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Abstract. An in-place algorithm is one in which the output is given in
the same location as the input and only a small amount of additional
memory is used by the algorithm. In this paper we describe three in-place
algorithms for computing the convex hull of a planar point set. All three
algorithms are optimal, some more so than others. ..

1 Introduction

Let S = {S[0],...,S[n —1]} be a set of n distinct points in the Euclidean plane.
The convez hull of S is the minimal convex region that contains every point of
S. From this definition, it follows that the convex hull of S is a convex polygon
whose vertices are points of S. For convenience, we say that a point p is “on the
convex hull of S” if p is a vertex of the convex hull of S.

As early as 1973, Graham [13] gave a convex hull algorithm with O(nlogn)
worst-case running time. Shamos [32] later showed that, in any model of compu-
tation where sorting has an £2(nlogn) lower bound, every convex hull algorithm
must require {2(nlogn) time for some inputs. Despite these matching upper and
lower bounds, and probably because of the many applications of convex hulls, a
number of other planar convex hull algorithms have been published since Gra-
ham’s algorithm [1,2,4,6,11,17,27,28,21,35].

Of particular note is the “Ultimate(?)” algorithm of Kirkpatrick and Seidel
[21] that computes the convex hull of a set of n points in the plane in O(nlog h)
time, where h is the number of vertices of the convex hull. The same authors
show that, on algebraic decision trees of any fixed order, 2(nlogh) is a lower
bound for computing convex hulls of sets of n points having convex hulls with h
vertices.

* This research was partly funded by the National Science Foundation, the Natural
Sciences and Engineering Research Council of Canada and the Danish Natural Sci-
ence Research Council under contract 9801749 (project Performance Engineering).



Because of the importance of planar convex hulls, it is natural to try and
improve the running time and storage requirements of planar convex hull algo-
rithms. In this paper, we focus on reducing the intermediate storage used in the
computation of planar convex hulls. In particular, we describe in-place and in
situ algorithms for computing convex hulls. These are algorithms in which the
input points are given as an array and the output, namely the vertices of the
convex hull sorted in order of appearance on the hull, is returned in the same
array. During the execution of the algorithm, additional working storage is kept
to a minimum. In the case of in-place algorithms, the extra storage is kept in
O(1) while in situ algorithms allow an extra memory of size O(logn). After ex-
ecution of the algorithm, the array contains exactly the same points, but in a
different order.

In-place and in situ algorithms have several practical advantages over tradi-
tional algorithms. Primarily, because they use only a small additional amount
of storage, they allow for the processing of larger data sets. Any algorithm that
uses separate input and output arrays will, by necessity, require enough mem-
ory to store 2n points. In contrast, an in situ or in-place algorithm needs only
enough memory to store n points plus O(logn) or O(1) working space, respec-
tively. Related to this is the fact that in situ and in-place algorithms usually
exhibit greater locality of reference, which makes them very practical for imple-
mentation on modern computer architectures with memory hierarchies. A final
advantage of in situ algorithms, especially in mission critical applications, is that
they are less prone to failure since they do not require the allocation of large
amounts of memory that may not be available at run time.

We describe three planar convex hull algorithms. The first is in-place, uses
Graham’s scan in combination with an in-place sorting algorithm, and runs in
O(nlogn) time. The second algorithm runs in O(nlogh) time, is in situ and is
based on an algorithm of Chan et al. [4]. The third (“More Ultimate?”) algorithm
is based on an algorithm of Chan [3], runs in O(nlogh) time and is in-place.
The first two algorithms are simple, implementable, and efficient in practice. To
justify this claim, we have implemented both algorithms and made the source
code freely available [25].

To the best of our knowledge, this paper is the first to study the problem
of computing convex hulls using in situ and in-place algorithms. This seems
surprising, given the close relation between planar convex hulls and sorting,
and the large body of literature on in situ sorting and merging algorithms
[7,8,9,10,12,15,16,19,20,18,23,26,30,33,34,36].

The remainder of the paper is organized as follows: Sections 2, 3 and 4 de-
scribe our first, second and third algorithms, respectively. Section 5 summarizes
and concludes with open problems.

2 An O(nlogn) Time Algorithm

In this section, we present a simple in-place implementation of Graham’s convex
hull algorithm [13] or, more precisely, Andrew’s modification of Graham’s algo-



rithm [1]. The algorithm requires the use of an in-place sorting algorithm. This
can be any efficient in-place sorting algorithm (see, for example, [18,36]), so we
refer to this algorithm simply as INPLACE-SORT.

