isthe
mid-point of the geodesic diameter of S[AT85]. By lemma 4.2.1 the geodesic path realizing the
geodesic diameter of Smust liein CH;(S/P) and therefore so must the geodesic center of S.

Case 2: The geodesic center is determined by three sitesin S. Let a,b,c [] S be the three sites that
determine the geodesic center of Sand consider the geodesic triangle Pg[a,b,c]. Since Pg[a,b,c] is
also the geodesic convex hull of a,b,c it follows, by definition, that P;[a,b,c] O] CH4(S/P). Wewill
show that the geodesic center of Smust liein P;[ab,c]. Thereforelet usassumethe contrary. Three
cases arise depending on whether C(S/P) liesin acentral pocket, a side pocket, or an end pocket.

We assume that at |east one of these pockets exists. If it doesnot it impliesthat Sis“far” from the
boundary of P and the shortest paths between the essential vertices of P are actually single line

segments and P isaEuclidean triangle. Inthis special casethe geodesic center isequivalent to the
ordinary center in the classical Euclidean facility location problem and it is well known that this
center must liein such atriangle [CR47].

Case2.1: C;(S/P) liesin acentral pocket. Let d denote the location of C(S/P) in acentral pocket
determined, without loss of generality, by endpointslying in GP(a ,c'/P). Construct GP(d,a/P) and
GP(d,c/P) and let d' be the point such that GP(d,a/P) n GP(d,c/P) = GP(d,d’/P). Two sub-cases
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the covering radius of Sfrom x as:
C,(S/x) = max {d5(x,y)},
y

wherey varies over all sitesin S. Then the geodesic center of Sisthe point in P for which
Rs(S/P) = min{C.(SX)},

X

where x varies over all pointsin P.
The following lemmas and theorem alow us to solve this problem efficiently.

Lemma4.3.1: Let X’ andy’ be two points on a geodesic path GP(x,y/P) such that X’ is the closer
to x on GP(x,y/P). Then GP(x’,y’/P) is contained in GP(X,y/P).

Proof: Assume the contrary and let p(x’,y’) denote the portion of GP(x,y/P) between x’ and y'.
Since geodesic paths are unigue it follows that the length of GP(x’,y’/P) isless than the length of
p(x’,y’). Therefore we may construct a path GP(x,x’/P) [ GP(x',y’'/P) [J GP(y’,y/P) which is
shorter than GP(x,y/P), a contradiction. Q.E.D.

Given m points pq,py,....Py, iN Pwemay connect p; to p;. 1 for i=1,2,...,m (modulo m) with
GP(p;, p;.+1/P) to obtain a polygonal circuit. If this polygonal circuit is a weakly-simple polygon
then we say it is a geodesic m-gon or polygon and denote it by Pg[pq,po.....n] OF Pg for short
when the context isclear. Them verticespy,po,...,p,y, Of Pg formitsessential vertices. Theremain-
ing vertices of P coincide with reflex vertices of P. If m=3 we obtain a geodesic triangle, and so
on. Fig. 11 illustrates a geodesic quadrilateral Pg[ab,c,d]. For a geodesic polygon
PslP1.P2.--.pyl thereexist vertices p’ 1,p"o,....p" 1y, (P and p’; need not be distinct for any value of
i) such that the paths GP(p;, pj.+1/P) and GP(p;, p;_1/P) intersect in GP(p;, p’;/P) for all values of
i. If the boundary of P intersects the boundary of P then these intersection points decompose the
boundary of Pinto polygonal chainsthat do not intersect the boundary of P other that at their end-

points. The regions bounded by these chains and the corresponding portions of bd(P) are called
pockets (see Fig. 11) and the chains are referred to as pocket chains. It is useful to distinguish be-
tween three types of pockets. If apocket chain has both its end-pointsin GP(p';, p';..1/P) for some

value of i then the pocket, theinterior of which doesnot contain theinterior of P, isacentral pock-
et. If apocket contains at |east one essential vertex of P it isan end pocket. All other pockets are
called side pockets.

Lemma4.3.2: Let Pg[py,py,....py] be ageodesic polygon in P and assume that there exists an es-
sential vertex of Pg, say p;=d, with corresponding p’;=d’, such that GP(p;, p;..1/P) and GP(p;, p;_
1/P) intersect in GP(p;, p'i/P). Let x be any point in P. Then GP(x,d/P) must intersect d'.

Proof: (Refer to Fig. 11) Assume GP(x,d/P) does not intersect d'. Then GP(x,d/P) must traverse
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have that GP(x,y’) < max{GP(x,b), GP(x,c)}. Therefore there must exist a convex vertex of
CH4(S/P), say ¢, such that GP(x,y) < GP(x,c) which is a contradiction. The same argument can

then be used to show that GP(c,x) is at most aslong as GP(c,e) where eis also a convex vertex of
CH(S/P) and thefirst result follows. Next we show that D(S/P) = D5(CH5(S/P)). From the first

result it follows that D(CH(S/P)) is determined by two sitess; and § in S. Furthermore, by def-

inition the geodesic path in P between every pair of sitesin Smust liein CH;(S/P). Therefore the
path realizing D(S/P) must also be the path realizing D(CH;(S/P)). Q.E.D.

