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where i = 0, 1, 2,..., n,

Wi = , Hi = ,

and Wo = Ho = 0.

5.     if Wn = Hn = 0 the chain is closed.

6.     If there exists a pair of values of i, say (r, s) such that Wr = Ws and Hr = Hs, the chain has a
self-intersection at the point whose x and y coordinates, relative to the starting point of the chain
are Wr and Hr, respectively.

7.     Given a line contour which is single-valued in x, the area between the contour and the x axis is

Area =  (Hi-1 + (1/2) ayi).

7. Chain Correlation Functions
Sometimes shaped have to be clustered into groups and at other times a given shape has to

be classified into one of several classes of shapes. In these situations we need to extract some in-
formation from the chain that characterizes the shape. Correlation functions are useful tools for ex-
tracting this information. Suppose we want to measure the similarity between a given chain
a = ai and a prototype chain b = bi, and suppose a and b have the same length and ori-
entation. The chain cross-correlation between a and b is defined as

∅ab = 1/n

where cos [ai bi] is defined as the cosine of the angle between elements ai and bi. Note that for iden-
tical chains ∅ab = 1. More generally the two chains will be of different length. In this case we can
slide one chain along the other in order to obtain several values of ∅ab which define a correlation
function. Suppose we have two chains of different lengths, a = ai and b = bi, n < m. Ac-
cordingly, we define the chain cross-correlation function as

∅ab(j) = 1/k

where k is the length of the intersection of the two sequences. Alternately we can define

∅ab(j) = 1/n

where i+j is modulo m. If one value is desired, as for purposes of classification, the maximum value
of ∅ab(j) can be chosen. If n = m we have ∅ab(j) = ∅ba(-j). Furthermore, if a=b (i.e., we only have
one chain) ∅aa(j) becomes the chain auto-correlation function which characterizes the chain, and
hence the original line drawing, and can be used for the purposes of clustering. As a final comment
it should be noted that these correlation functions cannot be expected to be adequate unless the
original curves are of the same scale and orientation.
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Every simple, open line drawing has 2 chain representations. A closed line drawing has 2n chain
representations.

6. Some Properties of Chains

1.     Chains are invariant to translation.

2.     Rotation by 45ko is accomplished by addition, mod-8, of k to each element. Rotation is dis-
tortion-free if k is even. If k is odd then elements of length T become T and vice-versa.

3.     The length L of a chain equals TNe + TNo where Ne and No are the number of even and odd
elements, respectively. For large n we have

L ≅ nT (1 + 0.414ρ),

where ρ is the probability of obtaining diagonal elements and, as we saw earlier, is a function of
the quantization scheme employed.

Let axi and ayi be the normalized x and y coordinated of ai. In other words

ai axi  ayi

0                                1                                 0

1                                1                                 1

2                                0                                 1

3                               -1                                1

4                               -1                                0

5                               -1                               -1

6                                0                                -1

7                                1                                -1

4.     The width W and height H of a chain a1a2...an are given by

W = (Wi)max - (Wi)min

H = (Hi)max - (Hi)min

2

2
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CODE SYMBOL                                                          MESSAGE

           0 ai+1 = ai

           1 ai+1 = ai +
8 1

           2 ai+1 = ai -
8 1

           3                                                                                amplifier

whenai+1 = ai we have no change on slope. Whenai+1 = ai +
8 1 the slope increases by 45o, and so

on. The amplifier (code symbol “3”) augments the next code symbol’s effective magnitude by one.
In other words,

31 implies ai+1 = ai +
8 2           (+ 90o)

32 implies  ai+1 = ai -
8 2           (- 90o)

331 implies ai+1 = ai +
8 3          (+ 135o)

etc.

