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Abstract

Computational geometry is a new (about 30 years) and rapidly growing branch of knowledge
in computer science that deals with the analysis and design of algorithms for solving geometric
problems. These problems typically arise in computer graphics, image processing, computer
vision, robotics, manufacturing, knot theory, polymer physics and molecular biology. Since
its inception many of the algorithms proposed for solving geometric problems, published in
the literature, have been found to be incorrect. These incorrect algorithms rather than being
“purely mathematical” often contain a strong kinesthetic component. This paper explores the
relationship between computational geometric thinking and kinesthetic thinking, the effect of
the latter on the correctness and efficiency of the resulting algorithms, and their implications
for education.
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1 Introduction

1.1 Computational geometry

Computational geometry is claimed by many computer scientists to be a new field of computer
science which began with the thesis of Michael Shamos [1] in 1978. Since that time, spurred by
rapid developments in computer graphics, VLSI (Very Large Scale Integration), computer vision,
robotics, manufacturing, knot theory, polymer physics and molecular biology, it has blossomed into
a dynamic discipline of its own and has given birth to several books in the area [2], [3], [28], [29],
[37], [49], [50]. For two existing surveys of the field relevant to pattern recognition see [4] and [5]. A
special issue devoted to computational geometry gives a bird’s eye view of the field [6]. As far back
as 1981 it has been discovered by several authors [5] that a score of published algorithms, that have
been proposed for solving a variety of geometric problems, actually do not work correctly, i.e., they
do not always compute what they were designed to compute. Thinking about these algorithms,
how they fail, how they compare to correct algorithms and trying to fix them has led to the ideas
discussed in this paper.

*A preliminary version of this paper titled Computational Geometric Thinking as Kinesthetic Thinking was pre-
sented by Godfried Toussaint at the Conference on Thinking, Harvard University, August 1984.
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1.2 The psychology of discovery in computational geometry

Psychologists, mathematicians and physicists have been interested for a long time in the process
of discovery in mathematics [7], [8], [27]. The process of discovery in the design of geometric
algorithms offers a rich environment for psychologists and artificial intelligence researchers to study
because of the strong visual and kinetic components present in geometry problems. This is even
more so due to the coming of the robotics age where vision, movement and their interaction are
crucial problems. This paper presents some views on this topic and conclusions regarding both the
design and analysis of geometric algorithms as well as implications for education. It is by no means
a report of rigorous psychological testing on subjects, but rather an account of a personal study on
the subject in the spirit of Hadamard [7], Mach [27] and Lakatos [8].

1.3 Logico-mathematical vs. kinesthetic or body-syntonic heuristics

It is useful to distinguish between various forms of knowledge [9], intelligence [10] and thinking
[11]. While it is true that our knowledge, intelligence, and thinking, particularly that concerned
with geometry, are originally acquired through our visual, tactual and other sensory interactions
with our environment, it is also true that eventually, as we acquire idealized concepts, our logico-
mathematical “machine” takes on a “life of its own” and we are therefore capable of doing logico-
mathematical thinking with a minimum of “interference” from the “real world.” This is a “double-
edged sword”: it has its advantages and disadvantages. In this paper we will distinguish between
logico-mathematical thinking and kinesthetic thinking. The term kinesthetic thinking follows the
terminology of Johnson [47] and Svanaes [48] and signifies direct cognitive operations on tactile
kinesthetic sense experiences. A kinesthetic heuristic is any heuristic in which cognition, under-
standing and learning takes place through perceptible results of dynamic manipulation of objects
to support useful insights on the problem been studied. Kinesthetic heuristics emphasize the ex-
perimental aspects related to logico-mathematical deductions as a primary tool of understanding.
Similarly we may speak of kinesthetic versus logico-mathematical knowledge or information. While
the boundary between the two forms is necessarily fuzzy there are nevertheless instances where
they are quite distinct as will become evident when we consider the design of geometric algorithms.
It is also useful to distinguish between kinesthetic and visual thinking (knowledge, intelligence)
[12], [31] - [36], [38] although the boundary here is also fuzzy and even motor theories of vision
have been proposed [24]. That tactual kinesthetic information exists quite apart from visual infor-
mation was dramatically demonstrated by Louise Pelland [13], [14]. Pelland carried out a study in
which two groups of students had to draw an object (an artichoke cut in half). One group spent
some time manipulating, touching, and feeling the object before drawing it. The other group spent
the same amount of time, not touching the object, but looking at it from different points of view
and imagining that they were touching it. The drawings were then ranked by professional artists
according to various criteria. With significant results of statistical tests Pelland demonstrated that
the “touchers” had a considerably improved drawing skill acquisition over the “non-touchers.”

