
- 6 -

[8] K. J. Supowit, “The relative neighborhood graph with an application to minimum span-
ning trees,” Tech. Rept., Department of Computer Science, University of Illinois, Urba-
na-Champaign, August 1980, also to appear in J.A.C.M., 1983.

[9] D. W. Matula and R. R. Sokal, “Properties of Gabriel graphs relevant to geographic vari-
ation research and the clustering of points in the plane,”Geographical Analysis, Vol. 12,
July 1980, pp. 205-222.

[10] D. T. Lee and B. J. Schacter, “Two algorithms for constructing a Delaunay triangulation,”
International Journal of Computer and Information Sciences, Vol. 9, No. 3, 1980, pp.
219-242.

[11] R. N. Horspool, “Constructing the Voronoi diagram in the plane”, Tech. Report No.
SOCS 79.12, School of Computer Science, McGill University, July 1979.

[12] M. McKenna and G.T. Toussaint, “Finding the minimum vertex distance between two
disjoint convex polygons in linear time”, Tech. Report No. SOCS-83.6, School of Com-
puter Science, McGill University, April 1983.

[13] G. T. Toussaint, “An optimal algorithm for computing the minimum vertex distance be-
tween two crossing convex polygons”, Technical Report No. SOCS-83.7, School of
Computer Science, McGill Univ., May 1983.

[14] A. Yao, “On constructing minimum spanning trees in K-dimensional spaces and related
problems”,SIAM Journal on Computing, Vol. 11, No. 4, November 1982, pp. 721-736.

- 5 -

Amdahl V-7 computer using a FORTRAN-G1 compiler. The Gabriel graph of the setS1 ∪ S2 was
constructed by first constructing the Voronoi diagram ofS1 ∪ S2 using the computer program de-
veloped by Horspool [11]. As the results show, the brute-force method is efficient for small values
of n, but for other values ofn, MIN is far superior to the brute-force method.

6. Concluding Remarks

In this paper we have shown that the minimum distance between two finite planar sets of
points can be computed in O(n log n) worst-case running time and that this is optimal to within a
constant factor. Furthermore when the sets form a convex polygon this complexity can be reduced
to O(n). We have also discussed the relation between the set-distance problem and the closest-pair
problem. A generalization of the set-distance problem is what might be termed thek-color distance
problem: given a planar set ofn points colored arbitrarily with k colors find the closest pair of
points of different color. Whenk = 1 this problem reduces to the closest-pair problem. Whenk = 2
it reduces to the minimum set-distance problem. Note that whenk = 3, the closest pair of points of
two specified colors need not correspond to an edge of the MST ofS, where S =S1 ∪ S2 ∪ S3.

A more difficult problem for the case of convex polygons calls for finding the closest pair of
verticespi, qj between two convex polygonsP = (p1, p2,...,pn) andQ = (q1, q2,...,qn), where,pi ∈
P andqj ∈ Q. Recently, O(n) algorithms have also been discovered for this problem [12], [13].

One open problem concerns the case of higher dimensions. Can we obtain O(n log n) algo-
rithms for finding in any fixed dimensionk > 2? That we are not doomed to O(n2)
algorithms has been recently shown by Yao [14] for the restricted case ofwidely separated sets S1
andS2, i.e., sets such that > , wherediam denotes diam-
eter. Under this assumption Yao showed that may be computed in O((n log n)1.8)
time when k=3.

7. References

[1] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis, John Wiley, New
York, 1973, p. 235.

[2] D. Avis, “Lower bounds for geometric problems,”Proc. Allerton Conference, Urbana,
Illinois, October 1980.

[3] M. I. Shamos, “Computational geometry,” Ph.D. thesis, Yale University, 1978.

[4] G. T. Toussaint, “Pattern recognition and geometrical complexity,”Proc. Fifth Interna-
tional Conference on Pattern Recognition, Miami Beach, December 1980, pp. 1324-
1347.

[5] M. I. Shamos, “Geometric complexity,”Proc. 7th ACM Symposium on the Theory of
Computing, May 1975, pp. 224-233.

[6] D. T. Lee and F. P. Preparata, “The all nearest-neighborhood problem for convex poly-
gons,” Information Processing Letters, Vol. 7, June 1978, pp. 189-192.

[7] G. T. Toussaint, “The relative neighborhood graph of a finite planar set,”Pattern Reco-
gnition, Vol. 12, 1980, pp. 261-268.

dmin S1 S2,()

dmin S1 S2,() n diam S1() diam S2()+()
dmin S1 S2,()

- 4 -

5. Experimental Results

In this section, we describe the implementation of one of the above algorithms and compare
it to the brute-force method. The implementation uses the Gabriel graph because this graph is easy
to obtain from the Voronoi diagram. An edge in the Delaunay triangulation is an edge in the Gabri-
el graph if it intersects its corresponding Voronoi edge [9].

