8.
[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

References

H. Freeman and S. P. Morse, “On searching a contour map for a given terrain elevation
profile,” Journal of the Franklin Institute, Vol. 284, No. 1, July 1967, pp. 1 - 25.

H. Freeman, “Computer processing of line-drawing imadéayiputing Surveys, Vol. 6,
No. 1, March 1974, pp. 58 - 97.

H. Freeman and J. M. Glass, “On the quantization of line-drawing d&EE Transac-
tions on System Science and Cybernetics, Vol. SSC-5, January 1969, pp. 70 - 79.

H. Freeman, “On the encoding of arbitrary geometric configuratioRE, Trans. Elec-
tronic Computers, Vol. EC-10, pp. 260 - 268, June 1961.

H. Freeman, “A technique for the classification and recognition of geometric patterns,”
Proc. 3rd International Congress on Cybernetics, September 1961, pp. 348 - 369.

J. M. Wozencraft and I. M. JacolBrinciples of Communication Engineering, John
Wiley & Sons, Inc., New York, 1965, pp. 459 - 460.

R. O. Duda and P. E. HaRattern Classification and Scene Analysis, John Wiley, 1973,
pp. 348 - 350.

G. T. Toussaint, “Distance measures as measures of certainty and their application to sta-
tistical pattern recognition,” presentedCainf. on Theoretical and Applied Satistics and
Data Analysis, Queen’s University, Kingston, Ontario, June 4 - 6, 1973.

G. T. Toussaint, “On a simple Minkowski metric classifiéEEE Trans. Systems Sci-
ence and Cybernetics, Vol. SSC-6, October 1970, pp. 360 - 362.

R. S. Chikara and P. L. Odell, “Discriminant analysis using certain normed exponential
densities with emphasis on remote sensing applicatiGastérn Recognition, Vol. 5,
No. 3, September 1973, pp. 259 - 273.

A. Papoulis,Probability, Random Variables, and Sochastic Processes, McGraw-Hill,
1965.

M. G. Kendall and P. A. P. Mora@eometrical Probability, Charles Griffin & Co., Lon-
don, 1963.

J. Koplowitz and G. T. Toussaint, “A unified theory of coding schemes for the efficient
transmission of line drawingsProceedings of the 1976 | EEE Conference on Communi-
cations and Power, 20 - 22 October, Montreal.

F. Attneave, “The quantitative study of shape and pattern percepdsytfiol ogical
Bulletin, Vol. 53, 1956, pp. 452 - 471.

F. Attneave, “Some informational aspects of visual perceptisychological Review,
Vol. 61, 1954, pp. 183 - 193.

H. H. Spitz and M. D. Borland, “Redundancy in line drawings of familiar objects: effects
of age and intelligenceCognitive Psychology, Vol. 2, 1971, pp. 196 - 205.

-61 -



wherei =0, 1, 2,..., n,

and W,=H,=0.
5. if W, = H,=0thechainisclosed.

6. If thereexistsapair of valuesof i, say (r, ) such that W, = Wgand H, = Hg, the chain has a
self-intersection at the point whose x and y coordinates, relative to the starting point of the chain
are W, and H,, respectively.

7. Givenaline contour whichissingle-valued in x, the area between the contour and the x axisis
Area= ¥ a, (Hiq +(1/2) ay).
i=1

7. Chain Correation Functions

Sometimes shaped have to be clustered into groups and at other times a given shape has to
be classified into one of several classes of shapes. In these situations we need to extract somein-
formation from the chain that characterizes the shape. Correlation functions are useful toolsfor ex-
tracting this information. Suppose we want to measure the similarity between a given chain
a= Cin= 18 and aprototype chain b = Cin: 1 bj, and suppose a and b have the same length and ori-
entation. The chain cross-correlation between a and b is defined as

Uap=1n 'y coslab]
i=1

where cos|g; b;] isdefined as the cosine of the angle between elements g and b;. Note that for iden-
tical chains [l 5, = 1. More generally the two chains will be of different length. In this case we can
dide one chain along the other in order to obtain several values of U 5, which define a correlation
function. Suppose we have two chains of different lengths, a= C;'_ ;3 andb=C_ ;b;, n<m. Ac-
cordingly, we define the chain cross-correlation function as