In this paper we review some algorithms from the computational geometry literature with the aim
of classifying them according to whether they were designed using logico-mathematical heuristics or
visual-kinesthetic heuristics. The latter type of heuristic will also be referred to as body-syntonic,
a term used by Papert [15] for a similar notion.

It will be argued that kinesthetic heuristics lead to faster geometric algorithms but are usually more
difficult to prove correct. On the other hand some kinesthetic heuristics are intuitively extremely
convincing. This has implications for what constitutes the notion of a “proof” of correctness. The
implications of kinesthetic heuristics for education will also be discussed.



By way of introduction, and before delving into the computational geometric examples, the differ-
ence between logico-mathematical and kinesthetic proofs of geometric theorems is illustrated with a
very simple and old theorem that appears in Euclid’s elements as Proposition 32. This proposition
states that in any triangle the sum of the three interior angles sums to two right angles (180 de-
grees). Euclid’s Elements is the epitome of the logico-mathematical approach to geometry in which
proofs and constructions are built on logical arguments from previous propositions, postulates and
axioms. His proof of Proposition 32 is no exception and goes as follows (refer to Figure 1).

Figure 1: A logico-mathematical proof of Proposition 32 in Euclid’s Elements.

Let ABC be a triangle, and let side BC be produced to D. Draw CE through point C parallel to
the straight line AB. Since AB is parallel to CE, and AC falls upon them, the alternate angles BAC
and ACE are equal to one another. Again, since AB is parallel to CE, and the straight line BD
falls upon them, the exterior angle ECD equals the interior and opposite angle ABC. But the angle
ACE was proved to be equal to the angle BAC. Therefore the whole angle ACD equals the sum of
the two interior and opposite angles BAC and ABC. Now add the angle ACB to each. Then the
sum of the angles ACD and ACB equals the sum of the three angles ABC, BCA, and CAB. But
the sum of the angles ACD and ACB equals one half-plane or two right angles. Therefore the sum
of the three interior angles of the triangle equals two right angles.

One of the earliest discussions on the role that kinesthetic information in general, and movement
in particular, have on the development of geometry is the delightful book Space and Geometry
by Ernst Mach [27] published in 1906. It is concerned with the evolution of geometry from the
psychological and physiological points of view. Mach discusses two kinesthetic (body-syntonic)
heuristics to deduce Proposition 32. The first he attributes to Thibaut [44], a contemporary of
Gauss (refer to Figure 2).

Imagine the vertices of the triangle to be nails protruding from the plane. Consider a long bar
initially touching the two nails at B and A on the outside of the triangle. Let the bar have an
orientation, i.e., a head and a tail. The orientation is from the tail to the head and the head is
identified by the arrow in Figure 2. In step 1 rotate the bar in a clockwise direction until it hits
the nail at C. The bar has been rotated by an angle «, the marked exterior angle at A. In step
2 we rotate the bar again in a clockwise direction until it hits the nail at B. Now the bar has
been rotated by an angle v, the marked exterior angle at C. Finally we repeat the same procedure
rotating about B. At the end of the three rotations the bar reaches its original position for the
first time and therefore has been rotated by a total of 360 degrees or four right angles. Therefore
a + B+ v = 4 right angles. However, the sum of the three interior angles at A, B, and C, plus
o+ B+ v = 3 half-planes or 6 right angles. Therefore the sum of the interior angles = 6 — 4 = 2
right angles.