Because this algorithm is probably the most practically relevant algorithm
given in this paper, we begin by describing the most conceptually simple version
of the algorithm, and then describe a slightly more involved version that improves
the constants in the running time.

2.1 The Basic Algorithm

The upper convezr hull of a point set S is the convex hull of S U {(0,—00)}.
The lower convez hull of a point set S is the convex hull of S U {(0,00)}. It is
well-known that the convex hull of a point set is the intersection of its upper and
lower convex hulls [29]. Graham’s scan computes the upper (or lower) hull of an
z-monotone chain incrementally, storing the partially computed hull on a stack.
The addition of each new point involves removing zero or more points from the
top of the stack and then pushing the new point onto the top of the stack.

The following pseudo-code uses the INPLACE-SORT algorithm and Graham’s
scan to compute the upper or lower hull of the point set S. The parameter d is
used to determine whether the upper or lower hull is being computed. If d = 1,
then INPLACE-SORT sorts the points by increasing order of lexicographic (z,y)-
values and the upper hull is computed. If d = —1, then INPLACE-SORT sorts
the points by decreasing order and the lower hull is computed. The value of h
corresponds to the number of elements on the stack.

In the following, and in all remaining pseudo-code, S = S[0],...,S[n — 1] is
an array containing the input points. We use the C pointer notation S + i to
denote the array S[i],...,Sn —1].

GRAHAM-INPLACE-SCAN(S, n, d)

1: GRAHAM-INPLACE-SORT(S,n,d)
2: h+1

3 fori+1...n—1do
4:  while h > 2 and not right_turn(S[h — 2], S[h — 1], S[i]) do
5: h < h —1 { pop top element from the stack }
6: end while
7. swap S[i] & S[h]
8 h+«h+1
9: end for

10: return h

It is not hard to verify that when the algorithm returns in Line 10, the
elements of S that appear on the upper (or lower) convex hull are stored in
S[0],...,S[h — 1]. In the case of an upper hull computation (d = 1), the hull
vertices are sorted left-to-right (clockwise), while in the case of a lower hull
computation (d = —1), the hull vertices are sorted right-to-left (also clockwise).

To compute the convex hull of the point set S, we proceed as follows (refer
to Fig. 1): First we make a call to GRAHAM-INPLACE-SCAN to compute the



vertices of the upper hull of S and store them in clockwise order at positions
S[0], ..., S[h—1]. It follows that S[0] is the bottommost-leftmost point of S and
that S[h—1] is the topmost-rightmost point of S. We then use h—1 swaps to bring
S[0] to position S[h — 1] while keeping the relative ordering of S[1],...S[h — 1]
unchanged. Finally, we make a call to GRAHAM-INPLACE-SCAN to compute the
lower convex hull of S[h—2],...,S[n — 1] (which is also the lower convex hull of
S). This stores the vertices of the lower convex hull in S[h—2],...,S[h+h' —2]
in clockwise order. The end result is that the convex hull of S is stored in
S[0],...,S[h+ h' — 2] in clockwise order.

A

compute upper hull

a| S[l,...,S[h=1] |b S[Al, ..., S[n —1]

>

move a

boa S[Al, ..., S[n —1]

compute lower hull

S[0],-..,S[h+h —2]

outh;rt hull

Fig. 1. The execution of the GRAHAM-INPLACE-HULL algorithm.

The following pseudo-code gives a more precise description of the algorithm.

GRAHAM-INPLACE-HULL(S, n)
: h < GRAHAM-INPLACE-SCAN(S,n, 1)
:fori+0...h—2do

swap S[i] < S[i + 1]
end for
h' < GRAHAM-INPLACE-SCAN(S +h —2,n— h+2,-1)
: return h +h' — 2

A N

Each call to GRAHAM-INPLACE-SCAN executes in O(nlogn) time, and the
loop in lines 2-4 takes O(h) time. Therefore, the total running time of the al-
gorithm is O(nlogn). The amount of extra storage used by INPLACE-SORT is
0(1), as is the storage used by both our procedures.

Theorem 1 Algorithm GRAHAM-INPLACE-HULL computes the convexr hull of
a set of n points in O(nlogn) time using O(1) additional memory.



