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Abstract

In the typical nonparametric approach to pattern classification, random
data (the training set of patterns) are collected and used to design a decision
rule (classifier). One of the most well known such rules is the k-nearest-
neighbor decision rule (also known as instance-based learning, and lazy learn-
ing) in which an unknown pattern is classified into the majority class among
its k nearest neighbors in the training set. Several questions related to this
rule have received considerable attention over the years. Such questions in-
clude the following. How can the storage of the training set be reduced
without degrading the performance of the decision rule? How should the re-
duced training set be selected to represent the different classes? How large
should k& be? How should the value of k be chosen? Should all k£ neighbors
be equally weighted when used to decide the class of an unknown pattern? If
not, how should the weights be chosen? Should all the features (attributes)
we weighted equally and if not how should the feature weights be chosen?
What distance metric should be used? How can the rule be made robust to
overlapping classes or noise present in the training data? How can the rule be
made invariant to scaling of the measurements? Geometric proximity graphs
such as Voronoi diagrams and their many relatives provide elegant solutions
to most of these problems. After a brief and non-exhaustive review of some
of the classical canonical approaches to solving these problems, the methods
that use proximity graphs are discussed, some new observations are made,
and avenues for further research are proposed.

1 Nearest-Neighbor Decision Rules

In the typical non-parametric classification problem (see Aha [2], Devroye, Gyorfy
and Lugosi [37], Duda and Hart [38], Duda, Hart and Stork [39], McLachlan [70],
O’Rourke and Toussaint [77]) we have available a set of d measurements or ob-
servations (also called a feature vector) taken from each member of a data set of
n objects (patterns) denoted by {X,Y} = {(X1,Y1), (X2, Y2), ..., (X, Yn)}, where
X; and Y; denote, respectively, the feature vector on the ith object and the class
label of that object. One of the most attractive decision procedures, conceived by
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Fix and Hodges in 1951, is the nearest-neighbor rule (1-NN-rule) [43]. Let Z be
a new pattern (feature vector) to be classified and let X; be the feature vector
in {X,Y} = {(X1,Y1), (X2,Y2), ..., (X, Y,)} closest to Z. The nearest neighbor
decision rule classifies the unknown pattern Z into class Yj.

A key feature of this decision rule (also called lazy learning [2], instance-based
learning [3], and memory-based reasoning [100]) is that it performs remarkably
well considering that no explicit knowledge of the underlying distributions of the
data is used. Consider for example the two class problem and denote the a priori
probabilities of the two classes by P(C1) and P(C3), the a posteriori probabilities
by P(C;|X) and P(C3|X), and the mixture probability density function by

p(X) = P(C1)p(X|C1) + P(C2)p(X|Cy),

where p(X|C;) is the class-conditional probability density function given class
Ci,i =1,2. In 1967 Cover and Hart [21] showed, under some continuity assump-
tions on the underlying distributions, that the asymptotic error rate of the 1-NN
rule, denoted by P,.[1-NN] is given by

P,[1 — NN]=2Ex[P(C1|X)P(Cs|X)],

where Ex denotes the expected value with respect to the mixture probability den-
sity function p(X). They also showed that P,[1-NN] is bounded from above by
twice the Bayes error (the error of the best possible rule). More precisely, and
for the more general case of M pattern classes the bounds proved by Cover and
Hart [21] are given by:

PeSPe[l_NN]SP6(2_MP6/(M_1))7

where P, is the optimal Bayes probability of error.

Stone [101] and Devroye [36] generalized these results by proving the bounds
for all distributions. In other words, the nearest neighbor of Z contains at least
half of the total discrimination information contained in an infinite-size training
set. Furthermore, a simple generalization of this rule called the k-NN-rule, in which
a new pattern Z is classified into the class with the most members present among
the k nearest neighbors of Z in {X,Y}, can be used to obtain good estimates of
the Bayes error (Fukunaga and Hostetler [46]) and its probability of error asymp-
totically approaches the Bayes error (Devroye et al. [37]).

The measure P,[1-NN] turns up in a surprising variety of related problems
sometimes in disguise. For example, it is also the error rate of the proportional
prediction randomized decision rule considered by Goodman and Kruskal [48] (see
also Toussaint [111]). Devijver and Kittler [33] and Vajda [126] refer to it as the
quadratic entropy. Mathai and Rathie [68] call it the harmonic mean coefficient. It
is also closely related to the Bayesian distance (Devijver [32]) and the guadratic mu-
tual information (Toussaint [108]). Incidentally, the Bayesian distance is called the
cross-category feature importance in the instance-based learning literature (Stanfill
and Waltz [100], Creecy et al.[22]). Furthermore, it is identical to the asymp-
totic probability of correct classification of the 1-NN-rule given by P,[1-NN] = 1
- P.[1-NN]. The error probability P,[1-NN] also shares a property with Shannon’s
measure of equivocation. Both are special cases of the equivocation of order
(Toussaint [109], [113]).

