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Convexifying Polygons in 3D: a Survey

Michael Soss and Godfried T. Toussaint

ABSTRACT. To convezify a polygon is to reconfigure it with respect to a given
set of operations until the polygon becomes convex. The problem of convexi-
fying polygons has had a long history in a variety of fields, including mathe-
matics, kinematics and physical chemistry. We survey its history throughout
these disciplines.

1. Introduction

Suppose we constructed a physical model of a graph using stiff rods for edges
and connecting them at the vertices with freely moving joints. The graph could
then be reconfigured, or moved, in any continuous manner from one configuration,
or embedding, to a second configuration so long as no physical constraint of the
structure were violated. In this case we could insist that no joint was broken, that
the lengths of the bars remained fixed, and that no two bars intersected throughout
the motion. We refer to such a flexible structure as a linkage. Alluding to this
physical example, we will often refer to the edges of the graph as links and the
vertices as joints. A possible reconfiguration of a linkage is illustrated in figure 1.

The geometry community has long considered the problem of determining if it
is possible to continuously reconfigure a linkage from one configuration to another
while maintaining the edge lengths and avoiding self-intersections during the mo-
tion. We can simplify this problem by instead asking if a linkage can be brought
to some canonical form. Suppose a linkage can be brought from a configuration A
to some canonical form C, and also can be brought from a configuration B to C.

FIGURE 1. Reconfiguring a linkage by a rotation at the grey joint.
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FIGURE 2. A chain linkage, a cyclic linkage, and a tree linkage.

Because all the motions are reversible, it follows that the linkage can be continu-
ously reconfigured from A to B. Thus the problem of unfolding linkages is born. In
particular, this question is most often asked for the classes of linkages in figure 2:

e Given a chain linkage, can it be straightened?

e Given a cyclic (polygon) linkage, can it be convexified (brought to a convex
position)?

e Given a tree linkage, can it be flattened?

The answers, of course, depend on the motions allowed and the space in which
the linkage lies. We will briefly examine the history surrounding these problems
in the next four sections. We first survey the problem of unfolding linkages in
the plane, focusing on work primarily by mathematicians. In section 4, we discuss
results concerning linkages in three dimensions. In the last two sections, we detail
related work by kinematic engineers and by physicists. Remarkably, physicists and
mathematicians have independently duplicated a great deal of research in this area.

2. Mathematicians unfolding linkages in the plane

Augustin Cauchy appears to have been the first mathematician to consider the
problem of straightening a chain linkage in the plane. As a lemma for his celebrated
theorem regarding the rigidity of polyhedra, he attempted to prove the following
in 1813.

LEMMA 1. (due to Cauchy [16]) If some joints of a convex chain are opened,
the distance between the endpoints increases and the chain remains convex.

We consider a joint to be opening if its angle approaches 7, in other words, if
the two edges incident to it approach a straight angle. Such a motion is illustrated
in figure 3, where the gray vertices have been opened.

Cauchy’s original proof was incorrect, although its flaw was unnoticed until 1934
when Steinitz and Rademacher [70] published a correction. Lyusternik [43] inde-
pendently published a similar proof in 1966, and in the following year, Zaremba. [65]
presented a proof which was so short and elegant that Aigner and Ziegler [3] de-
cided to include it in their collection, Proofs from THE BOOK. In fact, these last
two proofs also hold for linkages on the sphere. As a lemma in a paper on in-
tersections of planes with polytopes, O’Rourke [54] has since further generalized
Cauchy’s lemma to include specific non-convex configurations. The survey paper
by Toussaint [76] details Cauchy’s proof and a short history of the problem.

In the computer science community, reconfiguration of chain linkages first
appeared in the context of modeling the possible motions of robot arms. John
Hopcroft, Deborah Joseph, and Sue Whitesides [34] considered the case where the
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FIGURE 3. Opening a convex chain linkage.

FI1GURE 4. Ruler Folding.

linkage is permitted to self-intersect, since the limbs of a robot arm can pass under
one another. They designed algorithms for deciding whether two configurations are
mutually accessible when the chain is contained inside some convex polygon, and
further proved that determining whether a chain could be flattened onto a line seg-
ment of specified length, a problem known as Ruler Folding (illustrated in figure 4),
is NP-complete.

The question of whether a planar chain linkage can be straightened or a planar
cyclic linkage can be convexified, without self-intersections, has arisen several times
since. Robert Connelly, Erik Demaine, and Giinter Rote [19] researched the origins
of the problem and found that it was independently posed by Stephen Schanuel
in the early 1970’s, by Ulf Grenander [29] in 1987, by William Lenhart and Sue
Whitesides [41, 42, 85] in 1991, and by Joseph Mitchell in 1992. Grenander, Chow,
and Keenan [30] also considered a cyclic linkage whose angles are fixed but whose
lengths are variable, and proved that any embedding could be reconfigured into any
other.