Thisresult then immediately suggests an adaptive version of the previous algorithm. Let h
denote the number of convex vertices of CH;(S/P). First compute CH(S/P) and identify its con-

vex verticesin O(n log n) time with the algorithm described in the previous section. Then prepro-
cess P with the algorithm of Guibas and Hershberger [GH87] to admit O(log n) time computation
of geodesic distance queries between pairs of query sites. Finally answer the queries for all pairs
of siteswhich are convex vertices of CH;(S/P) and select the maximum geodesi ¢ distance encoun-

tered. The time complexity of thisagorithmis O(nlogn + h2 log n). However, the most dramatic
application of lemma4.2.1isobtained by using the fact that the geodesic diameter of asimple poly-
gon can be computed in O(n log n) time [Su86a] as in the following algorithm.

Algorithm GEODES C-DIAMETER

Input: A simple polygon P and a set of points Slying in P.

Output: ~ The geodesic diameter of S, D;(S/P).

begin
Sep 1. Compute CH(S/P) using the algorithm discussed in the previous section.
Sep 2: Compute D;(CH;(S/P)) using Suri’s algorithm [Su864].

end

We have thus established the following theorem.

Theorem 4.2.1: Algorithm GEODES C-DIAMETER computes the geodesic diameter of aset Sin
asimple polygon P in O(n log n) time.

4.3 Thegeodesic center of Sin P

Definition: The geodesic center of aset of sites Sin asimple polygon P, denoted by C(S/P), isa

point in P which minimizes the maximum geodesic distance to any site in S. Such a distance is
called the geodesic radius of Sand denoted by R;(S/P). More precisely, for any point x in P define
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[Av]. QE.D.

4, Computing Geodesic Properties of Setsof Pointsin a Polygon
4.1  Introduction

In this section we consider several geodesic problems defined over aset S = (s¢,5,,...,)
of n points called sitesin asimple polygon P =[p4,py,....p] of n sides.

4.2  Thegeodesic diameter of Sin P

Definition: The geodesic diameter of Sin asimple polygon P, denoted by D(S/P), isthe maximal
geodesic distance between any pair of sitesin S, i.e.,

De(S/P) = max {dg(s;§)}
where maximization is carried out over all values of i and .

The naive semi-brute-force approach to solving this problem is to preprocess P by triangu-
lating it, in say O(n log n) time [Ch82], so that the geodesic distance between a pair of sites can be
computed in O(n) time [Ch82], [LP84]. Since there are O(nz) pairs of sitesto be considered this

approach yields an algorithm with a complexity of O(n3). However thisresult can beimproved by
using the preprocessing algorithm of Guibas and Hershberger [GH87]. With thisalgorithm, linear-
time preprocessing of a triangulated polygon allows geodesic distance queries between a pair of
query sitesto be answered in O(log n) time. Therefore D;(S/P) and a geodesic path realizing this

value can be computed in O(n2 log n) time. However, we are able to obtain amuch more dramatic
improvement by using the following lemma which has a well known counterpart in the Euclidean
case.

Lemmad4.2.1: The geodesic diameter of Sisequal to the geodesic diameter of the geodesic convex
hull of S, i.e., D5(S/P) = D5(CH(S/P)). Furthermore, D(S/P) is determined by a pair of convex
vertices of CH(S/P).

Proof: First we show that D;(CH;(S/P)) is determined by two convex vertices of CH(S/P). As-
sume that GP(x,y/CH4(S/P)), for some pair x,y [1 CH(S/P), realizes the geodesic diameter of
CH(S/P) and let x and y be such that one or both are not convex vertices of CH;(S/P). If y [
int(CH(S/P)) extend the last segment of GP(x,y/CH;(S/P)) until it intersects some edge [b’, C']
of CH;(S/P) at point y’. Otherwise lety bey’. Clearly GP(x,y’) =2 GP(x,y). Let b denote the first
convex vertex of CH;(S/P) encountered (possibly b itself) as one traverses bd(CH(S/P)) in the
direction fromy’ to b’. Similarly, Let ¢ denote the first convex vertex of CH;(S/P) encountered
(possibly ¢’ itself) as one traverses bd(CH(S/P)) in the direction from y’ to ¢’. Note that b#c. It

followsthat y’ must liein GP(b,c). It has been shown recently in [PRS89], and earlier in the more
general context of ssimply connected compact sets[LB81], [ML84], that for any y’ in GP(b,c), we

-17 -



vex hull CH(S;).
Sep 6: For each set §; lying in T; compute al the connecting vertices.

Sep7: Perform a counterclockwise scan of WXT(P)) and compute the geodesic paths be-
tween consecutive connecting vertices in the order in which they are encountered.

Sep 8: Concatenate the geodesic paths computed in Step 7 with the appropriate sub-chains
of the CH(S;), for al i, to yield the weakly-simple polygon Q*.

