
OUTPUT-SENSITIVE ALGORITHMS FOR COMPUTING NEAREST-NEIGHBOUR
DECISION BOUNDARIES∗

David Bremner† Erik Demaine‡ Jeff Erickson§ John Iacono¶ Stefan Langerman‖

Pat Morin∗∗ Godfried Toussaint††

ABSTRACT. Given a set R of red points and a set B of blue points, the nearest-neighbour decision rule

classifies a new point q as red (respectively, blue) if the closest point to q in R ∪ B comes from R
(respectively, B). This rule implicitly partitions space into a red set and a blue set that are separated by

a red-blue decision boundary. In this paper we develop output-sensitive algorithms for computing this
decision boundary for point sets on the line and in R

2. Both algorithms run in time O(n log k), where k
is the number of points that contribute to the decision boundary. This running time is the best possible
when parameterizing with respect to n and k.

1 Introduction

Let S be a set of n points in the plane that is partitioned into a set of red points denoted by R and a set of

blue points denoted by B. The nearest-neighbour decision rule classifies a new point q as the colour of the

closest point to q in S. The nearest-neighbour decision rule is popular in pattern recognition as a means
of learning by example. For this reason, the set S is often referred to as a training set.

Several properties make the nearest-neighbour decision rule quite attractive, including its intu-

itive simplicity and the theorem that the asymptotic error rate of the nearest-neighbour rule is bounded
from above by twice the Bayes error rate [6, 8, 16]. (See [17] for an extensive survey of the nearest-

neighbour decision rule and its relatives.) Furthermore, for point sets in small dimensions, there are

efficient and practical algorithms for preprocessing a set S so that the nearest neighbour of a query point
q can be found quickly.

The nearest-neighbour decision rule implicitly partitions the plane into a red set and a blue set

that meet at a red-blue decision boundary. One attractive aspect of the nearest-neighbour decision rule is
that it is often possible to reduce the size of the training set S without changing the decision boundary. To

see this, consider the Voronŏı diagram of S, which partitions the plane into convex (possibly unbounded)
polygonal Voronŏı cells, where the Voronŏı cell of point p ∈ S is the set of all points that are closer to p

∗This research was partly funded by the Alexander von Humboldt Foundation and The Natural Sciences and Engineering
Research Council of Canada.

†Faculty of Computer Science, University of New Brunswick, bremner@unb.ca
‡MIT Laboratory for Computer Science, edemaine@mit.edu
§Computer Science Department, University of Illinois, jeffe@cs.uiuc.edu
¶Polytechnic University, jiacono@poly.edu
‖Chargé de recherches du FNRS, Université Libre de Bruxelles, stefan.langerman@ulb.ac.be

∗∗School of Computer Science, Carleton University, morin@cs.carleton.ca
††School of Computer Science, McGill University, godfried@cs.mcgill.ca

1

(a) (b)

Figure 1: The Voronŏı diagram (a) before Voronŏı condensing and (b) after Voronŏı condensing. Note

that the decision boundary (in bold) is unaffected by Voronŏı condensing. Note: In this figure, and all
other figures, red points are denoted by white circles and blue points are denoted by black disks.

than to any other point in S (see Figure 1.a). If the Voronŏı cell of a red point r is completely surrounded
by the Voronŏı cells of other red points then the point r can be removed from S and this will not change

the classification of any point in the plane (see Figure 1.b). We say that these points do not contribute to

the decision boundary, and the remaining points contribute to the decision boundary.

The preceding discussion suggests that one approach to reducing the size of the training set S
is to simply compute the Voronŏı diagram of S and remove any points of S whose Voronŏı cells are
surrounded by Voronŏı cells of the same colour. Indeed, this method is referred to as Voronŏı condensing

[18]. There are several O(n log n) time algorithms for computing the Voronŏı diagram a set of points in

the plane, so Voronŏı condensing can be implemented to run in O(n log n) time.1 However, in this paper
we show that we can do significantly better when the number of points that contribute to the decision

boundary is small. Indeed, we show how to do Voronŏı condensing in O(n log k) time, where k is the

number of points that contribute to the decision boundary (i.e., the number of points of S that remain
after Voronŏı condensing). We also show that the same result holds even if there are c > 2 colour classes.

Algorithms, like these, in which the size of the input and the size of the output play a role in the running

time are referred to as output-sensitive algorithms.

Readers familiar with the literature on output-sensitive convex hull algorithms may recognize

the expression O(n log k) as the running time of optimal algorithms for computing convex hulls of n
point sets with k extreme points, in 2 or 3 dimensions [2, 4, 5, 13, 19]. This is no coincidence. Given

a set of n points in R
2, we can colour them all red and add three blue points at infinity (see Figure 2).

In this set, the only points that contribute to the nearest-neighbour decision boundary are the three
blue points and the red points on the convex hull of the original set. Thus, identifying the points that

contribute to the nearest-neighbour decision boundary is at least as difficult as computing the extreme

points of a set.

Observe that, once the size of the training set has been reduced by Voronŏı condensing, the con-

densed set can be preprocessed in O(k log k) time to answer nearest neighbour queries in O(log k) time

per query. This makes it possible to do nearest-neighbour classifications in O(log k) time. Alternatively,
the algorithm we describe for computing the nearest neighbour decision boundary actually produces the

Voronŏı diagram of the condensed set (which has size O(k)) that can be preprocessed in O(k) time by
Kirkpatrick’s point-location algorithm [12] to allow nearest neighbour classification in O(log k) time.