Figure 2: A kinesthetic proof of Proposition 32 due to Thibaut [44].

The second kinesthetic approach to deducing Euclid’s Proposition 32 was noticed by Mach himself.
This approach also rotates a bar but is simpler and more direct than Thibaut’s method (refer to
Figure 3). Mach attributes this approach to the way a draftsman draws a triangle with a straight
edge when given three points that mark the vertices of the triangle. Accordingly, place the bar
initially collinear with points A and C pointing in the direction from A towards C. First rotate the
bar in a clockwise direction holding the bar fixed at point A until it becomes collinear with point
B. It has then rotated by an angle . Then rotate the bar again in a clockwise direction holding
the bar fixed at point B until it becomes collinear with point C. Finally, repeat the procedure
about point C until the bar is again collinear with points A and C for the first time. Therefore
the total angle of rotation of the bar is the sum of the 3 interior angles = a + 8 + 7. But note
that the orientation of the final position of the bar is now opposite to what it was at the start; the
bar points from C towards A. Therefore the bar has rotated by one half-plane or 2 right angles
Therefore o + 8 + v = 2 right angles.

Figure 3: A kinesthetic proof of Proposition 32 due to Mach [27].

The two kinesthetic heuristics described above are both “good” heuristics in the sense that they
lead to correct theorems (Proposition 32) in euclidean geometry. They are convincing algorithmic
strategies for computing the sum of the internal angles of a triangle. However, one must be careful
about what is expected from them. In the context of more general axiomatic geometries the
procedures still require more proof. The gap lies in the formula for computing the final angle and
can be filled by invoking the theorem (valid in euclidean geometry) on the composition of multiple
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rotations [46]. Interestingly, if Proposition 32 itself is taken as a hypothesis then it implies Euclid’s
fifth postulate (the parallel postulate) whereas Thibaut’s procedure does not [45].

2 The Convex Hull Problem

2.1 Logico-mathematical heuristics

The convex hull of a set of n points on the plane P = {p1,p2,---,pn} is defined as the minimum
area convex polygon CH(P) enclosing the set (see Figure 4). We are interested in finding this
convex polygon for a given set P.

Figure 4: The convex hull of a set of points.

A Logico-mathematical heuristic:

If two points p;, p; are such that all the n-2 remaining points in P lie on the same halfplane
determined by the line through p; and p; then [p;, p;] forms an edge of the convex hull of P. This
property leads to the following algorithm due to Rosenberg and Landgridge [16].

Algorithm CHI

Begin

Step 1: Through each pair of points draw a line.

Step 2: For each line drawn in step 1 test to see if the remaining points all lie to one side. If
they do then add the pair to a list containing the edges of the convex hull.

End

This algorithm is typical of the logico-mathematical type. It is easy to prove its correctness and easy
to program. The heuristic or property is clearly a logico-mathematical (in fact it is combinatoric)
rather than kinesthetic. However the algorithm is very slow. Because the number of lines drawn
in step 1 is proportional to n? and for each of these the number of points tested in step 2 is
proportional to n, the resulting total time taken by the algorithm is proportional to n®. Several
other algorithms exist with this type of heuristic that are even slower (see Shamos [1]).



2.2 Kinesthetic heuristics

In contrast to the “combinatorial” type of convex hull algorithms in section 2.1, several algorithms
exist that use strong kinesthetic heuristics.

The Gift-wrapping heuristic:

Here we think of wrapping a very long string around the set of points (see Figure 5). This idea
gives rise to the following algorithm due to Jarvis [17].

Figure 5: Wrapping a string around a set of points.

