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ABSTRACT

Let A = {C1,C3,...,C,} be an arrangement of Jordan curves in the plane lying in
general position, i.e., every curve properly intersects at least one other curve, no two
curves touch each other and no three meet at a common intersection point. The Jordan-
curve arrangement graph of A has as its vertices the intersection points of the curves
in A, and two vertices are connected by an edge if their corresponding intersection
points are adjacent on some curve in A. We further assume A is such that the resulting
graph has no multiple edges. Under these conditions it is shown that determining

whether Jordan-curve arrangement graphs are Hamiltonian is NP-complete.
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1 Introduction

A Hamiltonian circuit in a graph is a circuit which passes through every vertex of the graph
exactly once. The Hamiltonian circuit problem asks whether there exists at least one Hamiltonian
circuit in a given graph. There have been at least three approaches taken in the past towards
the study of Hamiltonian circuits. In one approach sufficient conditions are sought for which
graphs are Hamiltonian. For example, it is known that all 4-connected triangulated graphs [15],
4-connected planar graphs [14], [3] and 1-sail line arrangement graphs [4] are Hamiltonian. Also,

the visibility graphs of sets of line segments with the property that the line segments are of unit



length whose endpoints have integer coordinates, are Hamiltonian [10]. A related computational
question concerns how fast we can find a Hamiltonian circuit in a Hamiltonian graph. For any
4-connected planar graph G with n vertices, a Hamiltonian circuit in G can be found in O(n?)
time [7]. If only the vertices where a turn is made need be reported (a streamlined Hamiltonian
circuit) then a Hamiltonian circuit for 1-sail line arrangement graphs can be found in ©(nlogn)
time, where n is the number of lines in the arrangement [5]. A second approach is to find restricted
classes of graphs for which we can determine in polynomial time whether or not instances of such
graphs admit a Hamiltonian circuit. For example if each line segment of a set of n disjoint line
segments in the plane has at least one of its end points on the convex hull of the set, it can be
determined in O(nlogn) time whether the set admits a Hamiltonian circuit through its endpoints
such that it is a simple polygon and uses every line segment exactly once [12]. The third approach
to the Hamiltonian circuit problem has been to search for restricted classes of graphs for which the
problem is NP-complete. For example, the Hamiltonian circuit problems for general graphs [8], for
3-regular 3-connected planar graphs [6], and for 3-regular bipartite planar graphs [1] are known
to be NP-complete. (A graph is said to be 3-regular if each vertex of the graph has degree 3.)
Also, in the line segment problem discussed above, if the convex hull restriction is removed and
line segments are allowed to touch at their end points it is NP-complete to determine if they admit
a simple Hamiltonian circuit [11]. One of the results on a related problem is the NP-completeness

of the edge Hamiltonian path problem for bipartite graphs [9].

Recently several different classes of arrangement graphs have been introduced [4]. For ex-
ample, an arrangement of n lines in general position (no two parallel and no three concurrent)
defines a set of intersection points joined by edges. The graph whose vertices are the intersection
points and whose edges are the segments of the lines between adjacent intersection points, is called
a line-arrangement graph. Hazel Everett [5] has shown that not all line-arrangement graphs are
Hamiltonian. On the other hand the great-circle-arrangement graph on the sphere (obtained in a
similar manner from a set of great circles on the sphere in general position) has been recently shown
to be Hamiltonian by Bruce Reed [13]. Using stereographic projection of the sphere onto the plane
(the light source is at the furthest point on the sphere from the plane and is not on any circle),
the great-circle arrangement maps to an arrangement of Jordan curves satisfying the following two
conditions: (i) every Jordan curve intersects every other in exactly two points and (ii) there exists
a point in the plane that is contained in every curve. From Reed’s result, we can show easily
that Jordan-curve arrangement graphs satisfying these conditions are Hamiltonian. In this note
we show that if the above two conditions are removed, the Hamiltonian circuit problem is NP-
complete. More precisely, we establish the NP-completeness of the Hamiltonian circuit problem for
the class of Jordan-curve arrangement graphs with no multi-edges. This class is properly contained
in the class of 4-regular graphs. Therefore our result is strictly stronger than the NP-completeness

result for 4-regular planar graphs.