Sep 9. Triangulate A(P-Q*).
Sep 10:  Compute CH(S/P) = CH(A(P-Q*)/P).

end

Theorem 3.4.1: Algorithm GEODES C-HULL computes the geodesic convex hull of a set of n
pointsin asimple polygon of n sidesin O(n log n) time using O(n) space.

Proof: The correctness follows from the previous lemmas and the correctness of the algorithms
used. We turn thus to the complexity. Step 1 can bedonein O(nlog log n) time[TV88]. Step 2 can
be done in linear time [PS85]. Steps 3 and 4 can be accomplished using the algorithm of Kirk-
patrick [Ki83]. In step 5 the convex hullsin all triangles of T(P) containing points of S can be com-
puted with avariety of existing algorithms [To85] in atotal time of O(n log n). Step 6 can be done
in O(n;) time for each triangle T; containing points of S, where n; is the number of vertices of

CH(S;), by asimple scan of bd(CH(S;)) while keeping track of the minimum perpendicular dis-

tanceto therelevant diagonal encountered. Sincethere are at most a constant number of connecting
vertices for each triangle in T(P) and since > n, over al i is O(n) it follows that the total time for

step 6 is O(n). Step 7 consists of computing a sequence of geodesic paths corresponding to a se-
guence of sleeves the total length of which isat most 2n. Thisis adirect consequence of the fact
that the length of W(T(P)) is at most twice the length of T(T(P)). Since in each such sleeve of size
n* the geodesic path required can be computed in time O(n*) using the algorithms in [Ch82] and
[LP84] it follows that step 7 can be performed in a total time of O(n). Step 8 consists of a mere
traversal of all the boundaries of the CH(S;) and therefore runs in O(n) time in the worst case. In

step 9 A(P-Q*) can be converted to aweakly simple polygon in O(n) time and then triangulated in
O(nlog log n) time asin step 1. Step 10 is an instance of the problem discussed in the previous
section and can be accomplished in O(n) time. All the steps require no more than linear storage
space. We therefore conclude that the space requirement for the algorithm islinear and thetimeis
dominated by steps 3 and 4 and is thus O(n log n). Finally we remark that Q(n log n) is alower
bound on the time complexity of this problem. This follows from the fact that if P is convex then
CHg(S/P) = CH(S) and it is well known that €(n log n) is a lower bound for computing CH(S)
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Fig. 10: lllustrating the proof of lemma 3.4.1.

in CH4(S/P). QE.D.

This lemma suggests the following algorithm for computing CH(S/P).

Algorithm GEODES C-HULL

Input:
Output:

begin

Sep 1.
Sep 2

Sep 3.

Sep 4.
Sep 5.

A simple polygon P and a set of points Slyingin P.
The geodesic convex hull of S, CH(S/P).

Triangulate P to obtain T(P).

Compute the dual tree, T(T(P)), of T(P) and its corresponding connected Eulerian
tour W(T(P)).

Preprocess T(P) using O(n) space and O(n log n) time to support O(log n)- time
point-location queries.

Determine for each triangle in T(P) which points of Sit contains.

For each triangle T; of T(P) containing a subset S; of S, compute the ordinary con-
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Fig. 9: lllustrating the dual tree T(T(P)) and the corresponding weakly
simple polygonal Eulerian tour 6T (P)) connecting all the vertices of
T(T(P)) in a counterclockwise manner.

sub-polygons. These three paths correspond to the three sides of anode of degreethreein T(T(P)),
and the structure of W(T(P)) at such a node implies the three paths will not properly cross each
other. Finally we note that in “gluing” these paths to the portions of the boundaries of CH(S;) we

ensure that Q* is aweakly simple polygon by always traversing the boundaries of the CH(S;) ina
consistent counterclockwise manner.

(b) That Q* contains Sfollows from the fact that Q* is aweakly simple polygon that contains the
CH(S) for all i.

(c) That Q* is contained in CH(S/P) follows from the fact that the geodesic path in P between
every pair of pointsin Sliesin CH;(S/P) and Q* is composed entirely of geodesic paths between
points of S (the connecting vertices) and the convex hulls of the §;, which are obviously contained



Fig. 8: lllustrating the connecting vertices (marked solid black) of the
convex hull of the subset of Slying in triangle T;.

[b",c"] intersect at z and let the ray emanating at b through z intersect bd(CH(S;)) at z'. By con-
struction z' must lie after v, and before v, in clockwise order. Therefore [v4,x’] must liein quad-
rilateral [aa,z,b] and [v,,y'] must lie in quadrilateral [c,b,z,c"]. Since the interiors of these two
quadrilaterals do not intersect it impliesthat GP(v4,x/P) and GP(v,,y/P) do not properly cross each
other in T;.