Algorithm CH2

Begin

Step 1: Find the point with minimum y-coordinate. Put it on the list of convex hull vertices.

Step 2: To determine the next point “touched by the string” compute all angles that the
z-axis makes with the string through all other points and select the point corresponding to
the minimum counter-clockwise angle. Add this point to the list of convex hull vertices.

Step 3: Repeat step 2 with respect to the newly found point until the starting point is
encountered again.

End

The idea of “swinging” a taut string or stick around the set until it “hits” a point is of course, a
strong kinesthetic heuristic and we “know” from our experience in the real world that this procedure
will identify the first, and therefore “outermost”, point in some direction. To provide a formal proof
of correctness for this algorithm requires more effort than for algorithm CHI although we are so
convinced of its correctness from the kinesthetic point of view that no proof seems required. In fact,
in [17] the author gave no proof of correctness for this algorithm. A “good” kinesthetic heuristic
will often have this apparent self-evident property. However, some kinesthetic heuristics are either
incorrect or not self-evident and beg us for formal confirmation. Recognizing the “good” kinesthetic
heuristics seems to be part of the art of good algorithm design.



On the other hand, CH2 runs much faster than CHI. If there are H points on the convex hull then
for each such point the algorithm takes time proportional to n due to step 2. Therefore the total
time taken is proportional to Hn. Since H is less than n the algorithm never takes more than n?
units of time which is less than the n? units taken by algorithm CHI.

The elastic band heuristic:

Imagine that an elastic band is stretched out into the form of a large circle that contains all the
points of Figure 4. Furthermore, think of the points as nails sticking out of the plane. We let go
off the elastic band. The band shrinks until it comes into contact with some nails: the convex hull
vertices. Finally at rest the elastic band defines the convex hull.

Again, this is a strong kinesthetic heuristic evoking in us such body-syntonic notions as encircling,
shrinking and stretching, coming into contact with, blocking, etc. Of course, the heuristic is only
the germ of the algorithm. There is sometimes a non-trivial gap which must be bridged when we
jump from the heuristic to the precise mathematical description of the algorithm. For example,
in algorithm CH2 “swinging the string until it hits a point” was described mathematically as
“computing angles and selecting the minimum angle.” Similarly, with the elastic band we must find
methods for implementing the heuristic. Several possibilities exist. The shrinking of the elastic is a
parallel analog operation and in algorithm design we usually look for a sequential digital procedure.
We now describe an algorithm very frequently proposed by students upon first encountering this
heuristic. The algorithm uses the kinesthetic heuristic of taking an un-stretched elastic band and
enlarging it step by step until it encloses all the points. No one has any difficulty performing this
operation with a real elastic band on a board with pegs sticking out of it. However, the students’
formal descriptions of what they do physically often betray their actions. It seems here that “an
action is worth a thousand pictures”.
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Figure 6: Progressively stretching an elastic band until it encompasses all the points.

Algorithm CH3

Begin

Step 1: Place the elastic band stretched between the two points with maximum and minimum
z-coordinates. (see Figure 6)

Step 2: Take the upper section of the elastic and connect it onto the point with maximum



y-coordinate. Similarly, take the lower section to ¥min (see Figure 6). This leaves us with
four corners to work with.

Step 3: Consider the northeast corner or triangle ymaz, 2, Lmaz- For all points in this triangle
find the two points with maximum z and y coordinates (Ymaz(2) and Zpmes(2)) again and
connect the elastic band from ¥,,4; t0 Ty, via these new points (see Figure 7).

Step 4: Repeat step 3 for points left “outside” the elastic band until none remain.

Step 5: Repeat steps 3 and 4 for the three remaining corners.

End

Figure 7: An incorrect way to recursively stretch the elastic band.

While this algorithm often works correctly it is in fact incorrect and it is easy to find sets of points
for which the algorithm fails. This is left as an exercise for the reader.

