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Amdahl V-7 computer using a FORTRAN-G1 compiler. The Gabriel graph of tisg Sef, was
constructed by first constructing the Voronoi diagrar®,dfl S, using the computer program de-
veloped by Horspool [11]. As the results show, the brute-force method is efficient for small values
of n, but for other values af, MIN is far superior to the brute-force method.

6. Concluding Remarks

In this paper we have shown that the minimum distance between two finite planar sets of
points can be computed in1©lpg n) worst-case running time and that this is optimal to within a
constant factor. Furthermore when the sets form a convex polygon this complexity can be reduced
to O(). We have also discussed the relation between the set-distance problem and the closest-pair
problem. A generalization of the set-distance problem is what might be ternkecbtbedistance
problem: given a planar set nfpoints colored arbitrarily with k colors find the closest pair of
points of different color. Whek = 1 this problem reduces to the closest-pair problem. Wkeh
it reduces to the minimum set-distance problem. Note that Wwhe3) the closest pair of points of
two specified colors need not correspond to an edge of the M where S 5,00 S, U Ss.

A more difficult problem for the case of convex polygons calls for finding the closest pair of
verticesp;, g between two convex polygoRs= (py, py,---, Py) @ndQ = (0, dp,---,Gp), Wherep; O
P andg; U Q. Recently, Of) algorithms have also been discovered for this problem [12], [13].

One open problem concerns the case of higher dimensions. Can we obthkig ©(algo-
rithms for finding d; ,(S;, S,) in any fixed dimensiok > 2? That we are not doomed ton€)(
algorithms has been recently shown by Yao [14] for the restricted casdebf separated sets S;
andS,, i.e., sets such thal; .(S;, S,) > n(diam(S;) + diam(S,)) , wherediam denotes diam-
eter. Under this assumption Yao showed ttat,(S;, S,) may be computed in O{(og n)9
time when k=3.
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5. Experimental Results

In this section, we describe the implementation of one of the above algorithms and compare
it to the brute-force method. The implementation uses the Gabriel graph because thisgraph is easy
to obtain from the VVoronoi diagram. An edge in the Delaunay triangulation is an edge in the Gabri-
el graph if it intersects its corresponding VVoronoi edge [9].

ALGORITHM MIN

begin
Step 1: Compute the Voronoi diagram of S=S; O S,.
Step 2: From the dual of the Voronoi diagram, obtain the Gabriel graph of S
Step 3: From among the edges of the Gabriel graph, determine the set of pairs of points
such that one isfrom S; and the other from S,.
Step 4: Compute the distance between all pairs of pointsin Step 3.
Step 5: Determine the minimum of the distances computed in Step 4.

end

To evaluate the performance of algorithm MIN against the brute-force method, aMonte Car-
lo simulation was carried out. Points of both sets S; and S, were such that each set was distributed
uniformly in aunit square. The size of each set considered was n = 100, 500, 1000 or 2500. Each
case was repeated anumber of times and the running times for both the brute-force method and the
MIN are shown in Table 1. These running times were obtained by carrying out asimulation in an

ALGORITHM n =100 (75) n =500 (75) n = 1000 (25) n = 2500 (15)

Time Std. Time Std. Time Std. Time Std.
(secs) | dev. (secs) | dev. (secs) dev. (secs) | dev.

BRUTE-FORCE | 0.017 | 0.0000| 0.618 | 0.0041 | 2530 | 0.0082 | 16.333 | 0.0102

MIN 0.083 | 0.0019| 0.523 | 0.0039 | 1.129 | 0.0132| 2.621 | 0.0531

Table 1: Running times to compute the minimum distance between two separabl e sets each
containing n points. The points of each set were such that each set was distributed

uniformly in a unit square. The numbers inside the parentheses indicate the number
of times the experiment was repeated.



Proof: Letp S, andq O S, determine the minimum distance betwé&randS, and assume
edgepq is not contained in MSH. Thenp andq are connected in the MST 8foy a path
through at least one other vertex of MSJT (Furthermore, on this path there exists an edge
joining two verticeg’, g such thap’ O S; andq’ [0 S,. Note that it is possible thpt= p or
g = g but not both. Since’q” is contained in MST) it follows that d(p’,q’) <d(p, q)
which is a contradiction. g is contained in MST) it must be contained in any sub-graph
of the MST. This proves the sufficiency for Gfto exhibit theedge-inclusiorproperty. To
see that it is also a necessary condition consider an MST in Wwhddes are removed leav-
ingk +1 treesTy, Ty,..., Tyy1. LetTy O S andTy,..., Tyyy U S,. Then clearlyd, (S, S,) is
realized by an edge which is not containedif] T, O... O Ty 1.

Q.E.D.

The above theorem suggests algorithms for computing(S;, S,) and also characterizes
the difference between tket-distanc@roblem and thelosest-paiproblem. In the latter problem
it is not necessary that G§ be a sub-graph of MS3)for G*(S) to always contain the edge de-
fining the closest pair.

3. Algorithmsfor Planar Setsof Points

There exist several graphs that contain Qf) edges, can be computed im@{g n) worst-
case running time and Q)(expected time under certain probability models, and exhibadbe-
inclusionproperty ford;,(S;, S,) . Among the more well known are the MST [3], the relative
neighborhood graph (RNG) [7], [8], the Gabriel graph (GG) [9], and the Delaunay triangulation
(DT) [10]. In fact the above graphs are related to each other as follows [4]:

MSTRNG U GG U DT.