There is a vast literature on the subject of nearest neighbor classification which
will not be reviewed here. The interested reader is referred to the comprehensive
treatment by Devroye, Gyorfi and Lugosi [37] and the collected papers in the 1991



volume edited by Dasarathy [24]. For more on the information measures closely
related to the measure P.[1-NN] the reader is referred to Mathai and Rathie [68]
(see also Toussaint [110]).

In the past many pattern recognition practicioners have unfairly criticized the
N N-rule on the grounds of the mistaken assumptions that (1) all the data {X,Y}
must be stored in order to implement such a rule, (2) to determine the nearest
neighbor of a pattern to be classified, distances must be computed between the
unknown vector Z and all members of {X,Y}, and (3) nearest neighbor rules are
not well suited for fast parallel computation. As we shall see below, all three
of these assumptions are incorrect and computational geometric progress in the
1980’s and 1990’s along with faster and cheaper hardware has made the k-NN-rules
a practical reality for pattern recognition applications in the 21st Century.

2 Reducing the Size of the Stored Training Data

2.1 Hart’s condensed rule and its relatives

In 1968 Hart was the first to propose an algorithm for reducing the size of the
stored data for the nearest neighbor decision rule [51]. Hart defined a consistent
subset of the data as one that classified the remaining data correctly with the
nearest neighbor rule. He then proposed an algorithm for selecting a consistent
subset by heuristically searching for data that were near the decision boundary.
The algorithm is very simple. Let C denote the desired final consistent subset.
Initially C is empty. First a random element from {X,Y} is transferred to C.
Then C is used as a classifier with the 1-NN rule to classify all the remaining data
in {X,Y}. During this scan of {X,Y} whenever an element is incorrectly classified
by C it is transferred from {X,Y} to C. Thus {X, Y} is shrinking and C' is growing.
This scan of {X,Y} is repeated as long as least one element is transferred from
{X,Y} to C during a complete pass of the remaining data in {X,Y}. The goal
of the algorithm is to keep only a subset of the data {X,Y} that are necessary to
determine the decision boundary of all the data {X,Y}. The motivation for this
heuristic is the intuition that data far from the decision boundary are not needed
and that if an element is misclassified it must lie close the the decision boundary.
By construction the resulting reduced set C classifies all the training data {X,Y}
correctly and hence it is referred to here as a training-set consistent subset. In the
literature Hart’s algorithm is called CNN and the resulting subset of { X, Y} is called
a consistent subset. Here the longer term training-set consistent is used in order to
distingish it from another interesting type of subset: one that determines ezxactly
the same decision boundary as the entire training set {X,Y}. The latter kind
of subset will be called decision-boundary consistent. Clearly decision-boundary
consistency implies training-set consistency but the converse is not necessarily true.
Empirical results have shown that Hart’s CNN rule considerably reduces the size
of the training set and does not greatly degrade performance on a separate testing
(validation) set. It is also easy to see that using a naive brute-force algorithm the
complexity of computing the condensed subset of {X,Y} is O(n®). However, the
method does not in general yield a minimal-size consistent subset and unfortunately
may change the decision boundary of the original training set. Recently several
theoretical results on CNN have been obtained by Devroye et al. [37].

In 1987 Kibler and Aha [59] proposed an algorithm called the growth-additive
algorithm which consists of only one pass of Hart’s CNN rule. Such an algorithm
is of course not training-set consistent. On the other hand a naive implementation
of it runs in O(n?) worst-case time.



CNN may keep points far from the decision boundary. To combat this Gates [47]
proposed what he called the reduced nearest neighbor rule or RNN. RNN consists
of first performing CNN and then adding a post-processing step. In this post-
processing step elements of C' are visited and deleted from C' if their deletion does
not result in misclassifying any elements in {X,Y}. Experimental results confirmed
that RNN yields a slightly smaller training-set consistent subset of {X,Y} than
that obtained with CNN [47].