2.2 The Optimized Algorithm

The constants in the running time of GRAHAM-INPLACE-HULL can be improved
by first finding the extreme points a and b and using these points to partition
the array into two parts, one that contains vertices that can only appear on the
upper hull and one that contains vertices that can only appear on the lower hull.
Fig. 2 gives a graphical description of this. In this way, each point (except a and
b) takes part in only one call to GRAHAM-INPLACE-SCAN.

To further reduce the constants in the algorithm, one can implement
INPLACE-SORT with the in-place merge-sort algorithm of Katajainen et al. [18].
This algorithm requires only nlog, n + O(n) comparisons and 2nlog,n + O(n)
swaps to sort n elements. Since Graham’s scan performs only 2n — h right-turn
tests when computing the upper hull of n points having h points on the upper
hull, the resulting algorithm performs at most 3n — h right-turn tests (the extran
comes from the initial partitioning step). We call this algorithm OPT-GRAHAM-
INPLACE-HULL.

A
) partvition
upper hull candidates lower hull candidates
compute Epper hull
a upper hull b lower hull candidates
mo;e a ) s}Iirft i
upper hull bla lower hull candidates
h computeTower hull .
convex hull

Olltpl‘lq} hull

Fig. 2. A faster implementation of GRAHAM-INPLACE-HULL.

Theorem 2 OPT-GRAHAM-INPLACE-HULL computes the convex hull of n
points in O(nlogn) time using at most 3n — h right turn tests, 3nlogyn+ O(n)
swaps, nlogyn + O(n) lexicographic comparisons and O(1) additional memory,
where h is the number of vertices of the convez hull.



Finally, we note that if the array A is already sorted in lexicographic order
then no lexicographic comparisons are necessary. One can use an in-place stable
partitioning algorithm to partition A into the set of upper hull candidates and
the set of lower hull candidates while preserving the sorted order within each
set. There exists such an algorithm that runs in O(n) time and perform O(n)
comparisons [19]. We call this algorithm SORTED-GRAHAM-INPLACE-HULL

Theorem 3 SORTED-GRAHAM-INPLACE-HULL computes the convex hull of n
points giwen in lexicographic order in O(n) time using O(n) right turn tests,
O(n) swaps, no lexicographic comparisons and O(1) additional memory.

3 An O(nlogh) Time Recursive Algorithm

In this section, we show how to compute the upper (and symmetrically, lower)
hull of S in O(nlogh) time using an in situ algorithm, where h is the number
of points of S that on the upper (respectively, lower) hull of S. We begin with a
review of the O(nlog h) time algorithm of Chan et al. [4].

To compute the upper hull of a point set S, we begin by arbitrarily grouping
the elements of S into [n/2] pairs. From these pairs, the pair with median slope
s is found using a linear time median finding algorithm.! We then find a point
p € S such that the line through p with slope s has all points of S below it.

Let g.z denote the z coordinate of the point ¢ and let i denote the index of
the element that is paired with S[i]. We now use p, and our grouping to partition
the elements of S into three groups S°, S', and S? as follows (see Fig. 3):

SV if S[i].x < p.x and (S[i],p) is not above S[i]
S[i] € ¢ S*if S[i].x > p.x and (S[i],p) is not above S[i]
S? otherwise

The algorithm then recursively computes the upper hull of S°U{p} and S*U{p}
and outputs the concatenation of the two. For a discussion of correctness and a
proof that this algorithm runs in O(nlogh) time, see the original paper [4].

Now we turn to the problem of making this an in situ algorithm. The choice
of median slope s ensures that S° < 3n/4 and S' < 3n/4, so the algorithm uses
only O(logn) levels of recursion. Qur strategy is to implement each level using
0O(1) local variables and one call to a median-finding routine that uses O(logn)
additional memory.

For simplicity, assume n is even. The case when n is odd is easily handled
by processing an extra unpaired element after all the paired elements have been
processed. To pair off elements, we pair S[i] with S[¢ + 1] if ¢ is even and with
S[i — 1] if ¢ is odd. Several in situ linear time median finding algorithms exist
(see, for example, Horowitz et al. [14, Section 3.6] or Lai and Wood [22]), so

! Bhattacharya and Sen [2] and Wenger [35] have both noted that median finding can
be replaced by choosing a random pair of elements. The expected running time of
the resulting algorithm is O(nlog h).



S[] S

S[i] € 8° S[i] € S*

S[i] ~

S[i] S[d]
S[i] € §? S[i] € S?