Consider now any triangle T, that is empty of pointsin S. Two cases arise: (i) T, contains
two diagonals of T(P) which are not edges of P and (ii) T contains three diagonals of T(P) which
are not edges of P. Notethat if T) contains only one diagonal of T(P) not an edgein Pand T, does
not contain any points of Sthen no geodesic pathstraverse Ty.. Case (i): T cuts off two sub-poly-
gons of P, P, and P,. If P; or P, contain no points of Sthen the geodesic paths do not traverse T,..
If both P, and P, contain points of S then the geodesic paths correspond to both sides of a chain
inT(T(P)) and therefore they do not properly cross each other. Case (ii): T, cuts off three sub-poly-
gons of P, P1, P, and P3. If only one of these contains points of S then the geodesic paths do not
traverse T,.. If two sub-polygons contain points of S then we have a situation identical to case (i).
If all three contain subsets of S then three geodesic paths will traverse T between every pair of
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Fig. 7: lllustrating the algorithm for computing CH(Q/
P) using a polygon triangulation algorithm plus an addi-
tional linear amount of time.

CH(S;) do not properly cross each other. Consider therefore the geodesic paths between pairs of

connecting vertices. These paths traverse two types of trianglesin T(P): those containing points of
S and those that are empty. Consider first the triangles containing points of S and refer to Fig. 10.

LetT; = A(a,b,c) contain S;. In general T; will be composed of up to three diagonals of T(P) and
thus CH(S;) will contain up to three connecting vertices. We must show that the geodesic paths
emanating from these connecting vertices do not properly cross each other. Let v4 and v, be any
two connecting vertices of CH(S;) and let d;;=[a,b] and d;»=[b, c] be the diagonals of T; corre-
sponding to v4 and Vs, respectively. Let P, be the portion of P cut from P by d;4 that excludes
int(T;). Similarly, let P, be the portion of P cut from P by d; that excludesint(T;). By the defini-
tion of Q* we have that the geodesic paths GP(v4,x/P) and GP(v,,y/P) of Q* must be such that X
[Py andy [ P,. Let L1 bealine parallel to [a,b] and tangent to CH(S;) at v4, and let L 1 intersect
[ac] ata and [b, c] a b'. Similarly, let L, be aline parallel to [b, c] and tangent to CH(S)) at v,
and let L, intersect [ab] at b” and [ac] at ¢”. By construction, quadrilaterals Q;=[ab,b’,a] and
Qo=[c,b,b”,c"] do not contain points of CH(S,) in their interiors. Therefore the portion of GP(v,x/
P) inT; must be astraight line segment from v, to some point x” on [a,b]. Similarly, the portion of
GP(v,,y/P) inT; must be astraight line segment from v, to some point y’ on [b, c]. Let [&,b'] and
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Fig. 6: The shaded region in P is the geodesic convex
hull of the set of pointsin P.

using two copies of each such geodesic path in ajudicious manner, we obtain a polygon Q*. By a
judicious manner it is meant that in constructing a description of the boundary of Q* the directions
of the geodesic paths and portions of the boundaries of the CH(S;), for all i, must be properly cho-

sen. To do thiswe begin by doubling each edge of T(T(P)), thereby obtaining agraph 6XT(P)), each
vertex of which has even degree and which therefore is a connected Euler graph, i.e., its edges can
be numbered so that the resulting sequence is aweakly-simple polygon oriented in a counterclock-
wise manner (see Fig. 9). A geodesic path between two connecting verticesin T(P) iscontained in
those triangles determined by the portion of GW(T(P)) corresponding to the relevant portion of the
dual tree. The relative position and direction of the portion of W(T(P)) determines the relative po-
sition and direction of its corresponding geodesic path. Finally we need to append correctly the
portions of the boundaries of the CH(S;) between connecting vertices. A connecting vertex, say

v(i,k), inatriangle T; is connected to the first connecting vertex encountered (possibly v(i k) itself)
intraversing the boundary of CH(S;) in a counter-clockwise manner. Furthermore, the connection

is made by appending precisely the polygonal chain traversed during this search with a direction
identical to the direction in which the search is made. We will now show that Q* doesindeed pos-
sess the desired properties mentioned above.

Lemma 3.4.1: The polygon Q* hasthe following properties. (a) Q* isweakly-simple, (b) Q* con-
tains S, (c) Q* is contained in CH(S/P).

Proof: (a) Since the sets S; are contained in digoint triangles it follows that the boundaries of the
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(b)

Fig 5: (@) The shaded subset of P is not geodesically convex because even
though x,y [ Q, we havethat GP(x,y/P) # GP(x,y/Q). (b) The shaded sub-
set of Pis geodesically convex.

CH (%) and appending the geodesi ¢ paths between appropriate connecting vertices computed with-
inan appropriate sleeve of P. Consider CH(S;) lyingin T; and refer to Fig. 8. A triangle T; contains

either one, two, or three diagonals of T(P) depending on whether it shares two, one, or zero edges
of P, respectively. Each diagonal of T; is associated with a connecting vertex of CH(S;). The con-
necting vertex of CH(S;) corresponding to diagonal d;) of T; is that vertex, say v(i,k), of CH(S))
whichis closest, in the perpendicular distance sense, to the line collinear with d,) . Note that asin-

gle vertex of CH(S;) may be a connecting vertex for more than one diagonal of T;. Let T; and Tj

be two trianglesin T(P) such that each contains points S; and S;, respectively. Let t; and tj denote