Tomek [105] proposed a modification of CNN in which a preliminary pass of
{X,Y} is made to select an order-independent special subset of {X,Y} that lies
close to the decision boundary. After this preprocessing step his method proceeds
in the same manner as CNN but instead of processing {X,Y} it works on the
special subset so preselected. The algorithm to preselect the special subset of
{X,Y} consists of keeping all pairs of points (X;,Y;), (X;,Y;) such that ¥; #Y;
(the two points belong to different classes) and the diametral sphere determined
by X; and X; does not contain any points of {X,Y} in its interior. Such pairs
are often called Tomek links in the literature. Clearly, pairs of points far from the
decision boundary will tend to have other points in the interior of their diametral
sphere. It is claimed in [105] that the resulting subset of {X,Y} is training-set
consistent. However, Toussaint [120] demonstrated a counter-example. It should
be noted that Tomek’s preselected non-consistent subset using the diametral sphere
test implicitly computes a subgraph of the Gabriel graph [58] of {X,Y}, a graph
admirably suited for condensing the training data that will be discussed later.

2.2 Order-independent subsets

CNN, RNN and Tomek’s modification of CNN all have the undesirable property
that the resulting reduced consistent subsets are a function of the order in which
the data are processed. Several attempts have been made to obtain training-set
consistent subsets that are less sensitive to the order of presentation of the data.
One class of methods with this goal suggested by Alpaydin [4] applies the above
methods several times (processing the data in a different random order each time)
to obtain a group of training-set consistent subsets. Then a voting technique among
these groups is used to make the final decision.

A successful solution to obtaining order-independent training-set consistent sub-
sets by generalizing Hart’s CNN procedure was proposed by Devi and Murty [31].
Recall that in Hart’s procedure the subset C' starts with a single random element
from {X,Y} and subsequently each time an element from {X,Y} is misclassified
it is transferred to C. In other words transfers are made one at a time and class-
membership is not an issue. In contrast, the method of Devi and Murty [31], which
they call the modified condensed nearest neighbor rule (MCNN) initializes the re-
duced set (call it M C) by transferring, in batch mode, one representative of each
class from {X,Y} to MC. Subsequently MC is used to classify all elements of
{X,Y}. Then from each class of the resulting misclassified patterns a representa-
tive is transferred to M C (again in batch mode). This process is repeated until all
the patterns in {X,Y} are classified correctly. Note that if at some stage there is a
class, say C};, that has no misclassified patterns using M C, then no representative
is transferred from {X,Y} to MC at that stage. Hence the most difficult classes
(the last ones to be completely correctly classified) receive more representatives in
MC'. Thus this approach provides a natural way to automatically decide how many
representatives each class should be alloted and how they should be distributed.



2.3 Minimal size training-set consistent subsets

The first researchers to deal with computing a minimal-size training-set consistent
subset were Ritter et al. [89]. They proposed a procedure they called a selective
nearest neighbor rule SNN to obtain a minimal-size training-set consistent subset
of {X,Y}, call it S, with one additional property that Hart’s CNN does not have.
Any training-set consistent subset C obtained by CNN has the property that every
element of {X,Y'} is nearer to an element in C of the same class than to any element
in C of a different class. On the other hand, the training-set consistent subset S
of Ritter et al. [89] has the additional property that every element of {X,Y} is
nearer to an element in S of the same class than to any element, in the complete
set, {X,Y} of a different class. This additional property of SNN tends to keep
points closer to the decision boundary than does CNN. The additional property
allows Ritter et al. [89] to compute the selected subset S without testing all possible
subsets of {X,Y}. Nevertheless, their algorithm still runs in time exponential in
n (see Wilgong [131]) in the worst case. However, Wilson and Martinez [133] and
Wilson [134] claim that the average running time of SNN is O(n?®). Furthermore,
experimental results indicate that the resulting cardinality of S is about the same
as that of the reduced nearest neighbor consistent subsets of Gates [47]. Hence the
heavy computational burden of SNN does not make it competitive with RNN.

In 1994 Dasarathy [25] proposed a complicated algorithm intended to com-
pute a minimal-size training-set consistent subset but did not provide a proof of
optimality. The algorithm uses a subset of {X,Y} that he calls the Nearest Un-
like Neighbor (NUN) subset [26]. Given an element X; of {X,Y}, the element of
{X,Y} closest to X; but belonging to a different class is called the nearest unlike
neighbor of X;. The NUN subset consists of all points in {X,Y} that are near-
est unlike neighbors of one or more elements of {X,Y}. The algorithm yields a
consistent subset of {X,Y} which he calls the MCS (Minimal Consistent Subset).
Extensive experiments led him to conjecture that his algorithm generated an MCS
that is minimal-size. However, counter-examples to this claim have been found by
Kuncheva and Bezdek [64], Cerverdén and Fuertes [15] and Zhang and Sun [136].