Dap() = VK 5 coslab;., ]
i=1

where k is the length of the intersection of the two sequences. Alternately we can define

Dap(i) =1Un 5 coslab;, ]
i=1

wherei+jismodulom. If onevalueisdesired, asfor purposesof classification, the maximum value
of [ 4p(j) can be chosen. If n=mwe have [ 4(j) = Opa(-]). Furthermore, if a=b (i.e., we only have
one chain) U 45(j) becomes the chain auto-correlation function which characterizes the chain, and
hence the original line drawing, and can be used for the purposes of clustering. Asafinal comment
it should be noted that these correlation functions cannot be expected to be adequate unless the
original curves are of the same scale and orientation.
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Every simple, open line drawing has 2 chain representations. A closed line drawing has 2n chain
representations.

6. Some Properties of Chains
1. Chainsareinvariant to trandation.

2. Rotation by 45k° is accomplished by addition, mod-8, of k to each element. Rotation is dis-
tortion-free if k is even. If kis odd then elements of length T become /2T and vice-versa

3. Thelength L of achain equals TN, + +/2TN, where N and N, are the number of even and odd
elements, respectively. For large n we have

L OnT (1 + 0.414p),

where p is the probability of obtaining diagonal elements and, as we saw earlier, is a function of
the quantization scheme employed.

Let a,; and a,; be the normalized x and y coordinated of . In other words

Ch ayi ay|
0 1 0
1 1 1
2 0 1
3 -1 1
4 -1 0
5 -1 -1
6 0 -1
7 1 -1

4. Thewidth Wand height H of achain a;a,...a, are given by
W= (Wimax = (Wmin

H = (Hi)max - (Hi)min
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CODE SYMBOL MESSAGE

0 +1= 8

1 8, =8 +°1

2 8= ° 1

3 amplifier

whena;,; =& we have no change on slope. Wiagn = g +81 the slope increases by°4&nd so
on. The amplifier (code symbol “3”) augments the next code symbol’s effective magnitude by one.
In other words,

31 implies a1 =a +°2 (+99)
32 implies a,1=a 22 (- 99)
331 implies a1 =a +°3 (+ 139
etc.

Clearly our code symbols take on only four values now and as long as changs’ ave need

only two bits per element with three bits for the first element. Once in a while, when a change great-
er than |49 occurs we need the amplifier and the average number of bits required will increase by
a small fraction. In conclusion, chain difference encoding requires)dits of storage per ele-
ment. As an example consider the grid-intersect chain code in Fig. 7 - 110 (9 bits). With chain dif-
ference encoding we would obtain 102 or 7 bits.

5. Ambiguity Aspectsof Chain Representation

Chains have bothspatial and aemporal sense. Temporal information is useful dggnamic
pattern recognition. Examples of dynamic of dynamic patterns are: weather, ocean currents, and
migration patterns of birds. Sometimes even character recognition can be partly dynamic as in the
problem of on-line character recognition. B@tic patterns the chain code introduces ambiguities.
Consider a letter’” to have a chain code

L, =66666000.

Another representation of L is

L, = 44422222

L, is said to be the inverse bj and we writd_, = L;L. In terms of elements, ™’ = g, +® 4. The-
refore we have

[Cl-alt=Cil pa

-58 -



A careful consideration of the problem suggests that this is the largest that the probability of
obtaining diagonal elements can be with any quantization scheme of this form, and suggests that it
is fruitless to search for a method that will yield a probability equal to 0.5. In fact, if one considers
that a random line drawing should be approximated by diagonal and non-diagonal elements equally
in terms of length, then, since a diagonal elemegi2ismes the length of a non-diagonal element,
one can argue that diagonal elements should occur with probdiflity- ./2 T) rather than 0.5.

Now, T/(T + /2 T)) = /2 -1, which is precisely the probability obtained by grid-intersect quanti-
zation. In this sense grid-intersect quantization can be said to optimally allocate diagonal and non-
diagonal elements to a chain code approximation of a line drawing.

4, Chain Difference Encoding

We have seen that a chain of a line drawing is a concatenation of integers representing the
directions of the elements. More formally, given a cukyéhe approximating curvd’ is called
thechain of A and we write

A= ajay.a, = Ci": 18

whereg; is theith element of the chain. Sinagcan take on eight different values as shown in Fig.