the nodesin T(T(P)) corresponding to T; and T;, respectively. The shortest path (in the graph-the-
oretic sense) between t; and tj in T(T(P)) corresponds to a sleeve in T(P) denoted by S(T; ,...,Tj).
Thissleeve S(T; ,...,Tj) specifies asequence of ordered diagonals d; k,...,dj that must be intersect-
ed sequentially by the geodesic path between any point x [ int(T;) and any pointy [l int(TJ-). Let
v(i,k) and v(j,m) denote the connecting vertices of CH(S;) and CH(SJ), respectively, corresponding
to diagonals d; j and dy, in T; and Tj. The connecting vertices v(i,k) and v(j,m) are joined by the
geodesic path between them provided that no points of S lie in any triangle of SI(Ti,...,Tj) other

than T; and Tj. By applying this rule to all pairs of triangles in T(P) that contain points of S and
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Fig. 4: lllustrating a weakly-simple polygon P. Thein-
terior of P is shaded. The arrows indicate a counter-
clockwise traversal of the boundary of P. Here some
vertices and edges of P are used twice.

following theorem.

Theorem 3.3.1: Given two simple polygons P = [pq,py,....pp] and Q=[q,ds,....d,,] such that Qis
contained in P, CH ;(Q/P) can be computed using a polygon triangulation agorithm and O(n) ad-
ditional time.

34  Computing the geodesic convex hull of a set of pointsin a polygon

In this section we present Algorithm GEODES C-HULL for computing CH(S/P) in O(n

log n) time which is optimal to within a constant factor. The essential idea used to solve this prob-
lemisto convert the problem, in O(n log n) time, to an instance of the CH(Q/P) problem. In other

words, we first find a weakly simple polygon Q* that has the properties that: (1) Q* liesin P, (2)
Q* contains S, and (3) CH(Q*/P) = CH(S/P). Before presenting the algorithm we provide a suit-

able definition of the polygon Q* and establish that it possesses the desired properties.

A triangulation T(P) of P contains n-2 triangles denoted by T;, i=1,2,...,n-2. Let the dual
tree of T(P) be denoted by T(T(P)). Let the subset of sitesin Sthat fall intriangle T; be denoted by
S, and let CH(S;) denote the ordinary convex hull of S;. The weakly simple polygon Q* is com-
posed of the union of the CH(S;), i=1,2,...,n-2, with certain geodesic paths connecting them. Two
convex hulls CH(S;) and CH(SJ) are connected by specifying connecting vertices of CH(S;) and
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(a) (b)

Fig. 3: lllustrating intersecting curves (a) with proper
crossings and (b) without proper crossings.

puted in linear time given that the region A(P-Q) is triangulated. We will show the more general
result instead that given Q contained in P, CH(Q/P) can be computed in O(n) time given that an

algorithm isavailable to triangulate a simple polygon. First we state two elementary lemmas with-
out proof.

Lemma 3.3.1: Let g* be avertex of CH(Q), the ordinary convex hull of Q. Then g* must be aver-
tex of CH5(Q/P).

Lemma 3.3.2: A vertex p* of P such that int[p*,q*] liesin int(P) N ext(Q) can be found in O(n)
time.

The above lemmas suggest the following approach. First we determinein linear time aver-
tex g* of CH(Q). This can be done by choosing any extreme vertex of Q in some arbitrarily spec-
ified direction. Without loss of generality let g* be the vertex with maximum y-coordinate and re-
fer toFig. 7. Then by lemma3.3.2 we find avertex p* of Pvisible from g* also inlinear time. The
line segment [p*,g*] partitions the non-simpleregion A(P-Q) into asimple region and by inserting
two copies of [p*,g*] into the descriptions of the boundaries of P and Q we convert the non-simple
region A(P-Q) into aweakly simple polygon P*. This polygon P* can now be triangulated in O(n
log log n) time [TV 87] thus affording the computation of the geodesi ¢ path between two points X,y
in P~ inlinear time [Ch82], [LP84]. Fromlemma3.3.1 it followsthat CH;(Q/P) isthe shortest path

in P* between g* and g**, acopy of g* lying on the other side of [p*,g*]. Furthermore g* and g**
are two points in the triangulated weakly simple polygon P*. Therefore we have established the



side of C to the other. See Fig. 3.

Definition: A closed polygonal path C is called a weakly-simple polygon provided that (1) every
pair of distinct points of C partitions C into two polygonal chains that have no proper crossings
and (2) the sum of all the angles turned when C is completely traversed starting and ending from
any point on Cisequal to 360 degrees.

Weakly-simple polygons are a useful generalization of simple polygons because in many
situations concerned with geodesic paths the regions of interest are not simple but are nevertheless
weakly-simple. Furthermore, like their ssmple counterparts, weakly-simple polygons do have a
well defined interior and exterior. Unlike their ssmple counterparts, however, weakly simple poly-
gons may have both their interior and exterior consisting of several disconnected components (see
Fig. 4). Asusual, we will include the interior regions when we refer to a weakly simple polygon.
The important fact to note from the computational complexity point of view isthat the data struc-
tures and algorithms designed to work for simple polygonswill in most cases also work for weakly
simple polygons with only minor, if not trivial, modifications that do not affect the order of either
the time or space complexity bounds involved.