Wilson and Martinez [133] rediscovered the idea of using the nearest unlike
neighbors to reduce the size of the training-set consistent subsets. They call the
training-set condensing algorithms “instance pruning techniques” and refer to the
nearest unlike neighbor as the nearest enemy. They also propose three algorithms
for computing training-set consistent subsets. Many other similar algorithms can
be found in the literature on instance-based and lazy learning (Mantaras and Ar-
mengol [29], Aha, Kibler and Albert [3] and Aha [1], [2]).

Wilfong [131] showed in 1991 that the problem of finding the smallest size
training-set consistent subset is NP-complete when there are three or more classes.
Furthermore, he showed that even for only two classes, finding the smallest size
training-set consistent selective subset (Ritter et al. [89]) is also NP-complete.

2.4 Prototype generation methods

The techniques discussed above have in common that they select a subset of the
training set as the final classifier. There exists also a class of techniques that do not
have this restriction when searching for a good set of prototypes. These methods are
sometimes called prototype generation methods (also replacement techniques). One
of the first such algorithms, proposed in 1974 by Chang [16], repeatedly merges the
two nearest neighbors of the same class as long as this merger does not increase the
error rate on the training set. One drawback of Chang’s method is that it may yield



prototypes that do not characterize well the training set in terms of generalization.
To combat this Mollineda et al. [73] modified Chang’s algorithm to merge clusters
(rather than pairs of data points) based on several geometric criteria. Thus the
technique resembles hierarchical bottom-up clustering guided by a constraint on
the resulting error rate on the training set. Bezdek et al. [9] proposed another
modification of Chang’s method and demonstrated that it produced a smaller set
of prototypes for the well known Iris data set.

Salzberg et al. [91] proposed a novel and more extreme version of the above
methods in which they focus on the desired decision boundary and ignore the
training set. Instead they design a minimal size set of prototypes to realize the
desired decision boundary by synthesizing best-case prototypes.

2.5 Optimization methods

There have been many approaches that use approximate optimization techniques
to find a subset close to the smallest size training-set consistent subset. Such
methods include tabu search (Cerverén and Ferri [14], Zhang and Sun [136]), gra-
dient descent and deterministic annealing (Decaestecker [30]), genetic algorithms
(Kuncheva [63], Kuncheva and Jain [62], Chang and Lippmann [17]), evolution-
ary learning (Zhao and Higuchi [138], Zhao [137]), bootstrapping (Saradhi and
Murty [95]) and other random search techniques (Lipowezky [66]). Alternately,
some techniques first select the prototype subset and subsequently minimize the
error rate (Bermejo and Cabestany [8]). Liu and Nakagawa [67] recently com-
pared 11 optimization methods to each other. Unfortunately they did not compare
those techniques to the proximity-graph methods (Toussaint, Bhattacharya and
Poulsen [122]) to be discussed below.

2.6 Decision-boundary generation methods

Consider two elements {X;,Y;} and {X;,Y;} in {X,Y} such that ¥; # Yj. If the
two points are used in the 1-NN rule they implement a linear decision boundary
which is the hyperplane that orthogonally bisects the line segment joining {X;, Y;}
and {X;,Y;}. Thus when a subset of {X,Y} is being selected in the above meth-
ods the hyperplanes are being chosen implicitly. However, we could just as well
be selecting these hyperplanes explicitly. When classifiers are designed by manip-
ulating more hyperplanes than there are pattern classes they are called piece-wise
linear classifiers (Sklansky and Michelotti [97]). There is a vast field devoted to
this problem which is beyond the scope of this study and the interested reader is
referred to the book by Nilsson [75]. One can also generate non-parametric decision
boundaries with other surfaces besides hyperplanes. Priebe et al. [85], [84] model
the decision surfaces with balls.

3 Editing to Improve Performance

Methods that have as their goal the improvement of recognition acuracy rather
than data reduction are called editing rules. In 1972 Wilson [132] conceived the
idea of editing and proposed the following algorithm.

PREPROCESSING
A. For each i:
1. Find the k-nearest neighbors to X; among {X,Y} (not counting X;).



2. Classify X; to the class associated with the largest number of points among
the k-nearest neighbors (breaking ties randomly).