Fig. 3. Partitioning S into S°, S! and S2.

finding the pair (S[i], S[¢ + 1]) with median slope can be done with one of these.
The tricky part of the implementation is the partitioning into sets S°, S! and
S2. The difficulty lies in the fact that the elements are grouped into pairs, but
the two elements of the same pair may belong to different sets S* and S7.

We first note that we can compute the sizes ng, nqy and mo of these sets
in linear time without difficulty by scanning S. Conceptually, we partition S
into three files, fo, fi and fo that contain pairs of points in S. The file fy
contains the elements S[0],...,S[2|no/2] — 1]. The file f1 contains the elements
S[2|no/2]],---,S[2|(no+mn1)/2] —1]. The file f5 contains the elements S[2](ng+

n1)/2]],...,S[n].

It is important to note that these files are only abstractions. Each file f; is
implemented using two integer values r; and ¢;. The value of r; is initialized to
the index of the first record in the file. The value of ¢; is initialized to r; + k;
where k; is the number of elements in f;. A READ operation on f; returns the
pair (S[r;], S[ri+1]) and increases the value of r; by 2. We say that f; is empty
if r; > ¢;.

These files are used in conjunction with a stack A that stores pairs of points.
The stack and files serve two purposes: (1) when there is no data on the stack
we read a pair from one of the files and store it on the stack, and (2) when we
are about to overwrite an element from a pair that has not yet been placed on
the stack, we read the pair from the file and save it on the stack. In this way
no element is ever overwritten without first being saved on the stack, and the
initial pairing of elements is preserved.



These ideas are made more concrete by the following pseudo-code, which

places the elements of S° into array locations S[0],...,S[no — 1], the elements
of S! into array locations S[ng], ..., S[ng +n1 — 1], and the elements of S into
array locations S[ng+mn4],.. ., S[n—1]. The algorithm repeatedly processes pairs

(a,b) of elements by determining which of the three sets a and b belong to and
then placing a and b in their correct locations.

CSY-PARTITION(S, n, ng, n1)

1: io +«~0
2: i1 < ng
3: ig ¢ ng +n1
4: m+0
5: while m > 0 or one of fy, fi1, f2 is not empty do
6: if m =0 then
7: A[m] < READFROMFILE()
8: mé+<m+1
9: endif
10 m+m-—1
11: P <« A[m] { process this pair }
12:  for both ¢ € P do
13: SJ + Group(q, P)
14: PLACE(qg, i;)
15: 1 1;+1
16: end for

17: end while

The READFROMFILE function simply reads a pair from one of the non-empty
files and returns it. The GROUP(q, P) returns (a pointer to) the group of point ¢
in the pair P. The PLACE(qg, k) function places the point ¢ at index k in S, after
ensuring that the overwritten element has been read and placed on the stack.

PLACE(q, k)
1: for i+ 0,1,2do

2: if k> r; and k < ¢; then

3: { S[k] belongs to f; and has not yet been read }
4: READ(a,b) from f;

5: Alm] « (a,b)

6: m++m+1

7. end if

8 end for

9: S[k] « ¢

To show that this partitioning step is correct, we make 2 observations. (1) Ex-
actly n/2 pairs of elements are read and processed since the file abstraction en-
sures that no pair is read more than once and the algorithm does not terminate
until all files are empty. (2) The code in PLACE ensures that any pair is read and
placed on the stack A before an element of the pair is overwritten. Therefore,



all of the original n/2 pairs of elements are processed and each element is placed
into one of S°, S or S2.

Since the algorithm uses a stack A that may grow without bound, it is not
obvious that the partitioning algorithm’s additional memory is of a constant size.
To prove that A does not grow without bound note that overwriting k; elements
of f; causes at most [k;/2] read operations. Each iteration of the outer loop
places one pair of elements, and each read operation reads one pair of elements.
Therefore, the total number of read operations performed after k iterations is at
most k + 3. However, each iteration removes 1 pair of elements from the stack
A, so the total number of pairs on the stack after k iterations is not more than
3. Since this holds for any value of k, the stack A never holds more than 3 pairs
of elements.

Fig. 4 recaps the algorithm for computing the upper hull of S. First the
algorithm partitions S into the sets SO, S' and S2. It then recurses on the set
S0, After the recursive call, the convex hull of S is stored at the beginning of
the array S, and the last element of this hull is the point p that was used for
partitioning. The algorithm then shifts S* leftward so that it is adjacent to p
and recurses on S' U {p}. The end result is the upper hull of S being stored
consecutively and in clockwise order at the beginning of the array S.