6 each element requires three bits of storage. This is how efficiency of storage is realized. A ques-
tion which comes to mind at this point is: can we store a chain code using less than three bits per
element? The answer is yes, but before going into the method (chain difference encoding) let us
backtrack to Fig. 4.

Most of the relevant information in patterns or images is believed to be contained in the con-
tours of those patterns. Furthermore, those parts of the contour that have high curvature are in turn
considered most important. This point is illustrated by Fig. 4a. Attneave [14] - [15] asked subjects
to mark the points considered important on a picture of a cat and joined a set of these points with
straight lines. The resulting figure is readily identified as a sleeping cat. This suggest that the
straight lines in the line drawing of Fig. 4a are not too important in the sense that they are redundant
where they do not change direction. In fact if we delete parts of the line drawing as we did in Fig.
4b we can still readily identify a sleeping cat. Spitz and Borland [16] concluded from experiments
of this type that line drawings of familiar objects are about 50% redundant as measured by the re-
cognition levels maintained after varying percentages of the lines have been deleted. Chain differ-
ence encoding exploits this redundancy.

Redundancy in line drawings manifests itself in the chain through the fact that, given an ele-
menta;, the next element in the chain does not in general assume its 8 possible values with equal
probability. Most probably the next element has the same angle or it ck@8geEhis means that
we do not have to code the direction of each element. All we have to do is code the direction of the
first element and subsequently only code the changes in direction. We can accomplish this by the
following list of code symbols along with their intended meaning or message. The
symbols+ and - superscripted with an 8 denote addition and subtraction, respectively, modulo 8.
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(1-y)/(1-x) = tan®. )

Solving simultaneously fox andy in (4) and (7) yields

Xp=1- [—— =1-cos, ®)
1+ (tanB)
2
Yp=1- /—(tane) 5 = 1-sin6. 9)
1+ (tanB)

Substituting (8) and (9) forandy in (3) and solving foy' yields

y=1- |_(tan)? + 1/(tan6) - 1/(tansd) /;2 =1-(1-cod)/(sinb)
1+ (tang)” 1+ (tand)

and hence

p(6) =[1- (1 - coD)/(sinB)] cos (V2 - 0). (10)
Furthermore,
q(6) = cos W2 - 0). (12)

It follows that the probability of obtaining a diagonal element is given by

Pr(d) = O 0Oz 2 4 o (12)
aﬂp(e)degaﬁr(e)dquq(e)de Igp(e)deg

Substituting (1), (10), and (11) into (12) and integrating yields
Pr(d) = 4fm- 100.275.

A similar procedure can be followed with Minkowski quantization but the resulting expres-
sion is unwieldy and not very useful as it contains integrals which cannot be solved until the metric
is specified.

A similar procedure applied to grid-intersect quantization yields a probability equal to

Pr(d) = /2 - 100.414.
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variables distributed uniformly over their relevant domains. Freeman'’s [5] analysis and results are
as a matter of fact incorrect because in his angbysias held fixed at a value of zero rather than
allowed to vary uniformly over its relevant domain. We now illustrate the correct analysis for the
case of circular quantization.

Consider the square region determined by four mesh nodes as in Fig. STwféneorder
to simplify analysis. Since the problem is symmetrical about vertical, horizontal and the diagonal
axes determined byt y andx-y, we need only consider the range @< 17/4. For any given value
of 8 = B, all possible relevant lines are specifiedayp <r. This is true because segments are
either diagonal or non-diagonal and hence they must involve at least two mesh npdestdf
greater thamg only one mesh node would be a curve point. Furthermore, all random lines yielding
diagonal elements are specifieddg p < p,. In addition, random lines yielding two non-diagonal
elements are specified Ipy < p < q,, and random lines yielding a single non-diagonal element by
do < p <r,. Therefore, for a given value 6f= 6, the probability of obtaining a diagonal element
isPr(d/8) = po/(pg + 2(tp - Pg) + (1 - Ay)), the first interval yields one diagonal element, the second
interval yields two non-diagonal elements (a vertical and a horizontal element) and the third inter-
val yields a vertical element. Simplifying this expression yi@dsl/6) = py/(rg + o — pg)- Since
r, d, andp are functions o8 we must findr(8), q(6), p(6) and integrate oved to obtain a total
measure fopg, ry and .