B. Edit {X,Y} by deleting all the points misclassified in the foregoing.

DECISION RULE
Classify a new unknown pattern Z using the 1-NN rule with the edited subset
of {X,Y}.

This simple editing scheme is so powerful that the error rate of the 1-NN rule
that uses the edited subset converges to the Bayes error. We remark here that a
gap in the proof of Wilson [132] was pointed out by Devijver and Kittler [34] but
alternate proofs were provided by Wagner [128] and Penrod and Wagner [82].

Wilson’s deleted nearest neighbor rule deletes all the data misclassified by the k-
NN majority rule. A modified editing scheme was proposed in 2000 by Hattori and
Takahashi [53] in which the data X; are kept only if all their k-nearest neighbors
belong to the same class as that of X;. Thus only the strongest correctly classified
data are kept.

Tomek [104] and Devijver and Kittler [33] proposed the repeated application of
Wilson editing until no points are discarded. Devijver and Kittler [33] showed that
with this scheme, which they call multi-edit, repeated editing with the 1-NN will
lead to the Bayes error rate.

4 Weighting the Neighbors

The k-NN rule makes a decision based on the majority class membership among
the k nearest neighbors of an unknown pattern Z. In other words every member
among the k nearest neighbors has an equal say in the vote. However, it is natural
to give more weight to those members that are closer to Z. In 1966 Royall [90]
suggested exactly such a scheme where the i-th neighbor receives weight w;, wy >
wy > ... > wg and wy +wy + ... + w = 1. In 1976 Dudani [40] proposed such
a weighting scheme where the weight given to X; is inversely proportional to the
distance between Z and X;. He also showed empirically that for small training
sets and certain distributions this rule gave higher recognition acuracy than the
standard k-NN rule. Similar results were obtained by Priebe [83] when he applied
a randomly weighted k-NN rule to an olfactory classification problem. However,
these results do not imply that the weighted rule is better than the standard rule
asymptotically (Bailey and Jain [6], Devroye et al. [37]).

5 Weighting the Features

Considerable work has been done on trying to improve the nearest neighbor decision
rules by weighting the features (attributes, measurements) differently. It is natural
to try to put more weight on features that are better. Hence much effort has
been directed at evaluating and comparing measures of the goodness of features.
This problem is closely related to the vast field of feature selection where one is
interested in selecting a subset of features with which to design a classifier. This is
similar to setting the weights to “one” for the features selected and “zero” to the
ones discarded.

One popular method for measuring goodness is with measures of information.
For example, Lee and Shin [65] propose an enhanced nearest neighbor learning



algorithm, that has applications to relational data bases, in which they use infor-
mation theory to calculate the weights of the attributes. More specifically they
use the Hellinger divergence, a measure equivalent to the Bhattacharya coefficient,
the Matusita distance and the affinity (Matusita [69], McLachlan [70]) to calculate
the weights automatically. This measure of distance between the class-conditional
probability distributions, is closely related to the Bayes probability of error (Hell-
man and Raviv [54], Toussaint [112], [114], [115], Bhattacharya and Toussaint [11]).

Wettschereck and Aha [129] and Wettschereck et al. [130] compare several meth-
ods for weighting features in nearest neighbor rules and claim that the mutual infor-
mation (Cover and Thomas [18]) gives good results. As with feature selection, one
must be careful when calculating and evaluating weights of features independently
of each other and then using them together (Toussaint [106]).

We close this section by mentioning a third popular measure for weighting
features called the cross-category feature-importance measure by Wettschereck et
al. [130], Wettschereck and Aha [129], Stanfill and Waltz [100], and Creecy et
al. [22]. This measure is equivalent to the asymptotic probability of correct classi-
fication of the nearest neighbor decision rule and also has several other names such
as the Bayesian distance (Devijver [32]) as mentioned in the introduction. While
such weighting schemes may sometimes improve results in practice there are no
guarantees. Most unsettling is the fact that even when using the Bayes probability
of correct classification (the ultimate criterion) as an evaluation measure, and even
when the features are independent in each and every pattern class, selecting the
best individual features may actually result in obtaining the worst possible feature
subset (Toussaint [107], Cover [19], Cover and Van Campenhout [20]).

6 Choice of Metric

There has been considerable effort spent on finding the “optimal” metric for use
in the distance calculations. Empirical improvements in accuracy are often ob-
tained when the metric adapts locally to the distribution of the data (Short and
Fukunaga [96], Friedman [45], Hastie and Tibshirani [52], Ricci and Avesani [88]).

