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Abstract

Guibas conjectured that given a convex polygon P
in the xy-plane along with two triangulations of it,
T and T5 that share no diagonals, it is always pos-
sible to assign height values to the vertices of P
such that PUT; UT»> becomes a convex 3-polytope.
Dekster found a counter example but left open the
questions of deciding if a given configuration cor-
responds to a convex 3-polytope, and constructing
such realizations when they exist. This paper gives
a proof that a relaxed version of Guibas’ conjecture
always holds true. The question of deciding the re-
alizability of Guibas’ conjecture is characterized in
terms of a linear programming problem. This leads
to an algorithm for deciding and constructing such
realizations that incorporates a linear programming
step with O(n?) inequality constraints and n vari-
ables.

1 Introduction

At the First Canadian Conference on Computa-
tional Geometry held at McGill University in Au-
gust 1989 Leo Guibas conjectured that given a con-
vex polygon P in the xy-plane along with two dis-
tinct (share no diagonals) triangulations of it, T
and T>, it is always possible to perturb the vertices
of P vertically out of the xy-plane to create a spa-
tial polygon P’ that projects to P so that the con-
vex hull of P’ becomes a convex 3-polytope whose
skeleton projects onto P UT; UT, [5].

In 1995 Boris Dekster disproved Guibas’ conjec-
ture by showing that a necessary condition on the
configuration P, Ty, T, could fail [3]. However, the
problems of deciding when a given configuration cor-
responds to a convex 3-polytope in general, and con-
structing such realizations where possible were left
open.

In this paper we introduce a new formalism for
Guibas’ conjecture based on generalized realizabil-
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Figure 1: Dekster’s counter example to Guibas’ con-
jecture.

ity problems. In this light, Guibas’ conjecture is
shown to be related to a variety of other prob-
lems. We then present one such problem that high-
lights the relationship between Guibas’ conjecture
and Steinitz’s Theorem [7]. We propose a solution
to the problem of deciding when a given configu-
ration P,Ti,T5 is realizable under the constraints
present in Guibas’ conjecture. Lastly we present
an algorithm for computing realizations where pos-
sible, and find that the characterization of the de-
cidability problem admits an immediate solution to
the construction problem using linear programming
with O(n?) inequality constraints and n variables.

2 Dekster’s Counter Example

Before presenting the new results we review Dek-
ster’s counter example to Guibas’ conjecture. Dek-
ster proves a general theorem outlining a necessary
condition on the configuration P,Ty,T» in [3] us-
ing an elaborate geometric construction. He then
presents an example where these properties do not
hold implying that Guibas’ conjecture is false. In
this section a simplified version of Dekster’s proof
is sketched for the configuration used in his exam-
ple. The configuration in question is pictured in
Figure 1. This configuration cannot be realized as
a convex 3-polytope under any assignment of height
values to its vertices. Such a configuration is said
to be unrealizable.
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Figure 2: Dekster’s Construction

Theorem 1 The configuration (P,Ty,T2) shown in
Figure 1 does not have a realization as a conver 3-

polytope.

Lower case letters will denote points and lines in
3-space. Capital letters will denote the projection
onto the xy-plane of points and lines in 3-space.
The notation [ijk] will be used to denote the plane
of three vertices 1, j, k.

Let L be the line through AD, and M be the line
through BE. Now, construct a ray starting at C'
and passing though D. It intersects M at a point
Z. Denote by X the point of intersection of AD
and BE as seen in Figure 2.

Denote by h the intersection of the two planes
[afe] and [bed]. Since these planes contain two faces
of the bottom and are hinged along the bottom
edges ae and bd that project onto parallel lines,
the projection of the line h onto the plane forms a
line H that must intersect both the segment AB
and the segment ED. The line H is pictured here
with an arbitrary placement. Since H crosses AB
and ED it crosses the interior of the quadrilateral
ABDE thus it must also cross BE and DZ. Denote
by G the point of intersection of H with DZ and
note that whatever the exact placement of H the
inequality |DG| < |DZ| will always hold.