Since the radius of the circle is unity, we have

r(6) = cos8. 1)

Similarly,

p(B) =y cos (2 -8), (2)

wherey’ is to be determined. The equation of the Iikieis

y=-1/(tanB) x +VY'. 3)

Since the poinbdq, Yp) is on this line, we can solve fgrif we havex, andy,. Now, the point X,
Yp) lies on the circle

(1%)2+ (1y)% = 1. 4)

The slope atx,, yp) is given by
dy/dx = - 1/(tang). (5)

But from (4) we also have

dy/dx = - (x-1)/(y-1). (6)

Combining (5) and (6) we have
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Fig. 5 Computing the probability of diagonal elements for grid-intersect quantization.
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a length greater than the side of an inscribed equilateral triangle.
First solution

Choose one end of the chord to lie on any arbitrary point on the circumference of the circle.
By symmetry and with no loss of generality we can construct a triangle such that the above end of
the chord coincides with a vertex of the triangle, such as the upper vertex shown in Fig. 4. To con-
struct a chord we can “project a beam of light” from the vertex to the circle at anyBangik that

0< 6 <180. Clearly only the chords obtained for$0 < 120 will be greater than the side of the
triangle. Hence, the resulting probability is precisely 1/3.

Second solution

Again, by symmetry and with no loss of generality we can assume the chord has a horizon-
tal orientation. Clearly, in order for it to be longer than the side of the triangle, it must cross the
vertical diameter somewhere betweesndy. Hence, the resulting probability must be 1/2.

Third solution

We can construct a chord by choosing a point at random inside the circle and then drawing
a chord through this point and perpendicular to the line joining this point to the center of the circle.
A chord is thus associated with every point in the circle. If we choose those points falling inside
the circle of radius 1/2 then the resulting chords will be longer than the side of the triangle. This
probability is the ratio of the areas of the two circles and is therefore equal to 1/4.

Fourth solution

Let us return to solution number 1 where one end of the chord lies at the vertex of the tri-
angle. We can complete the chord by choosing a point at random in the circle and drawing the
chord from the vertex through this point. Clearly, if a point is chosen in either se§meBithe
resulting chord will be shorter than the side of the triangle. Hence, the resulting probability must
be equal to the area of the circle, less the arda+oB, all divided by the area of the circle. This

probability equals  1/3+ ./3(Tv/2) = 0.61

We have exhibited solutions ranging from 0.25 to 0.61. What is the “true” probability? The
source of the paradox lies in the ambiguous term “random line.” In order to define a random line
precisely we must define the line in terms of some parameters and then we must specify probability
distributions on those parameters. Different parameterizations yield different results. You may ask
yourself which of all these is the “correct” parameterization? In order to extricate ourselves from
this dilemma we appeal to the principle of invariance. For a full treatment of this principle the read-
er is referred to books on measure theory and geometrical probability theory. The basic idea is the
following. Suppose we throw a random line on this page and that this page contains a figure on it
somewhere, say a square. We ask what is the probability that the random line intersects the square.
It is intuitively satisfying that we demand that for true random lines this probability should be the
same even if we change the location or orientation of the square. In other words, we demand that
our probability be invariant under rotations and translations of figures. It turns our that only one
definition of a random line satisfies these invariance properties. This definition involves the “nor-
mal” parameterization of a line with parametem@ndd wheref is the angle of a normal from the
origin to the line ang is the length of the normal. Furthermogeand® are independent random
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180 0

90

Fig. 4 lllustrating several definitions of random chords.

Sometimes in practice and particularly in the theoretical analyssschosen small enough such

that the line drawing is essentially a straight line within the square determined by consecutive ver-
tical and horizontal mesh likes. When this is true a little thought will reveal thatifare have in

fact grid-intersect quantization.

In Fig. 3 the value op determines a neighborhood abdBtwhose boundary lies in the
shaded region. A more general family of quantization schemes can be defined by specifying a
neighborhood abouf with an arbitrary boundary in the shaded region as long as it is convex. This
latter scheme will be referred to e@vex quantization. In the next section we turn our attention
to determining the probability of obtaining diagonal elements in chain coding for the general quan-
tization schemes discussed above.