A
) partvition ’
S0 St S?
) rec;rse -
UH(S?) St 52
) com‘;act ’
p St S?
) rec;rse
UH(S)

outh;rt hull

Fig. 4. Overview of the CSY-INSITU-HULL algorithm.



Using the technique from Section 2 (Figures 1 and 2), this upper hull algo-
rithm can be made in to a convex hull algorithm with the same running time
and memory requirements.

Theorem 4 Algorithm CSY-INSiTu-HULL computes the convexr hull of n
points in O(nlogh) time using O(logn) additional storage, where h is the num-
ber of vertices of the convex hull.

4 An O(nlogh) Time Iterative Algorithm

Next, we give an O(nlogh) time in-place planar convex hull algorithm. We
begin with a review of Chan’s O(nlogh) time algorithm [3], which is essentially
a speedup of Jarvis’ March [17].

Chan’s algorithm runs in rounds. During ith round the algorithm finds the
first g; = 2% points on the convex hull. Once g; > h the rounds end as the
algorithm detects that it has found all points on the convex hull. During round i,
the algorithm partitions the input points into n/g; groups of size g; and computes
the convex hull of each group. The vertices on the convex hull are output in
clockwise order beginning with the leftmost vertex. Each successive vertex is
obtained by finding tangents from the previous vertex to each of the n/g; convex
hulls. The next vertex is determined, as in Jarvis’ March, by choosing the vertex
having largest polar angle with respect to the previously found vertex as origin.
In the case where the largest polar angle is not unique, ties are broken by taking
the farthest vertex from the previously found vertex.

Finding a tangent to an individual convex hull can be done in O(log g;) time
if the vertices of the convex hull are stored in an array in clockwise order [5,29].
There are n/g; tangent finding operations per iteration and g; iterations in round
i. Therefore, round i takes O(nlogg;) = O(n2') time. Since there are at most
[loglogh] rounds, the total cost of Chan’s algorithm is Zzﬂzolg loghl O(n2f) =
O(nlogh).

Next we show how to implement each round using only O(1) additional stor-
age. Assume for the sake of simplicity that n is a multiple of g;. For the grouping
step, we build n/g; groups of size g; by taking groups of consecutive elements in
S and computing their convex hulls using GRAHAM-INPLACE-HULL. Two ques-
tions now arise: (1) Once we start the tangent-finding steps, where do we put the
convex hull vertices as we find them? (2) In order to find a tangent from a point
to a group in O(log g;) time we need to know the size of the convex hull of the
group. How can we keep track of all these sizes using only O(1) extra memory?

To answer the first question, we store convex hull vertices at the beginning
of the array S in the order that we find them. That is, when we find the kth
vertex on the convex hull, we swap it with S[k — 1]. We say that a group G is
dirty if one of its members has been found to be on the convex hull of S. A group
that is not dirty is clean. If a group G is clean, then we can use binary search
to find a tangent to G in O(log g;) time, otherwise we have to use linear search
which takes O(g;) time. Since after k iterations, the algorithm stores the first



k hull vertices in locations S[0],...S[k — 1], the first group consists of elements
S[k],...,S[g; — 1] and is always considered dirty.

To keep track of which other groups are dirty, we mark them by reordering
the first two points of the group. In a clean group, the points are stored in
lexicographic order. In a dirty group, we store them in reverse lexicographic
order. This allows us to test in constant time whether a group is clean or dirty.

To keep track of the size of the convex hull of each clean group without storing
the size explicity we use another reordering trick. Let G[0], ..., G[g; — 1] denote
the elements of a clean group G and let < denote lexicographic comparison of
(z,y) values. We say that the sign of G[j] is + if G[j] < G[j+1], and — otherwise.
If the convex hull of G contains h vertices, then it follows that the first elements
G[0],...,G[h — 2] have signs that form a sequence of 1 or more +’s followed by
0 or more —’s. Furthermore, the elements G[h],...,G[g; — 1] can be reordered
so that the remainder of the signs form an alternating sequence. When we do
this, a group element G[j], 0 < j < gi — 1, j # h— 1 is on the convex hull of G
if and only if G[j — 1], G[j], G[j + 1] do not have signs that alternate.