Clearly our code symbols take on only four values now and as long as changes are±45o we need
only two bits per element with three bits for the first element. Once in a while, when a change great-
er than |45o| occurs we need the amplifier and the average number of bits required will increase by
a small fraction. In conclusion, chain difference encoding requires (2 +ε) bits of storage per ele-
ment. As an example consider the grid-intersect chain code in Fig. 7 - 110 (9 bits). With chain dif-
ference encoding we would obtain 102 or 7 bits.

5. Ambiguity Aspects of Chain Representation
Chains have both aspatial and atemporal sense. Temporal information is useful fordynamic

pattern recognition. Examples of dynamic of dynamic patterns are: weather, ocean currents, and
migration patterns of birds. Sometimes even character recognition can be partly dynamic as in the
problem of on-line character recognition. Forstatic patterns the chain code introduces ambiguities.
Consider a letter “L” to have a chain code

L1 = 66666000.

Another representation of L is

L2 = 44422222.

L1 is said to be the inverse ofL2 and we writeL2 = L1
-1. In terms of elements,ai

-1 = ai +
8 4. The-

refore we have

[ ai]
-1 = ai

-1.Ci 1=
n

Ci n=
1
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A careful consideration of the problem suggests that this is the largest that the probability of
obtaining diagonal elements can be with any quantization scheme of this form, and suggests that it
is fruitless to search for a method that will yield a probability equal to 0.5. In fact, if one considers
that a random line drawing should be approximated by diagonal and non-diagonal elements equally
in terms of length, then, since a diagonal element is times the length of a non-diagonal element,
one can argue that diagonal elements should occur with probabilityT/(T + T) rather than 0.5.
Now, T/(T + T)) =  -1, which is precisely the probability obtained by grid-intersect quanti-
zation. In this sense grid-intersect quantization can be said to optimally allocate diagonal and non-
diagonal elements to a chain code approximation of a line drawing.

4. Chain Difference Encoding
We have seen that a chain of a line drawing is a concatenation of integers representing the

directions of the elements. More formally, given a curveA, the approximating curveA’ is called
thechain of A and we write

A’ = a1a2...an = ai

whereai is theith element of the chain. Sinceai can take on eight different values as shown in Fig.
6 each element requires three bits of storage. This is how efficiency of storage is realized. A ques-
tion which comes to mind at this point is: can we store a chain code using less than three bits per
element? The answer is yes, but before going into the method (chain difference encoding) let us
backtrack to Fig. 4.

Most of the relevant information in patterns or images is believed to be contained in the con-
tours of those patterns. Furthermore, those parts of the contour that have high curvature are in turn
considered most important. This point is illustrated by Fig. 4a. Attneave [14] - [15] asked subjects
to mark the points considered important on a picture of a cat and joined a set of these points with
straight lines. The resulting figure is readily identified as a sleeping cat. This suggest that the
straight lines in the line drawing of Fig. 4a are not too important in the sense that they are redundant
where they do not change direction. In fact if we delete parts of the line drawing as we did in Fig.
4b we can still readily identify a sleeping cat. Spitz and Borland [16] concluded from experiments
of this type that line drawings of familiar objects are about 50% redundant as measured by the re-
cognition levels maintained after varying percentages of the lines have been deleted. Chain differ-
ence encoding exploits this redundancy.

Redundancy in line drawings manifests itself in the chain through the fact that, given an ele-
mentai, the next element in the chain does not in general assume its 8 possible values with equal
probability. Most probably the next element has the same angle or it changes±45o. This means that
we do not have to code the direction of each element. All we have to do is code the direction of the
first element and subsequently only code the changes in direction. We can accomplish this by the
following list of code symbols along with their intended meaning or message. The
symbols+ and - superscripted with an 8 denote addition and subtraction, respectively, modulo 8.