3. Probability of Obtaining Diagonal Elements

In order to optimize the efficiency of Freeman encoding it is of interest to determine, for a
given quantization scheme, what the probability of obtaining diagonal elements is for arbitrary or
“random” configurations in the long run, after it has executed on a large number of line drawings.
In order to analyze the problem theoretically we need a model of the process of obtaining a chain
code for an arbitrary line drawing. The model used by Freeman [5] and here is one such that if we
were to pick, out of all possible line drawings, a random square of sgleh asdeg in Fig. 1,
through which the line drawing passes, the line drawing within that square can be considered with-
out loss in accuracy as a random straight line. With this model, in order to find the probability of
obtaining a diagonal elemeRt(d) for a given quantization scheme, it suffices to find the proba-
bility that a random straight line within a square suchdaeg passes through the corresponding
guantization regions. However, one must be careful when invoking a theoretical model for random
lines as one can easily fall into the trap of the well knBemrand paradox. This paradox will be
illustrated with the same problem used in Duda and Hart [7]. The problem is the following. Sup-
pose we have a circle of unit radius. What is the probability that a random chord of the circle has
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< p = infinity
mesh node
\
p=2
®
—_ p=1
grid lines \

Fig. 3 lllustrating thé-quantization regions for different values@f

Xo) andy=(y;, ¥»), a general measure of their closeness ipdlénkowski metric given by
1

d°(x,y) = [[xi=ya|"+ % —y5|"1"

wherep is a positive real number such tipa® 1. Forp=2, d2(x,y) is the well known Euclidean
distance. These metrics have found wide application in communication theory [6], picture process-
ing [7], information theory [8], decision theory [9], and discriminant analysis [10]pFor the

above equation reduces to

d*(xy) = max[|x1—y1|,|x2—y2|]

Fig. 3 shows the loci of constant distanlEéx,y) = T/2 for three values qf: p=1,2, cen-

tered about a mesh nodeserving as the origin. Note that the loci determine regions or neighbor-
hoods about the mesh node. Latenote the set of points that constitutes the line drawing. The
distance of a mesh nod@to the set is defined as the distance frobhto the closest point ih.

In other words, for a given metra® we define
d”(e, L) = inf{d”(6, x)xO L}

Definition: For a given line drawing and mesh gap a mesh node is@irve point, according to

T

p-Minkowski metric quantization, if, and only ifdp(e, L)< >

For p=0co andp=2 the above quantization scheme reduces to square and circular quantiza-
tion. Forp=l we have a new quantization scheme which we could call “rhombic” quantization.
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Quantization Approximated Chain Code

5 Scheme Segments

3 A 1 y

Square 20200
4 <= » 0

Circular 2010

5 Y 7

6 Grid-Intersect 110
(@ (b)

Fig. 2 Chain encoding a curve with
three quantization techniques.

such as circular, and grid-intersect quantization which, as Fig. 2 illustrates, do yield chain codes
with diagonal elements. In [5] Freeman derives values for the probability of obtaining diagonal el-
ementsPr(d), with circular and grid-intersect quantization.

In the following sections a family of quantization schemes, referred peMiakowski
metric quantization is introduced. Under the assumption that the mesh-gap is small relative to the
curvature of the line drawing, f@=1,2 and infinityp-Minkowski metric quantization reduces to
grid-intersect, circular, and square quantization, respectively, thus unifying the three approaches.
This is so because for a sufficiently small mesh-gap the curve can be considered locally to be a
straight line. A theoretical analysis using geometrical probability theory is illustrated for the case
of circular quantization along the lines given in [13]. Some additional topics regarding the process-
ing of chain codes are also touched upon.