Since G is between Z and D it is always possible
to find a point W that lies on the segment AG
and is in the interior of the quadrilateral AXEF.
The segment WC must then intersect the diagonal
AD at a point Y that is inside the polygon (see
Figure 2). Denote by w; the point contained in the
plane [aef] having projection W. Since [aef] is the
plane of a face of the bottom of P* and W is in the
interior of P it must be that w; is on or below the
bottom of P*. Let ws be any point in the interior
of P* also having projection W, then ws, is above

wi. Also consider the point y; on the segment wjc
and the point y» on the segment wyc both having
projection Y. Since ws is above w; it must be that
y2 is above y;.

Finally we derive a contradiction as follows:
Let g be the point of [aef] having projection G.
By the above construction g lies in [bed] as well
since g is on the line h, which is the intersection
of the planes [aef] and [bed] by definition. Then
d lies on the segment gc. Since w; lies on ga by
definition and d lies on gc we have that wic, and
ad cross at y;. y; is then an element of the top of
P*, so y, can not be above y; since y; is in the
interior of P*. This contradicts the above asser-
tion that y is above y; and thus the configuration
(P, Ty, T») has no realization as a convex 3-polytope.

Dekster’s proof relies on a complex geometric ar-
gument whereas the methods proposed in this paper
focus on exploiting the strong connections between
the geometry of 3-polytopes and graph theory.

3 General Realizability

A general realizability problem asks whether a
given graph theoretic or geometric object ¢ can
be embedded in a space ¢ under an isomorphic
mapping f such that the mapped objects belong to
the class ¢'. A well know example is the problem
of embedding a combinatorial graph G = (V, E) in
R? as a planar graph G' = (V',E'). In this case
the map m takes v; € V to v} = (z,y) € V' where
(z,y) € R?, and m takes e = (v;,v;) € E to a curve
e’ € E' in R* having endpoints v} and .

We will refer to a configuration consisting of a
convex polygon P = (V, E) with v; = (z,y) € R?,
and two triangulations of it 77 and T3 by the triple
(P,T1,T>). The underlying combinatorial graph
structure will be denoted by G = g(P,T1,T>). Ac-
cording to Guibas’ conjecture the objects we are
interested in mapping to are convex 3-polytopes
Q = (V',E') where v! = (2',9',2") € R®. The
isomorphic mapping mg is such that each vertex
v; = (z,y) € V maps to a corresponding vertex
v = (z,y,2") € V', and each edge e = (v;,v;) €
{EUT1 UT>} maps to an edge e, = (vj,v;) € E'.
Note that we do not allow the existing z and y co-
ordinates of v; to change under this mapping. This
corresponds to simply raising the vertices of P ver-
tically out of the plane to obtain () as required by
Guibas’ conjecture. For related versions of realiz-
ability see [1], [2], [8].



4 A Relaxed Version of
Guibas’ Conjecture

In this section we show one relation between
Guibas’ conjecture and Steinitz’s Theorem by
introducing an intermediate problem that can be
seen both as a relaxation of the conditions in
Guibas’ conjecture, and a special case of Steinitz’s
theorem.

Steinitz’s Theorem: A graph G is isomorphic
to the edge graph of a conver 3-polytope Q if and
only if G is 3-connected and planar.

In this new problem the goal remains map-
ping configurations (P, T7, T5) to convex 3-polytopes
Q(V, E), but we relax the constraints on the map-
ping as follows: m, : v; = (z,y) € V = v} =
(z',y',2") € V'. In other words, we allow the po-
sition of v; € V' to be completely reassigned by the
mapping m..

Theorem 2 Given a convexr polygon P in the
plane, along with two distinct triangulations of it, Ty
and Ty, there always exists a mapping of the type m,
from (P,T1,T>) to a convex polytope @ = (V', E')
where my 1 v; = (z,y) €V = 0] = (2',y',2) € V',
and edges are mapped in the natural way.