The reason the algorithm can fail is that Step 3 violates the notion of global exterior of the set
by repeatedly searching for points with maximum z and y directions. Since these directions have
in a sense already “been used up” in steps 1 and 2 they cannot be used again. Therefore this
implementation is not the correct kinesthetic inverse of the shrinking procedure. We can remedy
this by modifying Step 3 to search for the points furthest in a direction perpendicular to the
line through yme, and Tp,e.- In this way we always search in new directions and we guarantee
that points are global rather than local extrema. This latter algorithm has been independently
discovered by several researchers (see for example [18], [19]). As with algorithm CH2 it is more
difficult than CHI to prove correct but it is extremely fast. In fact, it was proven in [19] and [20]
that in many situations it executes in time proportional to n, the number of input points.

3 The Diameter Problem

The diameter of a set of points P = {p1,p2,---,pn} on the plane, denoted by D(P) is the distance
between the two furthest points of P. The diameter problem is to identify these points (points p;
and p; for example in Figure 8) given a set P.



Figure 8: The diameter of a set of points.

We will consider the special problem of finding the diameter of a convex polygon, i.e., the points
that form the vertices of a convex polygon P which we are given as an ordered list, say, in a
clockwise direction (see Figure 9).

Figure 9: The diameter of a convex polygon.

3.1 The Logico-Mathematical Approach

The most obvious way to solve this problem is to consider all pairs of points, compute their distance,
and select the pair that yields the maximum distance. The proof of correctness of this procedure is
trivial but the algorithm is slow. The time taken by this algorithm is proportional to the number
of pairs of points, that is, proportional to n2.

3.2 Kinesthetic Heuristics

One published algorithm which almost every student of computational geometry rediscovers is
based on the growing elastic heuristic. This approach is similar to the convex hull approach in
algorithm CH3 (the first step is identical in fact) except that we always keep the elastic around
two points of the set only. We think of the ends of the stretched elastic as the head and tail.



Algorithm D1

Begin

Step 1: Find the vertices of P with the minimum and maximum z-coordinate and place the
elastic band around these two points. Let Z,4, be the head, iy, the tail. (see Figure 10)

Step 2: With the tail fixed proceed to move the head to the adjacent clockwise or coun-
terclockwise point if the elastic gets longer. Continue doing this until it does not grow any
longer. (In Figure 10 the head will stop at p;)

Step 3: Now with the head fixed at p; proceed to move the tail in the same way. (In Figure
10 it will stop at p;)

Step 4: Keep alternating the role of head and tail as in steps 2 and 3 until the elastic does
not grow any longer. The final position of the elastic identifies the diameter D(P) and the
diametrical pair of points. (In Figure 10 the elastic will settle on p; and p; which is the true
diameter of the set).

End

Figure 10: The stretching elastic heuristic for searching the diameter.

This algorithm provides another example of a strong kinesthetic heuristic which is so convincing
it would appear not to require a proof. Again, no proof of correctness was published with this
algorithm. While the algorithm is very fast indeed and runs in time proportional to n, it is in fact
incorrect. A counter-example is given in [21] but the readers are invited to discover one on their
own before checking [21]. The reason for failure is similar to that for algorithm CH3. As is often
the case in so-called hill-climbing procedures such as these, algorithm DI can get stuck in a local
rather than global maximum.

The rotating calipers heuristic:

This is a dynamic version of the sandwich heuristic. One way to measure the width of an object,
such as a hamburger patty, is to place it in between two slices of bread and measure the distance
between the slices, i.e., the height of the sandwich not counting the thickness of the slices of bread.
In a mechanics laboratory one does this with a set of calipers to ensure that “the two slices of
bread remain parallel to each other.” The rotating-calipers heuristic is based on the intuition
that if we “rotate the two slices of bread” simultaneously keeping them parallel then the greatest
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distance encountered between points of contact should be the diameter we are looking for. In our
two-dimensional example this is illustrated in Figure 11. This idea leads to the following algorithm
[1], [22].