Biedl et al. [10] demonstrated that not all tree linkages can be unfolded by
exhibiting the tree in figure 5. This tree is said to be locked in position since it
is impossible to unfold. Nevertheless, the question for chain linkages and cyclic
linkages received a flurry of interest in the computational geometry community and
remained open for several years. Its difficulty led researchers to consider special
cases. In 1998, Everett, Lazard, Robbins, Schrdoder, and Whitesides [25] showed
that all star-shaped polygons can be convexified, and in the following year Bied]l,
Demaine, Lazard, Robbins, and Soss [11] provided an algorithm to convexify mono-
tone polygons.

Attempts were made to construct chains that were believed to be locked [51],
but unfolding motions were found for each example. The difficulty of these folding
problems was further illustrated by Arkin, Fekete, Mitchell, and Skiena [5], who
demonstrated the intractability of folding problems which stem from wire bending
and sheet metal folding, and again recently by Arkin, Bender, Demaine, Demaine,
Mitchell, Sethia, and Skiena [4].

Using tools in rigidity theory, Connelly, Demaine, and Rote [19] were finally
able to prove in January, 2000, that chains and cycles can be unfolded. However,
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F1GURE 5. The locked tree linkage of Biedl et al.

describing their motions involves integrating vector fields and thus is quite com-
plicated. Several months later, Streinu [73] discovered a simpler method which
computes O(n?) motions to convexify a polygon, although the complexity of com-
puting each motion is still unclear.

A general algorithm for motion planning, which can determine if an object can
be brought from a starting configuration to a target configuration, was developed in
1983 by Schwartz and Sharir [66], but the complexity is doubly exponential in the
degrees of freedom. In the case of linkages, this is at least as large as the number
of joints. This result complemented the proof by Reif [55] in 1979 that deciding
if an arbitrary hinged object (which could include polyhedral segments) could be
moved from a starting configuration to a target is PSPACE-complete. Clearly more
specialized algorithms are necessary in the case of simple linkages.

3. Mathematicians convexifying polygons with flips and flipturns

In 1935, Paul Erdés [24] posed the following problem, illustrated in figure 6.
Given a nonconvex simple polygon, consider its convex hull. Subtracting the poly-
gon from its convex hull yields several polygons called pockets (shaded). Reflect
each of these pockets across its lid, that is, the edge it shares with the convex hull.
We call this operation a flip. Prove that after a finite number of flips the polygon
will be convex.

The first of many proofs of Erd6s’ conjecture was published four years later by
Béla Nagy [52]. Nagy showed that flipping all pockets simultaneously might lead
to a nonsimple polygon, as in figure 7, and modified the problem so that only one
pocket is flipped at a time.

This problem has since been independently discovered and solved by several
mathematicians: in 1957 by Reshetnyak [58] and by Yusupov [86]; in 1959 by
Kazarinoff and Bing [12, 36, 37]; in 1973 by Joss and Shannon [31]; in 1981 by
Kaluza [35]; in 1993 by Wegner [82]; and in 1999 by Biedl et al. [9]. Griinbaum
and Zaks [32, 33] in 1998 and Toussaint [77] in 1999 extended these results to
hold for crossing polygons (where a flip is allowed if it does not introduce new
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Ficure 6. Flipping all pockets of a polygon.

i

FI1GURE 7. Béla Nagy’s polygon where flipping all pockets leads to nonsimplicity.

e T

FIGURE 8. Joss and Shannon’s quadrilateral which can require
arbitrarily many flips.

self-intersections). The papers by Griinbaum [31] and by Toussaint [77] provide a
more detailed account of the history of the problem and its solutions.

Joss and Shannon [31] demonstrated that although finitely many flips suffice
for convexification, the number required cannot be bounded by a function of the
number of edges in the polygon. They presented the quadrilateral in figure 8. Note
that there is only one flip possible at any one time since there is at most one reflex
vertex. For any integer k, one can make the smallest edge tiny enough as to require
at least k flips to convexify the polygon. Wegner [82] and Biedl et al. [9] also
discovered the same quadrilateral.