Lemma 1 The combinatorial graph G of (P,T1,T5)
is planar.

Since T7 and T5 are triangulations of P, and P is
convex, we know that G; = PUT; and Gy = PUTs
are both plane graphs. To show that G is a planar
graph we need only show that there exists a plane
graph where the edges of either T7 or T5 are located
on the exterior of P and do not cross. To construct
such an embedding we go through the intermediate
step of embedding G on the surface of the sphere.
The vertices of P are mapped onto the equator of
the sphere and the edges of P are mapped to arcs
between the points along the equator. Since both T3
and T3 are sets of nonintersecting edges in the plane,
they can each be mapped into a separate hemisphere
as nonintersecting arcs of great circles. To recover
a non-crossing plane embedding of G we first rotate
the spherical embedding if necessary to ensure that
the north pole does not lie on an embedded vertex
or edge, and then take a stereographic projection
onto the xy-plane. An illustration of such a trans-
formation is shown in Figure 3.

Lemma 2 The combinatorial graph G of (P,T1,T>)
is 3-connected.

Figure 3: Transformation of P UT; UT5 to a plane
graph.

To see that Lemma 2 is true consider that each
combinatorial graph G is the result of triangulating
a convex polygon in two distinct ways. Each
polygon triangulation has n — 3 diagonals for a
total of 2n — 6 diagonals from both triangulations.
There are also n edges from the polygon itself.
This gives a total of 3n — 6 edges. A theorem of
Whitney states that all planar graphs with 3n — 6
edges are maximally planar. Lastly, a corollary to
a theorem by Kuratowski states that all maximal
planar graphs with n > 4 are 3-connected [4]. Thus
the combinatorial graph G of any configuration
(P,T1,T>) must be 3-connected.

The proof of Theorem 2 now follows from Lem-
mas 1, 2 and Steinitz’ theorem.

A direct and elementary proof of Lemma 2 may
also be obtained as follows. To show that G is 3-
connected assume the contrary and derive a contra-
diction. Assume G is not 3-connected. Then there
must exist some set of two vertices which disconnect
the given graph. Without loss of generality we may
assume that the two vertices in this set are vy and
v, where k # 0,1,n. Since all the vertices in the
graph lie on one large cycle induced by the edges of
the polygon P, it should be intuitively obvious that
the removal of two of these vertices can partition
the graph into at most two connected components
A ={v1,v2, ..., 051} and B = {Vp41,Vk+2, -, Un}-
By assumption the removal of v and vy, disconnects
the graph so it must be that there are no edges link-
ing the vertices in A to the vertices in B. Thus A
must be completely triangulated twice using only
edges from AU {vp, vy }. However, any complete tri-
angulation of a convex set of points must include
all the edges in the convex hull of the point set.
Thus we get that any triangulation of A U {vo, vi}
must have vgvg as an edge. Since we require that
A U {wvg,vr} be triangulated twice, it follows that
the edge vouy, must be in both 7 and 7. This is
a contradiction since by assumption 77 and T, are
distinct sets. So there does not exist a set of two
vertices which disconnects the graph, and thus G is
3-connected as required.



5 Deciding Realizability for
Guibas’ Conjecture

The method used to solve the decidability problem
for Guibas’ conjecture is inspired in part by a
quantitative treatment of Steinitz’s theorem due to
Onn and Sturmfels [6]. Let f; = {vi1,vi2,vi3} be
any face of the two dimensional plane embedding
of (P,T1,T>), and let the vertices of f; be given
in counterclockwise order if f; € T1, and in clock-
wise order if f; € T». One characterization of a
convex 3-polytope is as the intersection of a set of
half-spaces in 3-space. It follows that if (P,T,T5)
is realizable as a convex 3-polytope @ = (V', E'),
all the vertices v; in @Q/f; are on the same side
of f;, or () cannot be the intersection of a set of
half-spaces. This characterization yields a simple
test for deciding realizability.