ALGORITHM MIN

begin

Step 1: Compute the Voronoi diagram of S = S1 ∪ S2.

Step 2: From the dual of the Voronoi diagram, obtain the Gabriel graph of S.

Step 3: From among the edges of the Gabriel graph, determine the set of pairs of points

 such that one is from S1 and the other from S2.

Step 4: Compute the distance between all pairs of points in Step 3.

Step 5: Determine the minimum of the distances computed in Step 4.

end

To evaluate the performance of algorithm MIN against the brute-force method, a Monte Car-
lo simulation was carried out. Points of both sets S1 and S2 were such that each set was distributed
uniformly in a unit square. The size of each set considered was n = 100, 500, 1000 or 2500. Each
case was repeated a number of times and the running times for both the brute-force method and the
MIN are shown in Table 1. These running times were obtained by carrying out a simulation in an

ALGORITHM n = 100 (75) n = 500 (75) n = 1000 (25) n = 2500 (15)

BRUTE-FORCE

MIN

Time

(secs)

Time

(secs)
Time

(secs)

Time

(secs)

Std.

dev.
Std.

dev.
Std.

dev.

Std.

dev.

0.0000

0.0019

0.017

0.083

0.618

0.523

0.0041

0.0039

2.530

1.129

16.333

 2.621

0.0082

0.0132

0.0102

0.0531

Table 1: Running times to compute the minimum distance between two separable sets each
containing n points. The points of each set were such that each set was distributed
uniformly in a unit square. The numbers inside the parentheses indicate the number
of times the experiment was repeated.

- 3 -

Proof: Let p ∈ S1 andq ∈ S2 determine the minimum distance betweenS1 andS2 and assume
edgepq is not contained in MST(S). Thenp andq are connected in the MST ofS by a path
through at least one other vertex of MST(S). Furthermore, on this path there exists an edge
joining two verticesp’, q’ such thatp’ ∈ S1 andq’ ∈ S2. Note that it is possible thatp’ = p or
q’ = q but not both. Sincep’q’ is contained in MST(S) it follows that
which is a contradiction. Ifpq is contained in MST(S) it must be contained in any sub-graph
of the MST. This proves the sufficiency for G*(S) to exhibit theedge-inclusion property. To
see that it is also a necessary condition consider an MST in whichk edges are removed leav-
ing k +1 treesT1, T2,...,Tk+1. LetT1 ∈ S1 andT2,...,Tk+1 ∈ S2. Then clearly is
realized by an edge which is not contained inT1 ∪ T2 ∪... ∪ Tk+1.

 Q.E.D.

The above theorem suggests algorithms for computing and also characterizes
the difference between theset-distance problem and theclosest-pair problem. In the latter problem
it is not necessary that G*(S) be a sub-graph of MST(S) for G*(S) to always contain the edge de-
fining the closest pair.

3. Algorithms for Planar Sets of Points

There exist several graphs onS that contain O(n) edges, can be computed in O(n log n) worst-
case running time and O(n) expected time under certain probability models, and exhibit theedge-
inclusion property for . Among the more well known are the MST [3], the relative
neighborhood graph (RNG) [7], [8], the Gabriel graph (GG) [9], and the Delaunay triangulation
(DT) [10]. In fact the above graphs are related to each other as follows [4]:

 MST⊆ RNG⊆ GG⊆ DT.

Any of the above algorithms [3], [7]-[10], could be used to obtain an O(n log n) algorithm
for computing . Once the graph forS is obtained it is a trivial matter to check its edges
sequentially ignoring those containing vertices belonging to the same set and updating a tentative
answer whenever a smaller set-distance is encountered. Since these graphs contain no more than
3n-6 edges O(n) time suffices for this step. Furthermore, Avis [2] has shown thatΩ(n log n) is a
lower bound for this problem and hence the above algorithms are optimal to within a constant fac-
tor. It should also be noted that the above algorithms could be used to compute the closest pair as
well, although it is doubtful that in practice they would be faster than computing the closest pair
directly via divide and conquer or by first computing thenearest neighbor graph [3].

4. An O(n) Algorithm for Convex Polygons

The set distance problem for convex polygons can be easily stated as the following coloring
problem. Given a convex polygon with its vertices arbitrarily colored with two colors, find the
closest pair of vertices of opposite colors. Close refers again to smallest euclidean distance.
Supowit [8] has designed an O(n) worst-case algorithm for computing the RNG of a convex poly-
gon. Once the RNG is obtained can be computed in O(n) time leading to an O(n) worst-case
running time algorithm for the set-distance problem for convex polygons.

d p’,q’() d p q,()<

dmin S1 S2,()

dmin S1 S2,()

dmin S1 S2,()

dmin S1 S2,()

dmin

- 2 -

where and

Clearly can always be computed in O(n) time. Duda and Hart [1] point out
that is computationally more attractive than by claiming that requires the compu-
tation of all n2 distances, resulting in an O(n2) algorithm.