2 Definitions and Results

A Jordan curve is a curve that partitions the plane into two disjoint regions, a bounded region
referred to as the interior and an unbounded region called the exterior, which are separated by the
curve. Let C; and C; denote two Jordan curves. Let A = {Cy,Cy,...,C,} be an arrangement of
Jordan curves. The set of intersection points of C; and C; is denoted by I(C;,C;). In this paper,
we assume that no two curves are coincident in a non-zero measure intersection. We further assume
that (i) every curve intersects at least one other curve, (ii) no two curves touch each other, i.e., each
pair of curves intersect properly if they intersect at all and (iii) no three curves are concurrent,
i.e., share a common intersection point. Let V(A) = {v|v € I(C;,C;) such that C;,C; € A}.
The Jordan-curve arrangement graph of an arrangement A is the graph G, = (V,, E,) such that
(i) Vo = V(A) and (ii) edges in E, are formed by curves of A (see Fig. 1). Note that a Jordan-curve
arrangement graph may contain multi-edges. (For example, the Jordan-curve arrangement graph

in Fig. 1-(b) contains two pairs of multi-edges.)

Theorem 1. The Hamiltonian circuit problem for Jordan-curve arrangement graphs with

no multi-edges is NP-complete.

Remark. Since every Jordan-curve arrangement graph is a 4-regular planar graph, the
Hamiltonian circuit problem for 4-regular planar graphs is also NP-complete. The class of Jordan-
curve arrangement graphs with no multi-edges is properly contained in the class of 4-regular planar
graphs, i.e., there exist 4-regular planar graphs G with no multi-edges such that G cannot be
formed by any arrangement of Jordan curves (see Fig. 2). It should be noted that the class of
Jordan-curve arrangement graphs with no multi-edges is contained in the class of multi-graphs
formed by arrangements of Jordan curves lying in arbitrary position. As a corollary of Theorem 1,
the Hamiltonian circuit problem for arrangement graphs with multi-edges formed by Jordan curves

lying in arbitrary position is NP-complete.

Proof of Theorem 1. Since the Hamiltonian circuit problem for general graphs is in
NP [8], the problem for Jordan-curve arrangement graphs with no multi-edges is also in NP. It
is known that the Hamiltonian circuit problem for 3-regular planar graphs with no multi-edges
is NP-complete [6]. We reduce each 3-regular planar graph G with no multi-edges to a Jordan-
curve arrangement graph G, with no multi-edges such that G is Hamiltonian if and only if G, is
Hamiltonian. The overview of the proof is as follows. Starting with G, (i) we construct 4-regular
planar graph Gy with multi-edges and (ii) we then construct 4-regular planar graph G, with no
multi-edges. (iii) We prove that G is Hamiltonian if and only if G, is Hamiltonian (Lemma 1),
and (iv) we then prove that (G, is a Jordan-curve arrangement graph (Lemma 2). Note that the
input to the problem is not an arrangement but a graph. Using the coloring algorithm given in
the proof of Lemma 2, we can determine in polynomial time whether the given graph is a Jordan-
curve arrangement graph. It is known that there is a linear-time algorithm for generating a planar

embedding of a planar graph [2]. Thus, we can assume that the planar graphs in this paper are



embedded in the plane without any crossing edges.

Construction of Gq: Let v be a vertex of G, and let ,y, and z be the three neighbors of v (see
Fig. 3-(a)). We first replace each edge, say (v,2), of G by two vertices v,,z, and add a pair of
multi-edges between v, and z, (see Fig. 3-(b)). We then replace each vertex v of G by three edges,
(v, vy), (vy,v:), and (v,,v;). We call the subgraph induced by these three edges a triangle. We
denote the resulting graph by G4 = (V1, F1). Gy can be obtained by locally replacing each vertex
and each edge of G with a triangle and a pair of multi-edges, respectively. Thus, (G; can also
be embedded in the plane without any crossing edges. Now each vertex of G has two edges of
a triangle and a pair of multi-edges. Therefore, (G is a 4-regular planar graph with multi-edges.

Furthermore, (G; can be constructed from G in polynomial time.

Construction of G,: The basic idea is to add four vertices and four edges to each pair of multi-
edges (see Figs. 4 and 5). We first find a vertex subset S C Vi such that (i) exactly one vertex
of each pair of multi-edges is in S and (ii) at least one vertex of each triangle is in 5. (We will
show how to find such an S later.) Suppose that a vertex a of Gy is in S (see Fig. 4-(a)). Let
e1, eg, e3, and e4 be the edges incident to a in clockwise order in the plane. For 1 <z < 4, we
“divide” edge e; into two edges by adding a new vertex a; on e; (see Fig. 4-(b)). We then add four
edges (a1,a3), (az,as), (as,as), and (aq,ay). We call a subgraph induced by these four edges a
circle. By applying the above procedure to each vertex in S, we obtain G, (see Fig. 5-(b)). Now
G, has no multi-edges. (For example, the 3-regular graph shown in Fig. 6-(a) is transformed into
the 4-regular graph in Fig. 7-(b). The reason for using the set S C Vj rather than using all of V}

is given in the proof of Lemma 1.)