Wegner [82] also posed the inverse problem. Select a line that passes through
the polygon in exactly two vertices, and reflect one of the two subchains across
this line. If the resulting polygon does not self-intersect, the operation is called a
deflation. This is the inverse of the flip operation, since the reflected subchain is
now a pocket of the convex hull of the resulting polygon and the original line is
its lid. Alluding to the concept that convex polygons do not admit flips, Wegner
defined a deflated polygon as a polygon that does not admit any deflations. He
conjectured that all polygons would be deflated after finitely many deflations. Fig-
ure 9 illustrates the deflation operation, and figure 10 illustrates a polygon which is
deflated. A counterexample to Wegner’s conjecture was demonstrated by Fevens,
Hernéndez, Mesa, Morin, Soss, and Toussaint [27].
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FIGURE 9. A deflation.

FIGURE 10. A deflated polygon.

Joss and Shannon [31] also considered a variant of the flip operation. Instead of
reflecting a pocket, one can also rotate the pocket by 180 degrees about the center
of its lid, as illustrated in figure 11. We call this operation a flipturn. Note that
after a flipturn, each edge is rotated by 180 degrees. Unlike in a flip, each edge
retains its original slope. If we consider each edge as a vector, a flipturn has the
effect of permuting the order of the edges. Since each flipturn increases the area of
the polygon, we will never visit the same permutation twice. Therefore the poly-
gon will be convex after at most (n — 1)! flipturns, where n is the number of edges
of the polygon. Joss and Shannon conjectured that n?/4 flipturns would suffice.
Biedl [8] showed in 2000 that for some polygons, one can find a sequence of Q(n?)
flipturns which convexify it (although shorter sequences exist for her examples).
The same year, Ahn et al. [1] proved that a polygon is convex after any sequence
of n(n — s)/(2 — s) flipturns, where s is the number of distinct slopes of the edges.
For arbitrary polygons, this value is (n? — 3n)/2. They consider only nondegen-
erate polygons; that is, polygons with no pockets determined by collinear edges.
Aichholzer et al. [2] removed this condition and proved that there always exists a
convexifying sequence of at most 5(n — 4)/6 flipturns for orthogonal polygons.

4. Mathematicians unfolding linkages in three dimensions

The geometry of three-space is quite different from that of two-space, and
indeed not all three-dimensional chains can be straightened. Cantarella and John-
ston [14] and Bied! et al. [9] independently proved that the chain of figure 12 is
locked. This chain is often referred to as knitting needles due to its resemblance to
the tools of the same name. If the first and last links are long enough, the endpoints
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FiGure 11. A flipturn.
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FIGURE 12. The locked knitting needles chain.
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F1GURE 13. The locked polygon of Biedl et al.

cannot be brought near the other four joints. One can then prove that the linkage
behaves much like a trefoil knot.

In the case of three-dimensional polygons, the goal is to place the polygon into
a planar convex configuration. Clearly a knotted polygon cannot be convexified,
but Biedl et al. [9] demonstrated a class of locked unknots by joining two knit-
ting needles to form the polygon of figure 13. Cantarella and Johnston [14] also
proved that there exist locked unknots and presented the class of locked unknotted
hexagons illustrated in figure 14. They conjectured that the configuration space of
unknotted hexagons had three classes: the unknot and the left-handed and right-
handed versions of their locked polygon. Toussaint [78] discovered the hexagon
illustrated in figure 15, bringing the conjectured number of classes to five.

Biedl et al. [9] have shown that planar polygons can be convexified by motions
in three-space. They rediscovered the flip operation with the idea of rotating a
pocket in three-space about its lid, illustrated in figure 16. Realizing that a polygon
may require an unbounded number of flips with respect to its number of edges, they
described a linear-time algorithm to convexify a planar polygon using more complex
motions. Several months later, Aronov, Goodman, and Pollack [6] simplified their
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FIGURE 14. The locked hexagon of Cantarella and Johnston.
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FI1GURE 15. The locked hexagon of Toussaint.

FIGURE 16. Performing a flip in three-space.

algorithm and demonstrated that the result could be generalized to include crossing
polygons. (They considered a reconfiguration of a crossing polygon to be valid if it
introduces no new crossings during the motion.)

We can generalize the flip operation by choosing two points of a polygon and
rotating one of the subchains about the line through these two points. This op-
eration was first used in 1945 by Choquet [17] in an application known as curve
stretching. A curve ¢’ is a stretched version of c if for every two points on ¢, the
arc length between them is maintained and the Euclidean distance between them
is either maintained or increased. One can imagine ¢ as a rope, and ¢’ as a position
of the same rope, but “spread apart.” A polygon which is convexified by flips is
therefore a stretched version of the original polygon, since each flip either maintains
or increases the pairwise distances between points in the polygon

Sallee [64] proved that for a three-dimensional curve, there exists a stretched
version which is planar and convex. Robertson and Wegner have also studied
this operation (which they refer to as inflation) in the plane [61, 62, 82], and
Wegner has explored stretching curves on the sphere [83, 84]. Millett [50] has also
used similar motions in three dimensions to convexify knots. Several such studies
(including those of Sallee and Millett) allowed the polygon to self-intersect during
the motion.