For each face f; = {vi1,vi2,vi3} with vertices
given in the above order we require that every other
vertex v; of () be on the same side of f;. This con-
dition can be checked by computing the volume of
the 3-simplex s; ; formed by f; with each v; in Q/ f;.
Since the faces of T} are given in clockwise order,
and the faces of T, are given in counter clockwise
order, the normals to the faces of ) will all point
outwards. Thus we require that the volume of each
3-simplex s;; be strictly positive. This indicates
that for each face f; all the other vertices of Q) are
on the same side of f;. The volume of a 3-simplex
can be easily computed using the determinant of
the coordinate matrix as shown below. We want
the volume of each s; ; to be strictly greater than 0
so we impose the condition shown in equation 1.

®i1 ¥i,1o Zi,10 L
z32  ¥i2 %2 1
1/6)det | % ’ > >0 1
(/6 2,3 ¥i,3 2,3 1 W
e Y zj 1

The key observation is that in the case of the
present decision problem, the values of the z;’s and
y;’s are specified by P in the given configuration
(P,T1,T2). Thus the cofactor expansion of the z
column in the above determinant yields an inequal-
ity that is linear in terms of the z coordinates as
seen in equation 2.

z;2 Y2 1 21 ¥i,1 1

j yj zj v;j 1

z;1 Yi1 1 z;1 Y1 1
+z; gdet | z; 2 Yi,2 1 — zjdet |z; 2 Yi,2 1| >0 (2)

zj Yj 1 2,3 ¥i;,3 1

The simple manipulations above lead us directly
to a solution to the problem of deciding when a con-
figuration (P, Ty, T») is realizable as stated formally
in Theorem 2.

Theorem 3 A configuration (P,Ty,Ts) is realiz-
able as a convex 3-polytope if and only if the there
is a solution to the set S of linear inequalities given

by:

zj2  yi2 1 24,1 ¥i,1 1
s=UU zj1det [2z53 w3 1| —zjgdet|2;3 w3 1
FV

@ Yj 1 @ Yj 1

T 1 Y4l 1 ®;1 0 Y51 1
+z;3det |20  yi2 1| —zjdet |25 yi2 1| >0 (3)
@ 2] 1 ;3 Yi,3 1

where F' is the set of faces of G, V is the set of
vertices of P, (vi1,v5,2,vi3) = fi € F, and v; €

G/ fi

If the set of inequalities S has a solution, then by
construction when the value of each computed z; is
assigned to the z component of the corresponding
v; € P, the resulting 3-polytope will be convex.
On the other hand, if the system of inequalities
has no solution, then for all possible assignments
to the z;’s, at least one of the inequalities in S
cannot be satisfied. If this is the case then there
must exist four vertices where three are from the
same face f;, and one is from G/f; such that the
corresponding 3-simplex does not have strictly
positive volume. Thus a convex 3-polytope cannot
be formed for any possible assignments to the z;’s,
and the configuration is not realizable. O

Since the realizability of a configuration
(P,Ty,T2) now depends only on the existence
of a solution to the set of inequalities given in
Theorem 2, a simple algorithm can be obtained
for deciding realizability as outlined below. The
algorithm uses linear programming to compute a
solution.

Realization Decidability Algorithm:

1. Given a configuration (P,Ty,T>) compute the
combinatorial graph G = g(P,T1,T5).

2. Compute the set of faces F' of G generated by
T, and Ty in counterclockwise and clockwise
order, respectively.

3. Apply Theorem 2 to compute the set of inequal-
ities S.

4. Apply linear programming techniques to deter-
mine if the system of inequalities S has a solu-
tion.

5. If S has a feasible solution then (P, Ty,T») is re-
alizable, otherwise (P, T, T>) is not realizable.



As an example consider the configuration given
by the polygon P = (V,E) with V. = {u; =
(170)57}2 = (071)57}3 = (_150)71]4 = (07_1)}7
and E = {(v1,v2),(v2,v3), (v3,v4), (va,v1)}
along with the triangulations 77 = {(v2,v4)}
and T = {(vi,v3)} The set of faces
given in the order explained above is F =
{(Ula U3, Uz), (U4a U3, Ul)a (/Ula V2, ’1)4), (’U3,’U4, UZ)}-
This configuration generates four identical in-
equalities when Theorem 2 is applied due to
Symmetry. The set of unique inequalities is
{221 — 229 + 223 — 224 > 0}. This set of inequalities
is clearly satisfiable by an assignment z; = 1 for
any 4, and thus the configuration is realizable as a
convex 3-polytope.

6 Constructing Realizations
for Guibas’ Conjecture

As it happens, the solution given in the previous
section for deciding realizability under Guibas’
conjecture immediately yields a solution to the
problem of constructing realizations where possible.
An algorithm for finding a realization if one exists
is given below.

Realization Construction Algorithm:

1. Given a configuration (P,Ty,T3) compute the
combinatorial graph G = g(P,T1,Ts)-

2. Compute the set of faces F' of G generated by
T, and T5 in counterclockwise and clockwise
order, respectively.

3. Compute the set of inequalities S, as explained
in Theorem 2.

4. Apply linear programming techniques to deter-
mine if a feasible solution to the system of in-
equalities S exists.

5. If S has a feasible solution let it be Z =
(21,22, ..., 2r). Otherwise return null.

6. For each v; = (z;,y;) € V construct v; =
(%j,y;,2;5) € V' where z; is given by Z.

7. For each (v;,v;) € {E,T1,T2} let (vj,v}) € E'.
8. Return the 3-Polytope @ = (V', E').

A slight variant this algorithm (implemented us-
ing the Maple V mathematical programming lan-
guage) was used to check the configuration given
by Dekster as a counter example to Guibas’ con-
jecture. This configuration is pictured in Fig-
ure 1. The exact inputs passed to the im-
plementation were as follows: V = {v; =

(_1; 50):7]2 = (15271)51)3 = (4507 1)5”4 =
(1,-2,1),vs = (-1,-2,1),us = (-4,0,-1)}.
F = {(Ula V2, U5)a (U27U4; U5)a (U2>U3; U4)a (U57 UG,UI);
(U17U37 U?); (Ul y U4, U3)> (Ula Vs, U4)7 (U65 Us, U4)}- The
set of bounding (non-redundant) inequalities S¢ in-
duced by the configuration is shown below.

1624 — 162g + 1621 — 1623
2023 + 1225 — 1624 — 1629
—8z5 + 824 + 82] — 829
—4z5 + 823 — 2029 + 1627
12zp5 + 823 — 429 — 1624
12z4 + 8zg — 421 — 1625

S = 12z3 + 20zg — 1625 — 1627
c = —4z5 + 8z + 1229 — 1627
—20zp + 8zg — 429 + 1624
4z3 — 4zg — 1629 + 1627
12z + 8z3 — 4z4 — 1629
—1625 + 1624 — 423 + 424
—82g — 1629 +4z4 + 2027
4z1] — 8z3 + 2024 — 1625

VVVVVVVVVVVVVV
C000000C0OCOOQO0O0

As expected, no solution was found for the set of
inequalities S¢, thus providing a computer confir-
mation of the correctness of Dekster’s counter ex-
ample.

7 Computational Complexity

Although the dimension of the input configuration
(P,T,T>) is fixed at two, the corresponding linear
programming problem has dimension equal to the
number of vertices in (P,T7,T%). From the previ-
ous sections it follows that a configuration with n
vertices is transformed into a linear programming
problem having at most n(n — 3) inequalities. Thus
the algorithms presented in the previous section are
dominated by the linear programming step with
O(n?) inequality constraints and n variables. There
exists a variety of algorithms for linear programming
and in practice at present there is rough parity be-
tween the simplex and interior point methods (see
the enlightening survey by Todd [9]).
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