Definition: Let Q be asubset of P. Q is called geodesically convex provided that for every pair of
pointsx,y [] Q, the geodesic path between x and y constrainedtoliein Palsoliesin Q, i.e., GP(x,y/
P) = GP(x,y/Q). Refer to Fig. 5 for an illustration.

Definition: Let Sbe aset of sitesin P. The geodesic convex hull, CH(S/P), is the intersection of

all geodesically-convex sets containing S. Refer to Fig. 6 for an illustration. Alternately we may
view the geodesic convex hull as the minimum-perimeter weakly-simple polygon that contains S
and is constrained to lie in P. The proof that these two notions are equivalent is left as an exercise
for the reader.

We are now ready to present an algorithm for computing CH;(S/P). The agorithm con-

verts the problem to an instance of computing the relative convex hull of one polygon inside an-
other. Therefore we first turn our attention to this easier version of the problem.

3.3  Computing the geodesic convex hull of one polygon inside another

Let P=[p4,p2,....pp] and Q=[q1,q2,...,qn] be two simple polygons such that Q is contained
in P. The problem of computing CH;(Q/P) was first explored in the context of image processing
where the terminology minimum perimeter polygon was used to refer to CH(Q/P)
[SCH72],[SK76]. Sklansky and Kibler [SK76] presented an algorithm for computing CH;(Q/P)

for the special casein which Q O int(P) and the region A(P-Q) = P n (int(Q))®, where (.)€ denotes
complement, isgiven asapartition into convex sub-polygonswith the additional property that each
pair of adjacent sub-polygonsis also convex. While no complexity analysis of their algorithm was

given by them it is easy to show [T086c] that the algorithm runsin O(n2) time in the worst case.
We now demonstrate that this problem [SK76] can be solved in linear time. Note that a convex
polygon can be triangulated trivialy in linear time by simply joining any vertex of the polygon to
al other non-adjacent vertices. Therefore the region A(P-Q) can betriangulated in O(n) timein the
version of the problem considered in [SK76] and it remains to show that CH;(Q/P) can be com-



location problem asks for the location of afacility to be used by the customers such that the max-
imum Euclidean distance that any customer has to travel to get to the facility is minimized. The
center of the minimal spanning circle of the sites, i.e., the smallest circle enclosing the sites, isthe
solution to this problem.

Definition: The geodesic center of a simple polygon P, denoted by C(P), is apoint in P which

minimizes the maximum geodesic distance to any point in P. Such adistanceis called the geodesic
radius of P and denoted by R;(P). More precisely, for any point x in P define the covering radius

of Pfrom x as:
C,(PIx) = max {ds(x,y)},
y

wherey varies over al pointsin P. Then the geodesic center of Pisthe point in P for which
Rs(P) = min{C.(P/x)},

X

where x varies over al pointsin P.

It is now well known that the standard Euclidean facility problem can be solved in linear
time[Me83], [Dy86], but its generalization to the geodesic metric appearsto be more difficult. The
problem of computing the geodesic center of asimple polygon wasfirst investigated by Asano and

Toussaint [AT85] who showed that it was unique and could be computed in O(n* log n) time. This
result was later improved to O(n® log log n) time in [AT86], to O(n log? n) time in [PS86], and
finally to O(n log n) time in [PSR89].

3. The Geodesic Convex Hull
3.1 I ntroduction

In this section we introduce the notion of the geodesic (also known in the literature asrel-
ative) convex hull of a set of points S = {sl,sz,...,sn} called sites lying in a simple n-gon P. Note

that the cardinalities of Sand P need not be equal but this assumption will simplify the complexity
formulas. The geodesic convex hull of S given P, denoted by CH(S/P), turns out to be a funda-

mental tool for computing many geodesic properties efficiently as will be demonstrated in section
4.

3.2 Geometric preliminaries

Definition: Let C; and C, be two oriented, possibly self-intersecting curves. We say that C4 and
C, have a proper crossing provided that, as we traverse C; from its starting point to its finishing
point we encounter a neighbourhood of C4 where C, intersects C4 and actually switches from one



Fig. 2: A triangulation T(P) (thin solid lines) of a simple polygon
P (in bold lines) and the dual tree of T(P) shown in broken lines.
The shaded areaillustrates a sleeve.

of the set and since the convex hull of a simple polygon P can be found in O(n) time [MA79], it
follows that the diameter of P can be found in O(n) time also. The geodesic diameter considered
hereis a generalization of the Euclidean diameter.

Definition: The geodesic diameter of asimple polygon P, denoted by D(P), is the maximal geo-
desic distance between any pair of pointsin P, i.e.,

Ds(P) = max {d(X,y)},

X,y
where x and y vary over al points of P.

Chazelle [Ch82] aswell as Reif and Storer [RS85] give O(n?) time algorithms for comput-
ing the geodesic diameter of asimple n-gon. It isknown that ageodesi ¢ furthest neighbor of apoint
in apolygon is always a convex vertex of P (see Asano and Toussaint [AT85]). Thisimmediately
leads to an algorithm with complexity O(c?n + T(n)) where ¢ is the number of convex vertices of
P and T(n) isthe time required to triangulate P. Suri [Su87] on the other hand has shown that O(n
log n) time is sufficient to compute the geodesic furthest neighbors of all the vertices of P and,
hence, to compute the geodesic diameter of P.

