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Abstract

A simple O(nlogn) algorithm is presented for computing the maximum Fuclidean
distance between two finite planar sets of n points. When the n points form the vertices
of simple polygons, then the complexity reduces to O(n).

1 Introduction

Let S1 = p1,p2,....pp and SS9 = q1,G2,...,¢q, be two planar sets of n points each and let
S = 51 US55 The sets need not have equal cardinality but such an assumption simplifies

notation. A point p; is given in terms of the Cartesian coordinates z; and y;. The maximum
distance between S; and S;, denoted by diax(51,52), is defined as

dmaX(SbS?) = H}?X{d(p“q])}, L7.] = 1727 SRR

where d(p;, q;) is the Euclidean distance between p; and ¢;.

The computation of distances between sets arises frequently in pattern recognition prob-
lems [3], where clustering is a prime example. In agglomerative (bottom-up) clustering
procedures one starts with a set of N clusters each containing only one of N points to be
clustered. The two most similar clusters are then merged to form N — 1 new clusters. This
procedure is continued by successively merging clusters. What distinguishes many clustering
algorithms is the measure of similarity used to determine which pair of clusters gets merged
at a given step. When dyay is used the resulting algorithm is known as the furthest neighbor
clustering algorithm [3]. Another frequently used distance between sets is given by:

dmean(Sh 52) = d(mh m2)7
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Clearly dmean(S1,52) can always be computed in O(n) time. Duda and Hart [3] point out
that dpean 1s computationally more attractive than dpax by claiming that dp,., requires the
computation of all n* distances, resulting in an O(r?) algorithm.

In [2] it was shown that dmax(S1,52) can be computed in O(nlogn) time in the worst
case. The algorithm in [2] is quite complicated and is based on first partitioning each set
Si, © = 1,2 into nine subsets S;;, 7 = 1,...,9 and converting the dyax(S1, .S2) problem into 81
diameter problems on the sets of the form (51, U S3,). In this note we present a very simple
algorithm based on searching a generalization of the notion of antipodal pairs of points. We
assume that the reader is familiar with the O(n) diameter algorithm of Shamos [10].

2 Preliminary Results

Let CH(S;), ¢ = 1,2 denote the set of points of S; which are vertices of the convex hull of
S;. Denote the diameter of S; by diam(S;), i.e.,

diam(S1) = max{d(p;,p;)}, t,7=1,2....,n.
ij

We now review and establish some results which will form the theoretical foundation for
the algorithm of Section 3. The following results have been proved in [2].

Lemma 2.1 dyax(51,52) = dmax(CH(S1), CH(S2)).
Lemma 2.2 dyay(51, 52) < diam(S).

It should be noted here that the claim made by several authors (such as Duda and
Hart [3] and Johnson [6]) that dmax(S1,.52) = diam(.S) is not always true. Were this so the
diameter of S; U S, could be found in O(nlogn) time with either the convex hull approach
of Shamos [10, 11] of the furthest-point Voronoi diagram methods of [13] and [7].

We now define some new terms and establish some additional results. Let LS;(a) denote
the directed line of support of set S; through point @ € S; such that no points of 5; lie to
the left of LS;(a).

Definition 2.1 Given two sets of points S; and S, an antipodal pair of points between the
sels ts a pair p; € S1, q; € Sz such that S1 and Sy admit parallel directed lines of support
LS1(p:;) and LS3(q;) which have opposite directions.

Consider two sets S; and Sy whose convex hulls are illustrated in Fig. 1. A specified
direction, such as the x-axis, determines up to four lines of support, two for each set. In
Fig. 1, (a,b) and (¢,d) are two antipodal pairs between the sets according to the above
definition. Note that (a,d) is not an antipodal pair even though a and d lie on different sets
and admit parallel lines of support.
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Figure 1: Illustrating antipodal pairs between sets.

Theorem 2.3 The pair of points a € S1 and b € Sy that realize dpmax(S1,52) constitutes an
antipodal pair between Sy and S;.

Proof: Let a € Sy and b € Sy determine dpyax(51, 52) and refer to Fig. 2. It follows that b
is the furthest point among Sy from a. Therefore S; must lie in the disk determined by the
circle centered at a with radius equal to d(a,b). It follows that we can construct a directed
line of support LS,(b) which is tangent to the circle at b. We can similarly construct LS(a).
Since LSi(a) and LSy(b) are each orthogonal to line segment [a,b] they must be parallel,
thus proving the theorem. ]

Note: Although S; and S5 are linearly separable in Fig. 1 the proof holds for non-linearly
separable situations as well.

3 The Algorithm

Algorithm MAXDIST
Input: Two sets of points on the plane, 57, 5,.
Output: dmax(S1,S2).
Step 1: Compute CH(S7) and CH(S2).
Step 2: Determine all antipodal pairs between C H(S1) and C H(S3).
Step 3: Exit with the largest distance encountered in step 2.

Theorem 3.1 Algorithm MAXDIST computes dmax(S1,52) in O(nlogn) time.



Figure 2: Illustrating the proot of Theorem 2.3.

Proof: The correctness of the algorithm follows from Lemma 2.1 and Theorem 2.3. We
turn thus to the complexity. Step 1 can be done in O(nlogn) time with a variety of algo-
rithm [12, 5]. For step 2 we can use the “rotating caliper” algorithm of Shamos [10, 11]. This
algorithm generates in O(n) time the O(n) antipodal pairs of a convex polygon. In algorithm
MAXDIST we can use two “rotating calipers” one on each convex hull determined in step 1.
Initially we pick an arbitrary direction and in O(n) time we can determine the starting an-
tipodal pairs between the sets. Both ‘calipers’ are now ‘rotated’ until one of the four support
lines advances to a new vertex. This new vertex determines a new antipodal pair between
the sets. This procedure is continued until the starting pair is reached again. The algorithm
is essentially the same as Shamos’ except for the fact that we have four, rather than two,
lines of support to contend with. Thus it also generates all the antipodal pairsin O(n) time.
Hence, the complexity of MAXDIST is dominated by step 1. [

Corollary 3.2 Given two simple polygons Py and Py, MAXDIST computes dmax(P1, P2) in
O(n) time.

Proof: This result follows from the fact that the convex hull of a simple polygon can be
computed in O(n) time [9, 8, 4]. ]



4 Concluding Remarks

We have shown that dpax(S1,.52) can be computed with a much simpler O(nlog n) algorithm
than that proposed in [2]. The algorithm runs in O(n) expected time under the same
conditions considered in [2], to which the reader is referred for details. The optimality of the
algorithm is still an open problem as is the d-dimensional case. For the analogous minimum-
distance-between-sets problem Avis [1] proved an O(nlog n) lower bound and Toussaint and
Bhattacharya [14] exhibit several algorithms that achieve this complexity. Since no such
lower bounds have been established for the dy.x problem we cannot say that algorithm

MAXDIST is optimal.
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