Several elegant nearest neighbor rules have been devised that are scale-invariant.
One method suggested by Olshen [76] and Devroye [35] uses empirical distances
defined in terms of order statistics along the d coordinate axes. Another technique
suggested by Ichino and Sklansky [55] and Devroye et al. [37] is the rectangle-of-
influence graph decision rule. An unknown pattern Z is classified by a majority
rule among the rectangle-of-influence neighbors of Z in {X,Y}. A point X; in
{X,Y} is such a neighbor if the smallest axis-parallel hyper-rectangle containing
both Z and X; contains no other points of {X,Y}. Devroye et al. [37] call this
rule the layered nearest neighbor rule and have shown that if there are no ties it is
asymptotically Bayes optimal.

7 Proximity Graph Methods

7.1 Proximity graphs

The most natural proximity graph defined on a set of points {X,Y} is the near-
est neighbor graph or NNG. Here each point in {X,Y} is joined by an edge to its
nearest neighbor (Paterson and Yao [81]). Another well known proximity graph
is the minimum spannig tree (MST) Zahn [135]. In 1980 the relative neighbor-
hood graph (RNG) was proposed as a tool for extracting the shape of a planar



pattern (see Toussaint [118], [116], [123]). However, such definitions are readily ex-
tended to higher dimensions. For computing the RNG in d dimensions see Su and
Chang [102]. Proximity graphs have many applications in pattern recognition (see
Toussaint [117], [124], [122]). There is a vast literature on proximity graphs and it
will not be reviewed here. The reader is directed to Jaromczyk and Toussaint [58]
for a start. The most well known proximity graphs besides those mentioned above
are the Gabriel graph GG and the Delaunay triangulation DT. All these are nested
together in the following relationship:

NNG C MST C RNG C GG C DT (1)

7.2 Decision-boundary-consistent subsets

In 1978 Dasarathy and White were the first to characterize and compute explicitly
the decision surfaces of nearest neighbor rules [23] but only for the case of d = 2, 3.
In 1979 Toussaint and Poulsen [124] were the first to use d-dimensional Voronoi
diagrams to delete “redundant” members of {X,Y} in order to obtain a subset of
{X,Y} that implements ezactly the same decision boundary as would be obtained
using all of {X,Y}. For this reason the method is called Voronoi condensing. The
algorithm in [124] is very simple. Two points in {X, Y’} are called Voronoi neighbors
if their corresponding Voronoi polyhedra share a face. First mark each point X; if
all its Voronoi neighbors belong to the same class as X;. Then discard all marked
points. The remaining points form the Voronoi condensed subset {X,Y}. Voronoi
condensing does not change the error rate of the resulting decision rule because
the nearest nighbor decision boundary with the reduced set is identical to that
obtained by using the entire set. For this reason the Voronoi condensed subset is
called decision-boundary consistent. Clearly decision-boundary consistency implies
training-set consistency but the converse is not necessarily so. The most important
consequence of this property is that all the theory developed for the 1-NN rule
continues to hold true when the rule is preprocessed with Voronoi condensing.

Sixteen years later Murphy, Brooks and Kite [74] rediscovered the above al-
gorithm in the context of neural network design and called it network reduction.
Unaware of the above references in 1999 Esat [42] again rediscovered Voronoi con-
densing and called it Voronot polygon reduction. It should be noted that the neural
networks for nearest neighbor classification proposed in [74] and [42] are compli-
cated and much simpler networks are possible (see Toussaint [121]).

In 1998 Bhattacharya and Kaller [10] extended the above methods to the k-
nearest neighbor rules. They call the decision-boundary consistent condensing
ezact thinning and otherwise inexact thinning. They proposed a proximity graph
they call the k-Delaunay graph and showed how exact thinning can be performed
with this graph.

7.3 Condensing prototypes via proximity graphs

In 1985 Toussaint, Bhattacharya and Poulsen [122] generalized Voronoi condensing
so that it would discard more points in a judicious and organized manner so as
not to degrade performance unnecessarily. The dual of the Voronoi diagram is the
Delaunay triangulation. In this setting Voronoi condensing can be described as
follows. Compute the Delaunay triangulation of {X,Y}. Mark a vertex X; of the
triangulation if all its (graph) neighbors belong to the same class as that of Xj.
Finally discard all the marked vertices. The remaining points of {X,Y} form the
Voronoi condensed set. The methods proposed in [122] substitute the Delaunay
triangulation by a subgraph of the triangulation. Since a subgraph has fewer edges,



its vertices have lower degree on the average. This means the probability that all
the graph neighbors of X; belong to the same class as that of X; is higher, which
implies more elements of {X,Y} will be discarded. By selecting an appropriate
subgraph of the Delaunay triangulation one can control the number of elements
of {X,Y} that are discarded. Furthermore by virtue of the fact that the graph
is a subgraph of the Delaunay triangulation and that the latter yields a decision-
boundary consistent subset, we are confident in degrading the performance as little
as possible. Experimental results obtained in [122] suggested that the Gabriel graph
is the best in this respect.