In 2000, Calvo, Krizanc, Morin, Soss, and Toussaint [13] demonstrated a class
of polygons which can be convexified in three-dimensions without crossings: poly-
gons which admit a simple orthogonal projection. The algorithm works by first
convexifying the planar projection by keeping the height of each coordinate fixed,
and then with a linear-time algorithm to convexify a polygon with a convex orthog-
onal projection.
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FIGURE 17. A four-bar mechanism with the edge ab fixed.

The following year, Demaine, Langerman, and O’Rourke [22] studied multiple
linkages which could interlock with one another. They describe configurations of
pairs of short three-dimensional chains such that the two chains cannot be sepa-
rated. In the same year, Soss [67] independently discovered short chains which are
interlocked under the restriction that the angles between edges are fixed.

In 1999, Cocan and O’Rourke [18] proved that all chains, polygons, and trees
can be unfolded in dimensions four and higher.

5. Kinematic engineers unfolding linkages

The study of kinematic linkages appears to have been first mathematically
codified in 1874 by the engineer Franz Reuleaux in his work Theoretische Kine-
matik [59]. Kinematics is the study of motion, and in the context of linkages, is
the study of how certain joints move in concert with the motion of other joints.

Reuleaux defined a mechanism as “[a] closed kinematic chain, of which one
link is thus made stationary [59, p. 47].” A major component of his work is in
describing the mathematical relationships between the curves drawn by each joint
as one moves the linkage in a specified fashion. Even the simple four-bar linkage [60]
shown in figure 17 was the subject of intense study in the nineteenth century. (This
linkage was often called a three-bar linkage since there was no consensus at that
time on whether to count the stationary edge as part of the structure.) Here one
can easily compute the path traveled by the points p and q as the angle 4 is altered.
Toussaint [79] provides a short history of four-bar linkages and presents several new
proofs on some of their properties.

Perhaps the most famous early linkage is Peaucellier’s Inversor of figure 18,
developed in 1864 by the French engineer of the same name. If the points a and
b are fixed in space such that the distance between a and b is the same as that
between b and p, then as p moves along the circle, ¢ moves along the line. Thus
the linkage inverts radial motion to linear motion and vice versa.

The paper by Farouki [26] and the book by McCarthy [48] provide an in-
depth historical background and expand on the connections between geometry and
kinematics.

6. Polymer physicists unfolding linkages

Flexible polymer molecules are long chains and cycles of atoms, often called
monomers. These chains are held together by chemical bonds, about which a certain
amount of rotation is generally possible. Physicists have long attempted to simulate
a sampling of random polymer configurations by treating the polymer as a linkage.
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FIGURE 18. Peaucellier’s Inversor.

FI1GURE 19. Range of orientations allowed with a fixed joint-angle.

In 1934, Werner von Kuhn [38] proposed a model in which a long chain of unit
length edges is allowed to assume any configuration, possibly self-intersecting. To
obtain a random configuration, he chose each link to assume any orientation with
uniform probability. Unfortunately, Kuhn’s model did not perform very well in
predicting polymer properties. Benoit [7] and Taylor [75] independently corrected
his model so that successive elements of the polymer chain were not randomly
oriented. They recognized that not only should the lengths of the links relate to
the lengths of the monomers, but the angles at the joints of the linkage should relate
to the bond angles between monomers. Rather than allowing a link to assume any
orientation, it was bound to those that preserve the bond angle with the previous
link. This resulted in a range illustrated in figure 19.

In 1943, Kuhn and Kuhn [39] recognized that the normal random-walk model
was severely deficient, since it implied that the atoms could overlap. They realized
that self-intersections, or even positions in which atoms are very close together,
should not be allowed. Eighteen years later, Sykes [74] proposed modeling poly-
mers as self-avoiding walks on a cubic lattice and began his work by counting the
number of configurations for small numbers of links. His attempts to compute
this number for large walks did not meet much success [23], and even today this
well-known problem remains unsolved and a focus of mathematical research [46].
Since the number of configurations grows exponentially with the length of the link-
age, it became evident that Monte Carlo methods would prove useful in sampling
configurations.