It remains to show how to construct S C V; in polynomial time. We first construct a vertex
set S; C S such that (i) at most one vertex of each pair of multi-edges is in S; and (ii) ezactly
one vertex of each triangle is in S (see Fig. 7-(a)). Note that there are pairs of multi-edges in G
neither of whose vertices are in S7. By adding one arbitrary vertex of each such pair to Sy, we
obtain S. The construction of Sy is as follows. We construct a directed subgraph D = (V, Ep)
in the original graph G = (V, E) such that all of D’s vertices have out-degree one (see Figs. 5-(a)
and 6-(c)). Recall that vertices and edges in G were replaced by triangles and pairs of multi-edges
in (i1, respectively (see Figs. 3-(b) and 7-(a)). A vertex v, of GGy is in Sy if and only if there exists a
directed edge (v,z) in Ep (see Figs. 3-(b) and 5-(a)), i.e., we can obtain vertex set 51 from edge set
Ep by replacing each (v,z) € EFp with vertex v, € §1. D = (V, Ep) can be constructed as follows.
We first find an undirected spanning tree, say T' = (V, E1), in G (see Fig. 6-(b)). We choose an
arbitrary vertex, say r, among 7"’s leaves. We perform a depth-first search from r in order to obtain
a directed spanning tree such that all tree edges are directed toward r (see Fig. 6-(c)). Note that
every vertex of T', except for r, now has outdegree exactly one. (7 has in-degree one and out-degree
zero.) Furthermore, we find an undirected edge (r,s) € E such that (r,s) ¢ E7. By adding directed
edge (r,s) to Er, we obtain Ep (and hence we obtain D = (V, Ep)).



Lemma 1. G is Hamiltonian if and only if G, is Hamiltonian.

Proof. Recall that exactly one vertex of each pair of multi-edges of G; = (V, F1) isin S. In
other words, exactly one vertex of each pair of multi-edges of G} is not in S. Let § = V; — 5. Then,
by removing all the vertices in S from G,, we can decompose 7, into connected components, each
of which corresponds to a vertex of G. Let C'P, denote the connected component corresponding
to vertex v of G (see Fig. 8. vy, v, and v3 belong to ?.) Note that C' P, is a subgraph of GG,. Let
z,y, and z be the three neighbors of v in G (see Fig. 3-(a)). (Intuitively, vy, v9, and v in Fig. 8
correspond to the three edges (v,z), (v,y), and (v,z) in Fig. 3-(a), respectively.)

(<) Suppose that there is a Hamiltonian circuit ke, in G,. Recall that v,z,y, and z of G
correspond to subgraphs C'P,,C'P,,CPy, and C'P, in G4, respectively. We first construct a circuit
¢ in GG such that ¢ passes through v from u to w if and only if he, passes through C P, from C'P,
to C'P,, where u,w € {z,y,2z} and u # w. Since he, passes through every subgraph CP,, the
corresponding circuit ¢ also passes through every vertex v of G. If hc, passes through every C'P, at
most once, then ¢ passes through every vertex v of G at most once (and hence ¢ is a Hamiltonian
circuit of ). In the following, we show that he, passes through every C'P, at most once. Consider
a subgraph C' P, of G,. Suppose without loss of generality that hc, passes through C P, from C P,
to C'P,. Assume for contradiction that he, revisits C'P,. Since hc, passes through C'P, from CP,
to C' Py, he, must revisit C' P, from C'P,. Since he, is a circuit, he, must pass through C'P, from
C'P, to either C' P, or C'P,. If it is from C'P, to C'P, (resp. from C P, to C'Py), hc, must revisit the
vertex in S between C P, and C P, (resp. between C P, and C'Py), which contradicts the assumption

that he, is a Hamiltonian circuit.

(=) Let v1,vq, and v3 be three vertices in S which correspond to edges (v,z),(v,y), and
(v,z) in G, respectively (see Fig. 8). It is not difficult to check that there is a Hamiltonian path in
each C P, between every two of the three vertices, vy, ve, and vs (see Fig. 9, symmetric cases are
omitted). Suppose that there is a Hamiltonian circuit he in G. We can construct the corresponding
circuit ¢, in GG, such that he passes through v from u to w if and only if ¢, passes through C'P,
from CP, to CP,, where u,w € {2,y,z} and u # w. Since hc passes through every vertex v of
GG exactly once, ¢, passes through every subgraph C P, exactly once. The Hamiltonian path which
passes through C P, visits every vertex of C' P,’s circles and triangle exactly once. Therefore, circuit

¢, passes through every vertex of G, exactly once. m|
Lemma 2. G, is a Jordan-curve arrangement graph.