In this paper we show that dmin(S1, S2) can be computed in O(n log n) time in the worst-case.
Since Ω(n log n) is a lower bound for this problem [2], the algorithms given here are optimal to
within a multiplicative constant. In addition the algorithms exhibit O(n) expected running time for
a wide class of underlying distributions of the points. Thus, even in the worst case, it is not neces-
sary to compute n2 distances. Furthermore, when S is a convex polygon, the vertices of which are
arbitrarily colored with two colors, it is shown that the closest pair of vertices of opposite colors
can be found in O(n) time in the worst case. These results generalize existing results on the closest-
pair problem.

2. Minimum Set Distance and the Closest Pair

The closest-pair problem consists of determining the pair of points in a set S that are closest
together in the sense of minimizing the euclidean distance. This problem has received attention re-
cently in the literature on computational geometry [3], [4]. Shamos [5] has shown that Ω(n log n)
is a lower bound for this problem, and in [3] presents a divide-and-conquer algorithm that runs in
O(n log n) time, and is thus optimal. When the input is a convex n-vertex polygon rather than an
arbitrary set of points the Ω(n log n) lower bound does not hold. Lee and Preparata [6] show that
this additional property is sufficient to obtain an O(n) algorithm. Actually Lee and Preparata [6]
solve the more general problem of finding the nearest neighbor of every vertex (the nearest neigh-
bor graph is obtained by joining with an edge every vertex to its nearest neighbor). One such pair
will be the closest pair.

The closest pair problem appears similar in some sense to the minimum set-distance problem.
That the two problems are not identical is obvious from the observation that the closest pair in S
may consist of two points both of which belong to Si, i = 1, 2. In fact the pair of points p ∈ S1, q ∈
S2 realizing the minimum set distance do not even correspond to an edge that is guaranteed to be
contained in the nearest neighbor graph (NNG) of S, i.e., the NNG does not exhibit the edge-in-
clusion property for the minimum set-distance edge. Thus we cannot solve the set distance problem
by first computing NNG(S) and selecting its shortest edge connecting a point in S1 with another
point in S2.

On the other hand it is trivial that the complete graph on S, G(S) does exhibit the edge-inclu-
sion property for . However choosing by examining all the edges of G(S) leads to an
O(n2) algorithm. Thus we are interested in sub-graphs of G(S), say G*(S), that can be computed in
o(n2) time, that have preferably O(n) edges, and that exhibit the edge-inclusion property for .
We show that a necessary and sufficient condition for G*(S) to exhibit the edge-inclusion property
is that G*(S) be the minimal spanning tree (MST) of S.

Theorem 2.1: Given a set S = S1 ∪ S2, the pair of points p ∈ S1, q ∈ S2 realizing the minimum
distance, determine an edge in the MST of S

m1
1
n
--- pi

i 1=

n

∑= m2
1
n
--- qi

i 1=

n

∑=

dmean S1 S2,()
dmean dmin dmin

dmin dmin

dmin

- 1 -

Optimal Algorithms for Computing the Minimum Distance
Between Two Finite Planar Sets

Godfried T. Toussaint
and

Binay K. Bhattacharya

ABSTRACT

It is shown in this paper that the minimum distance between two finite planar sets if
n points can be computed in O(n log n) worst-case running time and that this is opti-
mal to within a constant factor. Furthermore, when the sets form a convex polygon
this complexity can be reduced to O(n).

Index terms: minimum distance between sets, cluster analysis, pattern recognition,
coloring problems, convex polygons, algorithms, computational geometry, complexi-
ty.

CR Categories: 3.63, 5.24, 5.25

1. Introduction

Let S1 = {p1, p2,..., pn} and S2 = {q1,q2,..., qn} be two planar sets of n points each and let S =
S1 ∪ S2. The sets need not have equal cardinality but such an assumption simplifies notation. A
point pi is given in terms of the cartesian coordinates xi and yi. The minimum distance between S1
and S2, denoted by , is defined as

where d(pi, qj) is the euclidean distance between pi and qj.

Another frequently used distance between sets is given by:

dmin S1 S2,()

dmin S1 S2,() min

i j,
d pi q j,(){ } i j, , 1 2 … n, , ,= =

dmean S1 S2,() d m1 m2,()=