2
2

2 2

Ci 1=
n

-
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(1-y)/(1-x) = tanθ.                                                                           (7)

Solving simultaneously forx andy in (4) and (7) yields

xp = 1 -  = 1 - cosθ,                                                  (8)

yp = 1 -  = 1 - sinθ.                                                   (9)

Substituting (8) and (9) forx andy in (3) and solving fory’ yields

y’ = 1 -  + 1/(tanθ) - 1/(tanθ)  = 1 - (1 - cosθ)/(sin θ)

and hence

                     ρ(θ) = [1 - (1 - cosθ)/(sin θ)] cos (π/2 − θ).                                  (10)

Furthermore,

q(θ) = cos (π/2 − θ).                                                                      (11)

It follows that the probability of obtaining a diagonal element is given by

Pr(d) = .              (12)

Substituting (1), (10), and (11) into (12) and integrating yields

Pr(d) = 4/π - 1 ≅ 0.275.

A similar procedure can be followed with Minkowski quantization but the resulting expres-
sion is unwieldy and not very useful as it contains integrals which cannot be solved until the metric
is specified.

A similar procedure applied to grid-intersect quantization yields a probability equal to

Pr(d) =  - 1 ≅ 0.414.

1

1 θtan( )2
+

----------------------------

θtan( )2

1 θtan( )2
+

----------------------------

θtan( )2

1 θtan( )2
+

----------------------------
1

1 θtan( )2
+

----------------------------

ρ θ( )dθ
0

π
4
---

∫ 
 
 

r θ( )dθ
0

π
4
---

∫ q θ( )dθ
0

π
4
---

∫ ρ θ( )dθ
0

π
4
---

∫–+
 
 
 

⁄

2



- 55 -

variables distributed uniformly over their relevant domains. Freeman’s [5] analysis and results are
as a matter of fact incorrect because in his analysisρ was held fixed at a value of zero rather than
allowed to vary uniformly over its relevant domain. We now illustrate the correct analysis for the
case of circular quantization.

Consider the square region determined by four mesh nodes as in Fig. 5 whereT=2 in order
to simplify analysis. Since the problem is symmetrical about vertical, horizontal and the diagonal
axes determined byx+y andx-y, we need only consider the range 0≤ θ ≤ π/4. For any given value
of  all possible relevant lines are specified by . This is true because segments are
either diagonal or non-diagonal and hence they must involve at least two mesh nodes. Ifρ were
greater thanr0 only one mesh node would be a curve point. Furthermore, all random lines yielding
diagonal elements are specified by . In addition, random lines yielding two non-diagonal
elements are specified by , and random lines yielding a single non-diagonal element by

. Therefore, for a given value ofθ = θ0 the probability of obtaining a diagonal element
is Pr(d/θ) = ρ0/(ρ0 + 2(q0 - ρ0) + (r0 - q0)), the first interval yields one diagonal element, the second
interval yields two non-diagonal elements (a vertical and a horizontal element) and the third inter-
val yields a vertical element. Simplifying this expression yieldsPr(d/θ) = ρ0/(r0 + q0 − ρ0). Since
r, q, andρ are functions ofθ we must findr(θ), q(θ), ρ(θ) and integrate overθ to obtain a total
measure forρ0, r0 and q0.

Since the radius of the circle is unity, we have

r(θ) = cosθ.                                                                                       (1)

Similarly,

ρ(θ) = y’ cos (π/2 - θ),                                                                    (2)

where y’ is to be determined. The equation of the lineAB is

y = - 1/(tanθ) x + y’.                                                                       (3)

Since the point (xp, yp) is on this line, we can solve fory’ if we havexp andyp. Now, the point   (xp,
yp) lies on the circle

(1-x)2 + (1-y)2 = 1.                                                                          (4)

The slope at (xp, yp) is given by

dy/dx = - 1/(tanθ).                                                                            (5)

But from (4) we also have

dy/dx = - (x-1)/(y-1).                                                                       (6)

Combining (5) and (6) we have

θ θ0= 0 ρ r0≤ ≤

0 ρ ρ0≤ ≤
ρ0 ρ q0≤ ≤

q0 ρ r0≤ ≤
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Fig. 5 Computing the probability of diagonal elements for grid-intersect quantization.
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a length greater than the side of an inscribed equilateral triangle.