Early methods of randomly generating self-avoiding walks took quite long to
finish [63, 81]. The difficulty was due to the approach; a walk was generated



CONVEXIFYING POLYGONS IN 3D: A SURVEY 11

141 = 1.1

R

FiGURE 20. The motions allowed in Verdier’s model.
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FI1GURE 21. A locked chain and a locked polygon in Verdier’s pla-
nar model.

by choosing a random direction at each step. If a self-intersection arose, the entire
configuration was discarded and the process begun anew. Note that it is not correct
to simply remove the self-intersecting step and choose a new direction, as this would
erroneously increase the likelihood of the portion of the configuration attained up
to that point.

In 1969, Peter Verdier [80] proposed a faster method of computing random
walks. Rather than randomly walking on the lattice and hoping for a sequence
of non-intersecting steps, he began with a valid walk and performed a series of
random reconfigurations. Any single joint could be moved to a vacant lattice point
so long as the edges remained unit length and the chain did not self-intersect. These
conditions imply that the only motions possible are those illustrated in figure 20.

An interesting problem arose concerning this new method of generating walks.
It is not obvious that there exists a sequence of reconfigurations by which any
configuration can be brought to any other, and thus it is not obvious whether all
valid configurations have a nonzero probability of being generated. In the physics
community, if all configurations are attainable, the model is said to be ergodic. Not
surprisingly, Verdier’s model lacks ergodicity. In the plane, the chain in figure 21
is locked; in three-dimensions, the chains in figure 22 are locked. Therefore neither
could be generated by Verdier’s simulations unless it was selected as the starting
configuration.

The same year as Verdier, Moti Lal [40] proposed a different operation for
randomly reconfiguring a walk which yields an ergodic model. His method was
to select an edge at random, defining two subchains, then to reflect one of these
subchains across the line through the edge, shown in figure 23. This operation has
been since called a pivot throughout the literature. If the resulting chain intersected
itself, the pivot was rejected and a new edge was randomly chosen. Otherwise, the
procedure was repeated from the new configuration. Lal defined his model on the
hexagonal lattice, although the pivot operation works just as well in a variety of



12 MICHAEL SOSS AND GODFRIED T. TOUSSAINT

FIGURE 22. Two locked chains in Verdier’s three-dimensional model.

FiGURE 23. A pivot of Lal’s model.

spaces. In order to prove that the model is ergodic, he demonstrated that any
planar chain could be “straightened” (alternating right and left turns of 120°) by
a series of pivots.

This algorithm was independently reinvented in 1976 by Olaj and Pelinka [53]
and again nine years later by MacDonald et al. [44]. Its efficiency has led it to
be a major focus of study during the past fifteen years [15, 44, 45, 46, 47, 56,
57], although expanded by an operation. In addition to Lal’s original pivot, it is
customary to select two points on the chain and cut out the portion between them.
The portion is then replaced, either reflected about a line through its cut points
or rotated by 180 degrees, as in figure 24. As long as the resulting chain does not
self-intersect and lies on the lattice, the pivot is accepted. This new operation easily
generalizes to polygons and is remarkably similar to flips and flipturns.

In order to demonstrate ergodicity, Madras and Sokal [47] proved that in any
dimension all lattice chains can be straightened by pivots. Madras, Orlitsky, and
Shepp [45] extended this result to prove that any d-dimensional lattice polygon can
be convexified with O(n8(4=2)) pivots for d > 3.

Many in the physics community were concerned that the restriction of the model
to the lattice was too far removed from reality. So called off-lattice or continuum
models were constructed. John Curro [20, 21] extended Lal’s idea of a pivot to
continuous space by selecting an edge of the chain and rotating one portion of the
chain about a line through the edge. As in Lal’s model, the joint-angle at the edge
stays fixed, and if the result of the motion is not self-intersecting, it is accepted.
This motion is often referred to as a dihedral rotation, illustrated in figure 25. This
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FIGURE 25. A dihedral rotation at the edge wv of angle ¢.

model has been used with success by several researchers [20, 21, 28, 49, 71, 72]
since its introduction, in polymer physics and also in chemistry, where preserving
the bond angles of molecules (or the joint-angles of linkages) is vital.

In 2000, Soss and Toussaint [69] presented efficient algorithms for determin-
ing whether dihedral rotations about edges of three-dimensional chains result in
self-intersecting (and thus illegal) conformations, and presented an Q(n logn) lower
bound on the computation time required to solve the problem. The following year,
Soss, Erickson, and Overmars [68] proved that even with the aid of an arbitrary
amount of preprocessing time of the chain’s structure, this lower bound of time per
rotation could only be improved slightly if at all. Further underlining the computa-
tional difficulties of these problems, in 2001 Soss [67] demonstrated the intractabil-
ity of deciding whether it is possible to move a chain between two configurations
by dihedral rotations without causing the chain to self-intersect.
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