Figure 11: The rotating calipers heuristic.

Algorithm D2
Begin

Step 1: Find the two points with minimum and maximum z-coordinates. Call them p; and
p; (see Figure 11).

Step 2: Place the calipers vertically on p; and p;. (They will be rotated in a clockwise
direction.)

Step 3: Measure the two angles A and B. Compute the distance between p; and p; as a
candidate for the diameter D(P).

Step 4: Rotate the calipers by the smaller of the two angles (in Figure 11 it is B). This gives
a new pair of contact points (in Figure 11 we now have p; and p;1). Measure their distance
and store it in a list of candidates.

Step 5: Repeat steps 3 and 4 until the calipers return to their original position. The largest
distance encountered among the candidates is the diameter D(P).

End

Algorithm D2, like algorithm DI, runs very fast and in time proportional to n. Unlike algorithm
DI, algorithm D2 is always guaranteed to give the correct solution but the proof of correctness is
longer and more difficult than that for the logico-mathematical algorithm.

We note here that the rotating caliper heuristic can be used to solve a variety of computational
geometric problems besides the diameter problem and it is thus quite a powerful general tool [22].
For a web page with a description of various algorithms and applications as well as interactive
JAVA applets that the user can play with see [39].
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4 The Polygon Triangulation Problem

One of the fundamental theorems in geometry is that every simple (non self-crossing) polygon can
be triangulated, i.e., can be decomposed into triangles by adding straight line segments (diagonals)
in the interior of the polygon between pairs of vertices such that no two diagonals intersect each
other except at their endpoints [40]. A polygon and one of its triangulations is shown in Figure 12.

Figure 12: A triangulation of a simple polygon.

A typical algorithm to triangulate a polygon starts by looking for a valid location in which to insert
a diagonal. Inserting this diagonal divides the original polygon into two smaller polygons. The
same procedure is then applied to the smaller polygons recursively until each remaining polygon is
itself a triangle. The union of these triangles then forms a triangulation of the polygon. Therefore
the crucial part of such a procedure is to find a diagonal in a simple polygon.

c Xj-1
u
v
w

i+1

Figure 13: Illustrating three heuristics for inserting a diagonal between z; and another vertex.

When students of computational geometry are first given the task of designing an algorithm for
inserting a diagonal in a simple polygon P they often propose the following (and in fact published)
procedure (refer to Figure 13).

Algorithm IDI
Begin

Step 1: Find the vertex of P which has minimum z-coordinate and call it ;.
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Step 2: If the interior of triangle [z;_1, z;, Z;+1] contains no other vertices of P then insert the
diagonal [z;_1, Z;+1], in which case we are done. Such an empty triangle is called an ear and
in fact there is a theorem that states that every simple polygon of more than four vertices
has at least two non- overlapping ears [42].

Step 3: Otherwise find the vertex in the interior of triangle [z;_1,z;,z;+1] that is closest to
z; (vertex v in Figure 13) and insert diagonal [z;,v]. One can think of growing a circular disk
C centered at z; until it collides with a vertex of P in the triangle [z;_1, Z;, Zi+1]-

End

It turns out that this definition of closeness is not a good kinesthetic heuristic for this problem.
Indeed, a counter-example to this algorithm is given in Figure 14.

Figure 14: The closet vertex v to z; need not form a diagonal of P.

Another kinesthetic heuristic frequently discovered by students (and also published) involves ro-
tating a ray.

Algorithm ID2

Begin

Step 1: Find the vertex of P which has minimum z-coordinate and call it x;.
Step 2: Consider a ray R anchored at vertex x; initially pointing in the direction of z;_;.

Step 3: Rotate R in a clockwise manner sweeping through the triangle [z;_1,z;, z;11] until
the ray collides with a vertex of P contained in this triangle (vertex u in Figure 13 making
an angle ) and insert diagonal [z;, u].