First solution

Choose one end of the chord to lie on any arbitrary point on the circumference of the circle.
By symmetry and with no loss of generality we can construct a triangle such that the above end of
the chord coincides with a vertex of the triangle, such as the upper vertex shown in Fig. 4. To con-
struct a chord we can “project a beam of light” from the vertex to the circle at any angleθ such that
0 ≤ θ ≤ 180. Clearly only the chords obtained for 60 ≤ θ ≤ 120 will be greater than the side of the
triangle. Hence, the resulting probability is precisely 1/3.

Second solution

Again, by symmetry and with no loss of generality we can assume the chord has a horizon-
tal orientation. Clearly, in order for it to be longer than the side of the triangle, it must cross the
vertical diameter somewhere betweenx andy. Hence, the resulting probability must be 1/2.

Third solution

We can construct a chord by choosing a point at random inside the circle and then drawing
a chord through this point and perpendicular to the line joining this point to the center of the circle.
A chord is thus associated with every point in the circle. If we choose those points falling inside
the circle of radius 1/2 then the resulting chords will be longer than the side of the triangle. This
probability is the ratio of the areas of the two circles and is therefore equal to 1/4.

Fourth solution

Let us return to solution number 1 where one end of the chord lies at the vertex of the tri-
angle. We can complete the chord by choosing a point at random in the circle and drawing the
chord from the vertex through this point. Clearly, if a point is chosen in either segmentA or B the
resulting chord will be shorter than the side of the triangle. Hence, the resulting probability must
be equal to the area of the circle, less the area ofA + B, all divided by the area of the circle. This

probability equals .

We have exhibited solutions ranging from 0.25 to 0.61. What is the “true” probability? The
source of the paradox lies in the ambiguous term “random line.” In order to define a random line
precisely we must define the line in terms of some parameters and then we must specify probability
distributions on those parameters. Different parameterizations yield different results. You may ask
yourself which of all these is the “correct” parameterization? In order to extricate ourselves from
this dilemma we appeal to the principle of invariance. For a full treatment of this principle the read-
er is referred to books on measure theory and geometrical probability theory. The basic idea is the
following. Suppose we throw a random line on this page and that this page contains a figure on it
somewhere, say a square. We ask what is the probability that the random line intersects the square.
It is intuitively satisfying that we demand that for true random lines this probability should be the
same even if we change the location or orientation of the square. In other words, we demand that
our probability be invariant under rotations and translations of figures. It turns our that only one
definition of a random line satisfies these invariance properties. This definition involves the “nor-
mal” parameterization of a line with parametersρ andθ whereθ is the angle of a normal from the
origin to the line andρ is the length of the normal. Furthermore,ρ andθ are independent random

1 3⁄ 3 π 2⁄( )+ 0.61=
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Sometimes in practice and particularly in the theoretical analysis,T is chosen small enough such
that the line drawing is essentially a straight line within the square determined by consecutive ver-
tical and horizontal mesh likes. When this is true a little thought will reveal that forp=l we have in
fact grid-intersect quantization.

In Fig. 3 the value ofp determines a neighborhood aboutθ whose boundary lies in the
shaded region. A more general family of quantization schemes can be defined by specifying a
neighborhood aboutθ with an arbitrary boundary in the shaded region as long as it is convex. This
latter scheme will be referred to asconvex quantization. In the next section we turn our attention
to determining the probability of obtaining diagonal elements in chain coding for the general quan-
tization schemes discussed above.