Also in 1985 and independently of Toussaint, Bhattacharya and Poulsen [122],
Ichino and Sklansky [55] suggested the same idea but with a different proximity
graph that is not necessarily a subgraph of the Delaunay triangulation. They
proposed a graph which they call the rectangular-influence graph or RIG defined
as follows. Two points X; and X; in {X,Y} are joined by an edge if the smallest
axis-parallel hyper-rectangle that contains both X; and X; contains no other point
of {X,Y}. Not surprisingly, condensing the training set with the RIG does not
guarantee a decision-boundary consistent subset. On the other hand recall that
the RIG has the nice property that it is scale-invariant which can be very useful in
classification problems.

In 1998 Bhattacharya and Kaller [10] proposed a proximity graph they call the
k-Gabriel graph and show how inexact thinning can be performed with this graph.
The k-Gabriel graph is much easier to compute than the k-Delaunay graph and
yields good results.

7.4 Editing via proximity graphs

Sénchez, Pla and Ferri [93] extended Wilson’s [132] editing idea to incorporate prox-
imity graphs. Their algorithms mimic Wilson’s algorithm. Instead of discarding
points correctly classified by the k-nearest neighbor rule they are discarded if they
are correctly classified with the graph neighbors. They empirically investigated the
relative neighborhood graph and the Gabriel graph and found that Gabriel graph
editing was the best.

7.5 Combined editing and condensing via proximity graphs

Editing by itself smooths the decision boundary and improves performance with
finite sample size. However, it tends not to discard much data. Therefore to
reduce the size of the training set condensing is necessary. There has been much
research lately at exploring the synergy between editing and condensing techniques
(Dasarathy and Sénchez [27], Dasarathy, Sdnchez and Townsend [28]). Sénchez,
Pla and Ferri [93] also explored the interaction between editing and condensing.
One conclusion of these studies is that editing should be done before condensing
to obtain the best results. An extensive experimental comparison of 26 techniques
shows that the best approach in terms of both recognition acuracy and data com-
pression is to first edit with either the Gabriel graph or the relative neighborhood
graph and subsequently condense with the minimal-consistent subset (MCS) algo-
rithm (Dasarathy, Sdnchez and Townsend [28]).

7.6 Piece-wise classifier design via proximity graphs

Proximity graphs have also found use in designing piece-wise linear and spherical
classifiers. Sklansky and Michelotti [97] and Park and Sklansky [79], [80] use the
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Gabriel graph edges that connect points of different classes (which they call Tomek
links) to guide the selection of the final hyperplanes used to define the decision
boundary. In particular they require the selection of hyperplanes that intersect all
such edges. More recently Tenmoto, Kudo and Shimbo [103] use the Gabriel graph
edges between classes (Tomek links) only as a starting point for the initial position
of the hyperplanes and subsequently apply error-correction techniques to change
the position of the hyperplanes if the local performance improves.

As mentioned earlier, one can also generate non-parametric decision boundaries
with other surfaces besides hyperplanes. Priebe et al. [85], [84] model the decision
surfaces with balls and use proximity graphs called catch digraphs to determine the
number, location and size of the balls.

7.7 Cluster analysis and validation via proximity graphs

One of the most natural ways to select prototypes to represent a class in pattern
recognition is to perform a cluster analysis on the training data of the class in
question (Duda et al. [39]). The number and shape of the resulting clusters can
then guide the designer in selecting the prototypes. Obviously one can bring the
entire available clustering and vector quantization arsenals to bear down on this
problem (Jardine and Sibson [57], Jain and Dubes [56], Kohonen [61], Baras and
Subhrakanti [7]). However, the most powerful and robust methods for clustering
turn out to be those based on proximity graphs. Florek et al. [44] were the first
to propose the minimum spanning tree proximity graph as a tool in classification.
The minimum spanning tree contains the nearest-neighbor graph as a subgraph.
Zahn [135] demosntrated the power and versatility of the minimum spanning tree
when applied to many pattern recognition problems. These techniques were later
generalized by using other proximity graphs by Urquhart [125]. Another general-
ization of the nearest-neighbor graph is the k-nearest-neighbor graph. This graph
is obtained by joining each point with an edge to its k nearest neighbors. Brito
te al. [13] study the connectivity of the k-nearest-neighbor graph and apply it to
clustering and outlier detection. Once a clustering is obtained it is desirable to
perform a cluster-validation test. Pal and Biswas [78] propose some new indices
of cluster validity based on three proximity graphs: the minimum spanning tree,
the relative neighborhood graph and the Gabriel graph, and they show that for an
interesting class of problems they outperform the existing indices.