Proof. Since G, was constructed by adding circles to Gy, 7, is a Jordan-curve arrangement
graph if G1 is a Jordan-curve arrangement graph. In the following, we show 1 is a Jordan-curve
arrangement graph. Recall that the planar graphs G and (; are embedded in the plane so that

none of their edges cross. Consider the following edge-coloring algorithm:

(1) Initially, all edges have no colors.

(2) Choose an arbitrary edge with no color, and color it with a new color.



(3) Find an edge, say ey, with no color which satisfies the following condition: There exist three
edges eg,e3 and ey such that eq,eq,e3, and e4 are incident to a vertex in clockwise order and
that ez has already been colored. (See Fig. 4-(a).)

(4) Color ey with the same color as es.

(5) Repeat (3) and (4) until there is no edge ey satisfying the above condition.

(6) Repeat (2)-(5) until all edges are colored.

By applying this algorithm to Gy, we obtain subgraphs each of which consists of edges having the
same color. Since Gy is embedded in the plane so that none of its edges cross, these subgraphs
are also embedded in the plane without any crossing edges. In the following, we show that each of
these subgraphs is a 2-regular graph, i.e., it does not contain vertices of degree 4. (Note that if they
are 2-regular graphs, we can construct the corresponding arrangement by replacing each 2-regular

subgraph with a Jordan curve.)

Consider an arbitrary face f of G (see Fig. 10-(a)). Let (a,b),(b,c), and (c,d) be edges on
the boundary of f. By the transformation from G to Gy, (i) vertex b (resp. ¢) of GG, which is the
boundary point of three faces, is replaced by three edges, one of which is (b,,b.) (resp. (¢p,¢q)),
and (i) edge (b,¢) of G, which is the boundary of two faces, is replaced by a pair of multi-edges
between b. and ¢ (see Fig. 10-(b)). By the coloring algorithm, edge (b4, b.) is colored by the same
color as one of the multi-edges between b, and ¢, which is furthermore colored by the same color as
edge (¢, cq). Thus, edges (b,,b.) and (¢p,¢q) are colored by the same color. From this observation,
one can see that there exists a face f, of (G, which corresponds to the face f of G such that edges
(ba,bc) and (¢p,¢q) are on the boundary of f, if vertices a,b, ¢, and d are on the boundary of f.
More generally, exactly half of edges colored by the same color are on the boundary of a single face
of GG,, and exactly one of every two adjacent edges colored by the color is on the boundary of the
face. Therefore, edges colored by the same color form a 2-regular subgraph which corresponds to

a face of G. O

Example. We give an example of arrangements of Jordan curves whose graphs are not Hamilto-
nian (see Fig. 7-(c)). The 3-regular planar graph shown in Fig. 6-(a) is not Hamiltonian, since it is
not 1-tough [3], i.e., we can decompose it into three connected components by removing two ver-
tices. This non-Hamiltonian graph can be reduced to the 4-regular planar graph with no multi-edges
shown in Fig. 7-(b). This 4-regular graph is also non-Hamiltonian, since removing two subgraphs
which correspond to the above two vertices decomposes the 4-regular graph into three connected
components. (Although there is a Hamiltonian path in each of the three connected components, no
Hamiltonian circuit can be constructed by connecting those three Hamiltonian paths.) Therefore,

the arrangement of Jordan curves shown in Fig. 7-(c) is non-Hamiltonian.
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Fig. 1 (a) Arrangement of four Jordan curves (b) Jordan-curve arrangement graph

Fig. 2 A graph that cannot be formed by any arrangement of Jordan curves
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Fig. 4 (a) Four edges incident to vertex a in Gy (b) Circle in G,
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Fig. 5 (a) Directed subgraph D in G (b) Circles of G,

(a) (b)
Fig. 6 (a) 3-regular graph (b) Spanning tree 7' (c) Directed subgraph D



(a) (b) ()
Fig. 7 (a) Vertex set Sq in G7 (b) 4-regular planar graph G, with no multi-edges
(c) Arrangement of Jordan curves
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Fig. 8 Connected component C P,

Fig. 9 Hamiltonian paths

(a) (b)
Fig. 10 (a) Face of G (b) Corresponding 2-regular subgraph in G,