End

It turns out that this kinesthetic heuristic is also incorrect. A counterexample to this proof is given
in Figure 15.
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Figure 15: The vertex u that has smallest angle z;_1x;u need not form a diagonal of P.

A third heuristic frequently discovered by students (and also published) sweeps a vertical line.
Algorithm ID3
Begin
Step 1: Choose the initial vertex z; so that it has the minimum z-coordinate among all
vertices in the polygon.

Step 2: Sweep a vertical line L from left to right starting at x; until it collides with the
first vertex of P contained in the triangle [z;_1,z;,z;y1] (vertex w in Figure 13) and insert
diagonal [z;,w].

End

Once again, this kinesthetic heuristic is incorrect and a counter-example is given in Figure 16.

Figure 16: The vertex w with the second least abscissa after x; need not form a diagonal of P.

To finish this section on a more positive note, a “good” kinesthetic heuristic is given for finding a
diagonal between z; and some other vertex contained in triangle [z; 1, x;, ;+1], followed by a proof
of its correctness (refer to Figure 17).
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Algorithm ID4

Begin

Step 1: Find the vertex of P which has minimum z-coordinate and call it ;.
Step 2: Consider a ray R anchored at z;_; initially pointing in the direction of z;.

Step 3: Rotate this ray in a counter-clockwise sense until it first hits a vertex of the polygon
in triangle [z;_1, z;, z;+1] (for example vertex y in Figure 17). The desired diagonal is given
by z;y.

End

To see that this heuristic is correct let the ray R intersect the segment z;, z;41 at point z throughout
its rotation. Until the ray hits a vertex, the segment z; 1z and therefore the triangle [z;_1, z;, 2]
lie in the interior of the polygon. Therefore z;y is a valid diagonal of the polygon.

Xj-1

Figure 17: A correct heuristic for inserting a diagonal.

For additional details on incorrect and correct algorithms for this problem the reader is referred to
[41] and [43].

5 Conclusions

5.1 Design and analysis of geometric algorithms

In section one it was pointed out that many recently published algorithms in computational geom-
etry have been discovered to fail [5], [21], [41], [43]. One thing that all these algorithms have in
common is that they are based on kinesthetic heuristics rather than logico-mathematical heuris-
tics. A second thing that they all have in common is that they are usually much faster than their
logico-mathematical counterparts, even when they do work correctly. This suggests that kines-
thetic heuristics are better than logico-mathematical ones from the computational efficiency point
of view and therefore that the kinesthetic approach is a good pedagogical strategy for the design of
fast geometric algorithms. On the other hand, the fact that many algorithms based on kinesthetic
heuristics fail is disconcerting and suggests that we have a “double edged sword”. More powerful
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kinesthetic heuristics tend to create stronger geometric illusions and therefore call for extra care in
logical thinking to determine if the resulting algorithms are correct.

There are at least two reasons why many of these algorithms fail. The first is that since a proof of
correctness is traditionally a logico-mathematical exercise it “gets along well” with logico-mathema-
tical heuristics. On the other hand there is an extra-logical gap between a logico-mathematical
proof and a kinesthetic type of proof or algorithm. This gap must be bridged successfully for
the algorithm to work correctly. This is often the first trap the algorithm designer must avoid.
Of course with rigorous logical thinking one should be able to construct this bridge perhaps with
added difficulty. The other side of this sword however is that often the kinesthetic heuristics are
so convincing that either a proof seems unnecessary and is not given, or as is often the case an
incorrect proof is outlined. It is conjectured that when an incorrect proof is given it is because the
convincing nature of the heuristic causes the proof to be merely a rationalization (rather than a
critical analysis) of something we are already convinced must be correct. This is the second trap
facing the algorithm designer. A good strategy is therefore to harness the kinesthetic heuristics,
but also mistrust them no matter how convincing they may appear to be, and subject them to
rigorous logico-mathematical analysis.