7.8 Proximity-graph-neighbor decision rules

The classical approaches to k-NN decision rules are rigid in at least two ways: (1)
they obtain the k nearest neighbors of the unknown pattern Z based purely on
distance information, and (2) the parameter k is fixed. Thus they disregard how
the nearest neighbors are distributed around Z. In 1985 Ichino and Sklansky [55]
proposed the rectangle-of-influence graph neighbor rule in which Z is classified by a
majority vote of its rectangle-of-influence graph neighbors. Recently new geometric
definitions of neighborhoods have been proposed and new nearest neighbor decision
rules based on other proximity graphs (Jaromczyk and Toussaint [58]) have been
investigated. Devroye et al. [37] proposed the Gabriel neighbor rule which takes a
majority vote among all the Gabriel neighbors of Z among {X,Y}. Sanchez, Pla
and Ferri [92], [94] proposed similar rules with other graphs as well as the Gabriel
and relative neighborhood graphs. Thus both the value of k£ and the distance of the
neighbors vary locally and adapt naturally to the distribution of the data around
Z. Note that these methods also automatically and implicitly assign different
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“weights” to the nearest geometric neighbors of Z.

8 Open Problems and New Directions

In 1985 Kirkpatrick and Radke [60] (see also Radke [86]) proposed a generalization
of the Gabriel and relative neighborhood graphs which they called S-skeletons,
where 8 is a parameter that determines the shape of the neighborhood of two
points that must be empty of other points before the two points are joined by an
edge in the graph. It is possible that for a suitable value of § these proximity graphs
may yield better training set condensing results than the those obtained with the
Gabriel graph. This should be checked out experimentally. It should be noted that
there is a close relationship between (3-skeletons and the concept of mutual nearest
neighbors used by Gowda and Krishna [49]. For 8 = 1 an edge in the -skeleton
has the property that the two points it joins are the mutual nearest neighbors of
each other. For further references on computing S-skeletons the reader is referred
to the paper by Rao and Mukhophadhyay [87].

In the early 1980’s a graph named the sphere-of-influence graph was proposed
that was originally intended to capture the low-level perceptual structure of visual
scenes consisting of dot-patterns, or more precisely, a set of n points in the plane
(see Toussaint [119]). It was also conjectured that (although not planar) this graph
had a linear number of edges. Avis and Horton [5] showed in 1985 that the number
of edges in the sphere-of-influence graph of n points was bounded above by 29n.
The best upper bound until recently remained fixed at 17.5n. Finally in 1999
Michael Soss [99] brought this bound down to 15n. Avis has conjectured that
the correct upper bound is 9n and has found examples that require 9n edges, so
the problem is still open. More relevant to the topic of interest here is the fact
that the sphere-of-influence graph yields a natural clustering of points completely
automatically without the need of tuning any parameters. Furthermore, Guibas,
Pach and Sharir showed that even in higher dimensions it has O(n) edges for fixed
dimension [50]. Soss has also given results on the number of edges for metrics other
than Euclidean [98]. Finally, Dwyer [41] has some results on the expected number of
edges in the sphere-of-influence graph. For two recent papers with many references
to recent results on sphere-of-influence graphs the reader is referred to Michael
and Quint [72] and Boyer, et al. [12]. To date the sphere-of-influence graph has
not been explored for applications to nearest neighbor decision rules. Even more
recently several new classes of proximity graphs have surfaced. These include the
sphere-of-attraction graphs of McMorris and Wang [71], and the class-cover catch
digraphs of De Vinney and Priebe [127]. It would be interesting to compare all
these graphs on the problems discussed in this paper.

Recall that Gordon Wilfong [131] showed in 1991 that the problem of finding
the smallest size training-set consistent subset is NP-complete when there are more
than two classes. The complexity for the case of two classes remains an open
problem.
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