As for G[0], G[g; — 1] and G[h — 1] we know that G[0] is always on the convex
hull of G. The point G[g; — 1] is on the convex hull of G if and only if G[g; — 2]
is on the convex hull of G and the triangle G[g; — 2], G[g; — 1], G[0] is oriented
clockwise.> The point G[h — 1] is on the convex hull of G if and only if G[h — 2]
is on the convex hull of G and the triangle G[h — 2], G[h — 1], G[0] is oriented
clockwise. Therefore, for any index 0 < j < g;, we can test if G[j] is on the
convex hull of G in constant time. Using this in conjunction with binary search,
we can compute the number of vertices on the convex hull of G in O(log g;) time.
Thus, we can compute the size of the convex hull of G and find a tangent in
O(log g;) time, as required.

We have provided all the tools for an in-place implementation of Chan’s
algorithm. Except for the extra cost of finding tangents in dirty groups, the
running time of this implementation is asymptotically the same as that of the
original algorithm, so we need only bound this extra cost of finding tangents in
dirty groups. During one step of round ¢, we find tangents of at most g; dirty
groups, at a cost of O(g;) per group, and there are g; steps in round 7. Therefore,
the total cost of searching dirty groups during round i is O(g3?) C O(n) for all
gi < n'/3. Therefore, the total cost of round i is O(g3 + nlogg;) C O(nlogg;)
for any h < n'/3. Since we can abort the algorithm when g; > n'/? and use
GRAHAM-INPLACE-HULL, the overall running time of the algorithm is again
O(nlogh).

Theorem 5 The above algorithm, CHAN-INPLACE-HULL, computes the convex
hull of n points in O(nlog h) time using O(1) additional storage, where h is the
number of vertices of the convex hull.

The constants in CHAN-INPLACE-HULL can be improved using the following
trick that is mentioned by Chan [3]. When round ¢ terminates without finding
the entire convex hull, the g; convex hull points that were computed should not

2 We use the convention that three collinear points are not oriented clockwise.



be discarded. Instead, the grouping in round 7+ 1 is done on the remaining n—g;
points, thus eliminating the need to recompute the first g; convex hull vertices.
This optimization works perfectly when applied to CHAN-INPLACE-HULL since
the first g; convex hull points are already stored at locations S[0], ..., S[g; — 1]

5 Conclusions

We have given three algorithms for computing the convex hull of a planar point
set. The first algorithm is in-place and runs in O(nlogn) time. The second
algorithm is 4n situ and runs in O(nlogh) time. The third algorithm is in-place
and and runs in O(nlog h) time. The first two algorithms are reasonably simple
and implementable. In order to facilitate comparisons with other convex hull
implementations, our source code is available for download [25].

This paper came to be when two separate groups of researchers (authors 1-3
and authors 4-6) discovered they were both working on in-place computational
geometry algorithms and decided to merge their results. Some of these results
have been omitted due to space constraints. These include in-place or in situ
implementations of Eddy’s algorithm (also known as quickhull) [11], Kirkpatrick
and Seidel’s algorithm [21], Seidel’s randomized linear programming algorithm
[31] and Megiddo’s deterministic linear programming algorithm [24].

The ideas presented in this paper also apply to other problems. The mazimal
elements problem is that of determining all elements S[i] such that S[j] < S[i]
for all 0 < j < n. An algorithm almost identical to Graham’s scan can be used
to solve the maximal elements problems in O(nlogn) time, and this can easily
be implemented in-place. Furthermore, an in-place algorithm almost identical
to that in Section 4 can be used to solve the maximal elements problem in
O(nlogh) time, where h is the number of maximal elements.

The question of in situ and in-place algorithms for maximal elements and
convex hulls in dimensions d > 3 is still open. In order for this question to make
sense, we ask only that the algorithm identify which input points are maximal
or on the convex hull. Testing whether a given point is maximal can be done in
O(dn) time using the definition of maximality. Testing whether a single point is
on the convex hull is a d — 1 dimensional linear programming problem that can
be solved in-place in O(dln) expected time using Seidel’s algorithm [31]. Thus,
the maximal elements problem can be solved in O(dn?) time and the convex
hull problem can be solved in O(d!n?) time using in-place algorithms. Are there
algorithms with reduced dependence on n?

More generally, one might ask what other computational geometry problems
admit in-place or in situ algorithms. Some problems that immediately come to
mind are those of computing k-piercings of sets, finding maximum cliques in in-
tersection graphs, computing largest empty disks, computing smallest enclosing
disks, and finding ham-sandwich cuts.
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