2.3  Thegeodesic center of a polygon

The geodesic center of apolygon isageneralization of the Euclidean facility location prob-
lem. Given a set of points in the plane called sites that represent customers, the Euclidean facility



the dual tree of a polygon triangulation and the graph-theoretic shortest path in a tree can both be
easily computed in linear time it follows that their algorithm performsin linear time on atriangu-
lated polygon. Furthermore, since a polygon can be triangulated in O(n log log n) time [TV 87] it
follows that the shortest path can be computed within the same time bound. A caveat should be
added, however, concerning the use of the algorithm of Tarjan and Van Wyk in a graphics envi-
ronment where a polygon may not have alarge number of vertices. Their algorithm involves rather
complicated data structures resulting in a large overhead which may render the algorithm very
slow. In practice an algorithm such asthat in [To88c] may be preferred. Thisvery simpleagorithm
requires neither height balanced trees nor sorting and runs in time O(n(1+t,)) wheret, is the num-

ber of nodes of degree three in the dual tree of the output triangulation delivered. Although this

algorithm may run in O(n?) time for some classes of polygons, for others it runs in O(n) time
[ST88a],[ To88¢].

Some work has also been done concerning geodesic distance and path queries. In particu-
lar, Guibas and Hershberger [GH87] show how to preprocess atriangulated polygonin linear time
so that, giventwo query pointsx andy in P, d5(x,y) can be computed in time O(log n). Furthermore

the geodesic path itself, GP(x,y/P) can be generated in an additional time proportional to the num-
ber of turnsit makes.

Geodesic pathsfind application in avariety of areas. In image processing they are used for
representing, approximating, and smoothing digitized shapesSCH72]. In robotics they are used
for motion planning, grasping, and collision avoidance [PSS88], [PeSa], [To88d], [To88f]. In
graphics applications concerned with visibility and strong hidden line elimination they yield ele-
gant and efficient algorithms to solve a variety of related problems [GHLST], [To864], [ To86b].
In pattern recognition and mathematical morphology they provide new descriptors of shape
[LM84], [To88a]. In computational geometry they are useful for solving a variety of problems as
well as characterizing large families of polygons that admit linear-time triangulation algorithms
[ET88], [ET89]. Finally, in mathematics geodesic paths can be used to obtain anew proof of Kras-
noselskii’ s theorem concerning star-shaped sets [ST88b], [To88b].

2. Geodesic Properties of Polygons
21 Introduction

Before considering the problem of computing the geodesic properties of sets of pointsin-
side a polygon we turn to the simpler case of geodesic properties of the polygon itself since these
results will be heavily used in what follows.

2.2  Thegeodesic diameter of a polygon

The diameter of a set isthe maximal Euclidean distance between any two elements of the
set. The problem of computing the Euclidean diameter of a set efficiently is more difficult than ap-
pears at first glance and has received considerable attention in the computational geometry litera-
ture. Several published algorithms have been found to be incorrect [ATB82], [BT82], [BT85]. The
diameter of a set of n points can be computed in O(n log n) time. However, for a convex polygon
O(n) time suffices. Since the diameter of aset isdetermined by apair of vertices of the convex hull



the Euclidean plane E2 asthefigure P = [pq,po,....pp] formed by n points pq,py,....p, iN E2 and n
line segments [p;,p;+1], i=1,2,...,n-1, and [p,,p1]. The points p; are called the vertices of the poly-

gon and the line segments are termed its edges. We assumethe vertices of Parein general position,
i.e., no three vertices are collinear.

Definition: A polygon Pis called a simple polygon provided that no point of the plane belongs to
more than two edges of P and the only points of the plane that belong to precisely two edges are
the vertices of P. A simple polygon has a well defined interior and exterior denoted respectively
by int(P) and ext(P). We will follow the convention of including the interior of a polygon when
referring to P.

The vertices of P are either convex or reflex. For agiven vertex X, lety = )\xj_1 + (1—)\)xj and
Z= WXyt (1-u)xj. For al sufficiently small positive values of 1 and A we have that int[y,z] lies
either totally in int(P) or wholly in ext(P); in the former case X, is a convex vertex whereas in the
latter caseit isareflex vertex.

A polygonal path is a simple path consisting of a sequence of line segments. If p isapo-
lygonal path, then the length of p isthe sum of the Euclidean lengths of all the line segments com-
prising p. Given two pointsx and x’ in P the geodesic path between x and X’ denoted by GP(x,x’/
P) is the minimum-length polygonal path (x=X4,X5,....X|=X’). It is convenient to consider the geo-

desic path as having a direction and GP(x,x’/P) will imply that the direction isfrom x to xX’. The
length of the geodesic path is called the geodesic distance and is denoted by d(x, X'). Two funda-

mental properties of the geodesic path GP(x,x'/P) are that the path is unique and its vertices x;,

i=2,3,...,k-1 are a subset of the reflex vertices of P [Ch82],[LP84]. Chazelle [Ch82] and Lee and
Preparata [ L P84] independently obtained an elegant algorithm for computing GP(x,x’/P) in linear
time provided that P has already been triangul ated.