3. Probability of Obtaining Diagonal Elements

In order to optimize the efficiency of Freeman encoding it is of interest to determine, for a
given quantization scheme, what the probability of obtaining diagonal elements is for arbitrary or
“random” configurations in the long run, after it has executed on a large number of line drawings.
In order to analyze the problem theoretically we need a model of the process of obtaining a chain
code for an arbitrary line drawing. The model used by Freeman [5] and here is one such that if we
were to pick, out of all possible line drawings, a random square of sideT, such ascdeg in Fig. 1,
through which the line drawing passes, the line drawing within that square can be considered with-
out loss in accuracy as a random straight line. With this model, in order to find the probability of
obtaining a diagonal elementPr(d) for a given quantization scheme, it suffices to find the proba-
bility that a random straight line within a square such ascdeg passes through the corresponding
quantization regions. However, one must be careful when invoking a theoretical model for random
lines as one can easily fall into the trap of the well knownBertrand paradox. This paradox will be
illustrated with the same problem used in Duda and Hart [7]. The problem is the following. Sup-
pose we have a circle of unit radius. What is the probability that a random chord of the circle has

Fig. 4 Illustrating several definitions of random chords.
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x2) andy=(yl, y2), a general measure of their closeness is the p-Minkowski metric given by

wherep is a positive real number such thatp ≥ 1. Forp=2, d2(x,y) is the well known Euclidean
distance. These metrics have found wide application in communication theory [6], picture process-
ing [7], information theory [8], decision theory [9], and discriminant analysis [10]. Forp= ∞   the
above equation reduces to

Fig. 3 shows the loci of constant distancedp(x,y) = T/2 for three values ofp: p=1,2,∞, cen-
tered about a mesh nodeθ serving as the origin. Note that the loci determine regions or neighbor-
hoods about the mesh node. LetL denote the set of points that constitutes the line drawing. The
distance of a mesh nodeθ to the setL is defined as the distance fromθ to the closest point inL.

In other words, for a given metric dp we define

Definition: For a given line drawingL and mesh gapT a mesh node is acurve point, according to

p-Minkowski metric quantization, if, and only if, .

For p=∞ andp=2 the above quantization scheme reduces to square and circular quantiza-
tion. Forp=l we have a new quantization scheme which we could call “rhombic” quantization.

d
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x2 y2–
p

+[ ]

1
p
---

=

d
∞

x y,( ) max x1 y1– x2 y2–,[ ]=

d
p θ L,( ) inf d

p θ x,( ) x L∈{ , }=

d
p θ L,( ) T

2
---<

Fig. 3 Illustrating theθ-quantization regions for different values ofθ.
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Fig. 2 Chain encoding a curve with
three quantization techniques.
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such as circular, and grid-intersect quantization which, as Fig. 2 illustrates, do yield chain codes
with diagonal elements. In [5] Freeman derives values for the probability of obtaining diagonal el-
ements,Pr(d), with circular and grid-intersect quantization.

In the following sections a family of quantization schemes, referred to asp-Minkowski
metric quantization is introduced. Under the assumption that the mesh-gap is small relative to the
curvature of the line drawing, forp=1,2 and infinityp-Minkowski metric quantization reduces to
grid-intersect, circular, and square quantization, respectively, thus unifying the three approaches.
This is so because for a sufficiently small mesh-gap the curve can be considered locally to be a
straight line. A theoretical analysis using geometrical probability theory is illustrated for the case
of circular quantization along the lines given in [13]. Some additional topics regarding the process-
ing of chain codes are also touched upon.

2. Minkowski Metric and Convex Quantization

In the introduction we stated that curve points are those nodes which lie “close” in some
sense to the given line drawing. In this section we give a more formal definition of curve point in
a general framework which leads to two families of quantization schemes. Given two pointsx=(xl,
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ated with that particular node. This quantization scheme applied to curve in Fig. 1 yieldsabcdef as
a sequence of curve points representing the line drawing. Forcircular quantization, a circle of ra-
diusT/2 is centered at each mesh node. A node is then considered to be a curve point if any part of
the line drawing falls within the circle associated with that particular node. This quantization
scheme applied to the line drawing in Fig. 1 yieldsabcef as a sequence of curve points. In the third
scheme, referred to asgrid-intersect quantization, curve points are chosen on the basis of how the
line drawing intersects the grid line between two adjacent mesh nodes. Of the two mesh nodes, the
one closer to the intersection point is chosen as a curve point. Thus in Fig. 1,a rather thanb is cho-
sen as the curve point because the distance ra is smaller than the distancerb. Furthermore, only a
single curve point is chosen when more than one intersection point lies in the neighborhood of one
mesh node. This procedure yields acef as a sequence of curve points for the line drawing in Fig. 1.