2. Minkowski Metric and Convex Quantization

In the introduction we stated that curve points are those nodes which lie “close” in some
sense to the given line drawing. In this section we give a more formal definition of curve point in
a general framework which leads to two families of quantization schemes. Given twop0ints
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Fig. 1 lllustration of “square”, “circular” and “grid-intersect”
guantization. The mesh (solid lines) has a meshfgap

ated with that particular node. This quantization scheme applied to curve in Fig. Bycekfsas

a sequence of curve points representing the line drawingif€arar quantization, a circle of ra-
diusT/2 is centered at each mesh node. A node is then considered to be a curve point if any part of
the line drawing falls within the circle associated with that particular node. This quantization
scheme applied to the line drawing in Fig. 1 yieldsef as a sequence of curve points. In the third
scheme, referred to gsid-intersect quantization, curve points are chosen on the basis of how the
line drawing intersects the grid line between two adjacent mesh nodes. Of the two mesh nodes, the
one closer to the intersection point is chosen as a curve point. Thus ingHigther tharb is cho-

sen as the curve point because the disteencesmaller than the distande Furthermore, only a

single curve point is chosen when more than one intersection point lies in the neighborhood of one
mesh node. This procedure yieltgf as a sequence of curve points for the line drawing in Fig. 1.

Once a quantization scheme is specified, the line drawing can then be approximated by seg-
ments joining the curve points. From a given curve point in the sequence, the next curve point lies
at most in one of eight directions, as illustrated in Fig. 2 (a). Hence the approximated line drawing
can be efficiently coded using three bits per segment. The approximating segments, along with
their chain codes, that result when one applies the three different quantization schemes to the line
drawing depicted in Fig. 1 are illustrated in Fig. 2 (b). Note that they yield different chain codes.
In particular the chain codes differ with respect to the numbdiagbnal elements they contain.
Square quantization, by its nature, does not yield any diagonal elements in the chain code. We are
assuming here that the curve does not pass through the intersection point of two mesh lines in
which case there is an ambiguity with respect to the curve points to choose. However, in a random
curve or line drawing the probability that it intersects such a point is zero. Freeman has argued that,
in order to “best” approximate the true curve, diagonal elements should occur about 50% of the
time for random configurations. This design factor spurred a search for other quantization schemes
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Processing Line Drawings

Godfried Toussaint

ABSTRACT

This paper introduces the basic ideas behind Freeman coding of curves for the effi-
cient representation and processing of line drawings. Along the way Bertrand’s par-
adox in probability theory is illustrated with an example that utilizes random chords
on a circle. Finally, using a suitable probabilistic model several chain-coding
schemes are analyzed from the point of view of the probability of obtaining diago-
nal elements in the encoding.

This paper is an extended version of the following paper:

J.Koplowitzand G.T. Toussaint, " A unified theory of coding schemesfor the efficient trans-
mission of linedrawings," Proc. of 1976, IEEE Conf. on Communications and Power, Mon-
treal, October 1976, pp. 205-208.

1. I ntroduction

By a line drawing we mean an image consisting of line segments and/or curve segments
which need not be connected and whose thickness carries no information. A vast quantity of im-
ages in computer graphics, image processing and pattern recognition fall under this domain. Ex-
amples of line drawings abound in engineering drawings as well as maps in automated cartogra-

phy.

The problem of the efficient transmission and storage of line drawings has received consid-
erable attention. In geographic information systems large amounts of data such as contours of maps
must be stored [1]. For a recent survey of this field, the reader is referred to the article by Freeman
[2]. Several methods referred tochsin-coding have been proposed by Freeman and his co-work-
ers [3] - [4]. All these methods require a device to quantize the two-dimensional figure and encode
it into a form suitable for machine processing and transmission. Three quantization methods of in-
terest here will be described and compared.

Let a uniform mesh be superimposed on the line drawing. Using Freeman’s notaxion, an
y coordinate system can be drawn on the mesh so that every node is identifiable in terms of its co-
ordinates ifiT, nT), wherem andn are integers and@ represents the separation between adjacent
mesh nodes. An efficient quantized description of the line drawing can then be specified by giving
the coordinates of the mesh nodes which lie “close” in some sense to the given line drawing. These
nodes are calledclirve points.” Different quantization schemes yield a possibly different set of
curve points for a given line drawing.

Three quantization schemes frequently used in the past, referrestitmavaes circular, and
grid-intersect quantization, are illustrated in Fig. 1. Consider Bgstare quantization. In this case
a square of sidé& is centered at each mesh node, with its sides parallel to the mesh lines. A node
is then considered to be a curve point if any part of the line drawing falls within the square associ-
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