5.2 Implications for education

Traditionally, in the educational system, mathematics in general, and proofs in particular, are
presented as dry, purely logical, step by step procedures that lead in a “vertical” way to the “goal”.
This is of course only the finished product of the “living” mathematics which is a more passionate
and semi-blind road to discovery [8]. In the words of Seymour Papert [15].

“Mathematical work does not proceed along the narrow logical path of truth to truth to
truth, but bravely or gropingly follows deviations through the surrounding marshland
of propositions which are neither simply and wholly true nor simply and wholly false.”

We have seen in this paper that there is a gap that must be bridged between kinesthetic heuristics
for solving a problem and the finished algorithm with its proof of correctness. This is of course
only an exaggerated form of a situation that exists in scientific discovery in general [8] because of
the inherent gap between “reality” and mathematics. Albert Einstein [23] put it this way:

“As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.”

Computational geometry with kinesthetic heuristics offers a rich and more relevant manner of
teaching a “living” mathematics. It offers the student a “truer” picture of reality by combining
mathematics not only with physics but also with the psychology of visual perception. It illustrates
the dangers involved in bridging the gap between the physical and Platonic worlds and makes
mathematics a more “dangerous” undertaking. Computational geometry should thus be a good
antidote for mathophobia. Readers familiar with Turtle Geometry [25] may have noticed its sim-
ilarity to the computational geometry with kinesthetic heuristics discussed in this paper. In fact
Turtle Geometry is one type of computational geometry and the moving turtle is quite an elegant
and simple fundamental kinesthetic operator. Some of the algorithms in computational geometry
such as those using the rotating calipers can be easily placed in the turtle framework [25]. The
main difference is that the computational geometry presented here is more advanced than turtle
geometry. While at present this material forms the content of graduate courses at many of the
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world’s leading universities, this is not because the material is that difficult, but rather because it
lies at the frontiers of knowledge. Much of the material in [1] - [3] is already creeping down to the
undergraduate curriculum and is eminently suited to high school students with personal computers
at their disposal. Therefore this material would appear to be a natural continuation of the turtle
geometry program envisioned by Papert [25] for children, into the high school context. Recently
dynamic geometry [51], a new emergent conception of computer assisted geometry, has joined turtle
geometry and in part has moved off it. Dynamic geometry is based on interactive software pro-
grams such as Geometer’s Sketchpad, Cabri-Géometre and Cinderella. Although these programs
emphasize the construction and exploration of planar configurations and the detection of invariants
by means of observation, it is possible, with them, to implement most of the kinesthetic algorithms
described here, thus allowing us to use the computer as a tool for a type of simulation intermediate
between purely mental simulation or immagination and physically attainable simulation.

It has been argued that there are “good” and “bad” kinesthetic heuristics in the sense that some
yield correct algorithms whereas others yield incorrect ones. It would appear then that a good
pedagogical strategy for the successful algorithm designer in computational geometry (particularly
that aspect of it dealing with dynamic problems such as collision avoidance and spatial planning
in robotics) is to train the kinesthetic sense as well as the logical thinking skills. In fact Svanaes
[48] argues that kinesthetic thinking is more important than logico-mathematical thinking for the
successful design of software such as graphical user interfaces. Turtle geometry is a step in the right
direction but restricted to the visual domain since students are “stuck” to the computer screen.
More teaching tools are needed that provide for students to develop kinesthetic thinking through
interaction with the “real” three dimensional world of motion. Perhaps dance is but one of these
techniques. It has been found that dance training helps students to improve their drawing skills
[14]. Perhaps it will also help students to design better geometric algorithms. Finally, it should
be pointed out that computational geometric algorithms are usually taught as finished, logical,
correct products even when they are discovered with kinesthetic heuristics that first yield incorrect
algorithms that are later fixed. Students need to be taught to bridge this gap themselves. In the
words of Ernst Mach:

“An idea is best made the possession of the learner by the method by which it has been
found.”
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