Definition: A chord of asimple polygon P is a closed line segment [x,y] that intersects P only at
x andy. If thechordissuch that itsinterior int[x,y] iscontained inint(P) then it iscalled an internal -
chord; if int[x,y] is contained in ext(P) it is an external-chord. A chord [x,y] of asimple polygon P
isadiagonal if x and y are two vertices of P. An internal and external diagonal are defined in a
similar manner.

Definition: A triangulation of a simple polygon P containing n vertices, denoted by T(P), is the
union of P with a set of n-3 carefully chosen internal diagonals that partition P into n-2 triangles
such that the diagonals intersect each other only at their endpoints.

It iswell known that the dual graph of a polygon triangulation is a tree and both the algo-
rithms of Chazelle and Lee and Preparata makes use of this tree. See Fig. 2 for an illustration. A
deeve is a triangulated polygon the dual tree of which is a chain. The first key result which they
useisalinear-time algorithm for finding the shortest path between two pointsin asleeve. The sec-
ond is alemmawhich states that the shortest path between two points x and y in asimple polygon
P must lie in the sleeve determined by the trianglesin T(P) that correspond to the nodesin the dual
tree of T(P) that determine the graph-theoretic shortest path between the nodes x’, y’ in the dual
tree of T(P), wherex’ andy’ are the duals of the triangles that contain x and y, respectively. Since
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Fig. 1: lllustrating the shortest inter-
nal path between two pointsx andy in
asimple polygon P.

called the osculating plane to C at point a.

Definition: Let C be apath on asurface 2. If at each point a of C the osculating plane to C and
the tangent plane to 2 are perpendicular to each other, then C is a geodesic path.

Clearly, the converse of Bernoulli’s theorem is not true in general. Consider two non-di-
ametral pointson the surface of asphere. Thesetwo points partition the great circle passing through
them into two arcs of different lengths. Both arcs are geodesi ¢ paths between the pair of points but
obviously only one of them is a shortest path. More interesting examples on cones and cylinders
may be constructed by the reader.

Recently there has been considerable interest in the complexity of computing the shortest
path between two points lying on the surface of a convex polyhedron. Mount [M084] presents an
algorithm for computing the shortest path in O(n? log n) time, where n is the number of faces of
the polyhedron (see also Sharir and Schorr [SS84] for an algorithm that solves the same problem
in O(n® log n) time). Finally, Franklin and Akman [FA84] consider the situation in which the con-
vex polyhedron is preprocessed in order that shortest-path queries between pairs of query points
may be answered efficiently.

In this paper we restrict ourselves to the simpler case in which our surface of interest is a simple
planar polygon. In this case a geodesic path is defined to be the shortest internal path connecting
two points in the polygon and it is unique. For any integer n = 3, we define a polygon or n-gon in
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ABSTRACT

Let P be a simple polygon of n vertices and let Sbe a set of n points called siteslying in the
interior of P. The geodesic-distance between two sites x and y in P is defined as the length of the
shortest polygonal path connecting x and y constrained to liein P. It isa useful notion in graphics
problems concerning visibility between objects, computer vision problems concerned with the de-
scription of shape, wire-layout problemsin VLS, and robotics problems concer ning path planning
and facility location. In this paper we propose efficient algorithms for solving a variety of geode-
sic-distance problems. The key result and tool used in the design of these algorithmsisan O(n log
n)-time algorithm for computing the geodesic convex-hull of Swith respect to P, i.e., the shortest
polygonal circuit containing Sconstrained to liein P. Weillustrate the use of this structurein com-
puting the geodesic-diameter, the geodesic-center, and the geodesic-median of Sin P, aswell as
the maximum geodesic distance between two sets S; and S, in P.

1. I ntroduction

This paper is concerned with the calculation of shortest internal distances and paths be-
tween points in the interior of a simple polygon. Figure 1 illustrates the shortest internal path be-
tween two pointsinside asimple polygon. Such distances and paths are al so often qualified as geo-
desic and represent aspecial case of the problem of computing the shortest path between two points
on asurface of an object such as a sphere, polyhedron, or more general surface] SGB83]. However,
in general the terms geodesic and shortest path are not equivalent. The term shortest is intuitively
quite clear but geodesic warrants a definition

The first paper on the shortest path between two points on a general surface was published
by Leonhard Euler in 1728 [Eu]. Euler reduced the problem to the solution of a differential equa-
tion equivalent to the following geometric theorem derived earlier by Johann Bernoulli in 1698.

Theorem: (Bernoulli, 1698) The shortest path between two points on a surface is a geodesic path.

Definition: Let C be apath on asurface 2. Let a be apoint on C and let b and ¢ be any two other
points on C close to and on each side of a. In general the three points a,b,c will determine a plane
dependent on b and c¢. The limiting position of this plane as b and ¢ both move on C toward a is