Once a quantization scheme is specified, the line drawing can then be approximated by seg-
ments joining the curve points. From a given curve point in the sequence, the next curve point lies
at most in one of eight directions, as illustrated in Fig. 2 (a). Hence the approximated line drawing
can be efficiently coded using three bits per segment. The approximating segments, along with
their chain codes, that result when one applies the three different quantization schemes to the line
drawing depicted in Fig. 1 are illustrated in Fig. 2 (b). Note that they yield different chain codes.
In particular the chain codes differ with respect to the number ofdiagonal elements they contain.
Square quantization, by its nature, does not yield any diagonal elements in the chain code. We are
assuming here that the curve does not pass through the intersection point of two mesh lines in
which case there is an ambiguity with respect to the curve points to choose. However, in a random
curve or line drawing the probability that it intersects such a point is zero. Freeman has argued that,
in order to “best” approximate the true curve, diagonal elements should occur about 50% of the
time for random configurations. This design factor spurred a search for other quantization schemes

Fig. 1 Illustration of “square”, “circular” and “grid-intersect”
quantization. The mesh (solid lines) has a mesh-gapT.
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Processing Line Drawings
Godfried Toussaint

ABSTRACT

This paper introduces the basic ideas behind Freeman coding of curves for the effi-
cient representation and processing of line drawings. Along the way Bertrand’s par-
adox in probability theory is illustrated with an example that utilizes random chords
on a circle. Finally, using a suitable probabilistic model several chain-coding
schemes are analyzed from the point of view of the probability of obtaining diago-
nal elements in the encoding.

This paper is an extended version of the following paper:

 J. Koplowitz and G.T. Toussaint, "A unified theory of coding schemes for the efficient trans-
mission of line drawings," Proc. of 1976, IEEE Conf. on Communications and Power, Mon-
treal, October 1976, pp. 205-208.

1. Introduction

By a line drawing we mean an image consisting of line segments and/or curve segments
which need not be connected and whose thickness carries no information. A vast quantity of im-
ages in computer graphics, image processing and pattern recognition fall under this domain. Ex-
amples of line drawings abound in engineering drawings as well as maps in automated cartogra-
phy.

The problem of the efficient transmission and storage of line drawings has received consid-
erable attention. In geographic information systems large amounts of data such as contours of maps
must be stored [1]. For a recent survey of this field, the reader is referred to the article by Freeman
[2]. Several methods referred to aschain-coding have been proposed by Freeman and his co-work-
ers [3] - [4]. All these methods require a device to quantize the two-dimensional figure and encode
it into a form suitable for machine processing and transmission. Three quantization methods of in-
terest here will be described and compared.

Let a uniform mesh be superimposed on the line drawing. Using Freeman’s notation, anx-
y coordinate system can be drawn on the mesh so that every node is identifiable in terms of its co-
ordinates (mT, nT), wherem andn are integers andT represents the separation between adjacent
mesh nodes. An efficient quantized description of the line drawing can then be specified by giving
the coordinates of the mesh nodes which lie “close” in some sense to the given line drawing. These
nodes are called “curve points.” Different quantization schemes yield a possibly different set of
curve points for a given line drawing.

Three quantization schemes frequently used in the past, referred to assquare, circular, and
grid-intersect quantization, are illustrated in Fig. 1. Consider firstsquare quantization. In this case
a square of sideT is centered at each mesh node, with its sides parallel to the mesh lines. A node
is then considered to be a curve point if any part of the line drawing falls within the square associ-