Any of the above algorithms [3], [7]-[10], could be used to obtain anl@(n) algorithm
for computingd,; ,(S;; S,) . Once the graph f@is obtained it is a trivial matter to check its edges
sequentially ignoring those containing vertices belonging to the same set and updating a tentative
answer whenever a smaller set-distance is encountered. Since these graphs contain no more than
3n-6 edges Q) time suffices for this step. Furthermore, Avis [2] has shownQitalog n) is a
lower bound for this problem and hence the above algorithms are optimal to within a constant fac-
tor. It should also be noted that the above algorithms could be used to compute the closest pair as
well, although it is doubtful that in practice they would be faster than computing the closest pair
directly via divide and conquer or by first computing tlearest neighbor grapf3].

4. An O(n) Algorithm for Convex Polygons

The set distance problem for convex polygons can be easily stated as the following coloring
problem. Given a convex polygon with its vertices arbitrarily colored with two colors, find the
closest pair of vertices of opposite colors. Close refers again to smallest euclidean distance.
Supowit [8] has designed anr){vorst-case algorithm for computing the RNG of a convex poly-
gon. Once the RNG is obtaindg;,, can be computed in @Ytime leading to an @f worst-case
running time algorithm for the set-distance problem for convex polygons.



n
wherem, = Z p, and m, = Z q

Clearly o|meam(sl S,)) can a|ways be computed in O(n) time. Duda and Hart [1] point out
that d . ean |scomputat| onally more attractlvethan d. ., Dy claiming that d,; , requires the compu-
tation of all n® distances, resulti nginan O(n ) agorithm.

min

In this paper we show that d,in(S;, S,) can be computed in O(n log n) time in the worst-case.
Since Q(n log n) is alower bound for this problem [2], the algorithms given here are optimal to
within a multiplicative constant. In addition the algorithms exhibit O(n) expected running time for
awide class of underlying distributions of the points. Thus, even in the worst case, it is not neces-
sary to compute n? distances. Furthermore, when Sis a convex polygon, the vertices of which are
arbitrarily colored with two colors, it is shown that the closest pair of vertices of opposite colors
can befound in O(n) timein theworst case. These results generalize existing results on the closest-
pair problem.

2. Minimum Set Distance and the Closest Pair

The closest-pair problem consists of determining the pair of pointsin aset S that are closest
together in the sense of minimizing the euclidean distance. This problem has received attention re-
cently in the literature on computational geometry [3], [4]. Shamos [5] has shown that Q(n log n)
isalower bound for this problem, and in [3] presents a divide-and-conquer algorithm that runsin
O(n log n) time, and is thus optimal. When the input is a convex n-vertex polygon rather than an
arbitrary set of points the Q(n log n) lower bound does not hold. Lee and Preparata [6] show that
this additional property is sufficient to obtain an O(n) algorithm. Actually Lee and Preparata [6]
solve the more general problem of finding the nearest neighbor of every vertex (the nearest neigh-
bor graph is obtained by joining with an edge every vertex to its nearest neighbor). One such pair
will be the closest pair.

The closest pair problem appears similar in some sense to the minimum set-distance problem.
That the two problems are not identical is obvious from the observation that the closest pair in S
may consist of two points both of which belongto §,i =1, 2. In fact the pair of pointsp U S;, g U
S, realizing the minimum set distance do not even correspond to an edge that is guaranteed to be
contained in the nearest neighbor graph (NNG) of S i.e., the NNG does not exhibit the edge-in-
clusion property for the minimum set-distance edge. Thuswe cannot solve the set distance problem
by first computing NNG(S) and selecting its shortest edge connecting a point in S; with another

pointin S,.

On the other hand it istrivial that the complete graph on S, G(S) does exhibit the edge-inclu-
sion property for d;,.- However choosing d,;, by examining al the edges of G(S) leads to an
O(n ) algorithm. Thus we are interested in sub-graphs of G(S), say G*(S), that can be computed in
o(n®) time, that have preferably O(n) edges, and that exhibit the edge-inclusion property for doin-
We show that a necessary and sufficient condition for G*(S) to exhibit the edge-inclusion property
isthat G*(S) be the minimal spanning tree (MST) of S,

Theorem 2.1: Givenaset S=S; [0 S, the pair of pointsp [0 §;, g U S, realizing the minimum
distance, determine an edgeinthe MST of S
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ABSTRACT

It is shown in this paper that the minimum distance between two finite planar sets if
n points can be computed in O(n log n) worst-case running time and that thisis opti-
mal to within a constant factor. Furthermore, when the sets form a convex polygon
this complexity can be reduced to O(n).
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1. Introduction

Let S ={pq1, P2, P} @A S, ={Q4,0p,..., 0} betwo planar sets of n points each and let S=
S, O S,. The sets need not have equal cardinality but such an assumption simplifies notation. A
point p; isgiven in terms of the cartesian coordinates x; and y;. The minimum distance between $;
and S, denoted by dn(Sy, ) , i defined as

drin(Sy S) = ri'“j” {d(p, a}.ij = 1,2,.m

where d(p;, g;) is the euclidean distance between p; and g;.

Another frequently used distance between setsis given by:

dmean(sl' SZ) = d(ml’ m2)