1Historically, the first efficient algorithm for specifically computing the nearest-neighbour decision boundary is due to Dasarathy
and White [7] and runs in O(n4) time. The first O(n log n) time algorithm for computing the Voronŏı diagram of a set of n points
in the plane is due to Shamos [15].

2

Figure 2: The relationship between convex hulls and decision boundaries. Each vertex of the convex
hull of R contributes to the decision boundary.

The remainder of this paper is organized as follows: In Section 2 we describe an algorithm for
computing the nearest-neighbour decision boundary of points on a line that runs in O(n log k) time. In

Section 3 we present an algorithm for points in the plane that also runs in O(n log k) time. Finally, in

Section 4 we summarize and conclude with open problems.

2 A 1-Dimensional Algorithm

In the 1-dimensional version of the nearest-neighbour decision boundary problem, the input set S con-

sists of n real numbers. Imagine sorting S, so that S = {s1, . . . , sn} where si < si+1 for all 1 ≤ i < n.
The decision boundary consists of all pairs (si, si+1) where si is red and si+1 is blue, or vice-versa. Thus,

this problem is solvable in linear-time if the points of S are sorted. Since sorting the elements of S can

be done using any number of O(n log n) time sorting algorithms, this immediately implies an O(n log n)
time algorithm. Next, we give an algorithm that runs in O(n log k) time and is similar in spirit to Hoare’s

quicksort [11].

To find the decision boundary in O(n log k) time, we begin by computing the median ele-
ment m = sdn/2e in O(n) time using any one of the existing linear-time median finding algorithms

(see [3]). Using an additional O(n) time, we split S into the sets S1 = {s1, . . . , sdn/2e−1} and S2 =
{sdn/2e+1, . . . , sn} by comparing each element of S to the median element m. At the same time we also
find sdn/2e−1 and sdn/2e+1 by finding the maximum and minimum elements of S1 and S2, respectively.

We then check if (sdn/2e−1, m) and/or (m, sdn/2e+1) are part of the decision boundary and report them
if necessary.

3

At this point, a standard divide-and-conquer algorithm would recurse on both S1 and S2 to give

an O(n log n) time algorithm. However, we can improve on this by observing that it is not necessary to
recurse on a subproblem if it contains only elements of one colour, since it will not contribute a pair to

the decision boundary. Therefore, we recurse on each of S1 and S2 only if they contain at least one red

element and one blue element.

The correctness of the above algorithm is clear. To analyze its running time we observe that the

running time is bounded by the recurrence

T (n, k) ≤ O(n) + T (n/2, l) + T (n/2, k − l) ,

where l is the number of points that contribute to the decision boundary in S1 and where T (1, k) = O(1)
and T (n, 0) = O(n). An easy inductive argument that uses the concavity of the logarithm shows that
this recurrence is maximized when l = k/2, in which case the recurrence solves to O(n log k) [5].

Theorem 1. The nearest-neighbour decision boundary of a set of n red and blue real numbers can be

computed in O(n log k) time, where k is the number of elements that contribute to the decision boundary.

3 A 2-Dimensional Algorithm

In the 2-dimensional nearest-neighbour decision boundary problem the Voronŏı cells of S are (possibly
unbounded) convex polygons and the goal is to find all Voronŏı edges that bound two cells whose

defining points have different colours. Throughout this section we will assume that the points of S
are in general position so that no four points of S lie on a common circle. This assumption is not very
restrictive, since general position can be simulated using infinitesmal perturbations of the input points.

It will be more convenient to present our algorithm using the terminology of Delaunay triangu-

lations. A Delaunay triangle in S is a triangle whose vertices (v1, v2, v3) are in S and such that the circle
with v1, v2 and v3 on its boundary does not contain any point of S in its interior. A Delaunay triangu-

lation of S is a partitioning of the convex hull of S into Delaunay triangles. Alternatively, a Delaunay

edge is a line segment whose vertices (v1, v2) are in S and such that there exists a circle with v1 and v2

on its boundary that does not contain any point of S in its interior. When S is in general position, the

Delaunay triangulation of S is unique and contains all triangles whose edges are Delaunay edges (see
[14]). It is well known that the Delaunay triangulation and the Voronŏı diagram are dual in the sense

that two points of S are joined by an edge in the Delaunay triangulation if and only if their Voronŏı cells

share an edge.

We call a Delaunay triangle or Delaunay edge bichromatic if its set of defining vertices contains

at least one red and at least one blue point of S. Thus, the problem of computing the nearest-neighbour

decision boundary is equivalent to the problem of finding all bichromatic Delaunay edges.

3.1 The High Level Algorithm

In the next few sections, we will describe an algorithm that, given a value κ ≥ k, finds the set of all

bichromatic Delaunay triangles in S in O((κ2 + n) log κ) time, which for κ ≤ √
n simplifies to O(n log κ).

To obtain an algorithm that runs in O(n log k) time, we repeatedly guess the value of κ, run the algorithm

4

Figure 3: A pivot operation.

until we find the entire decision boundary or until it determines that κ < k and, in the latter case, restart

the algorithm with a larger value of κ. If we ever reach a point where the value of κ exceeds
√

n
then we stop the entire algorithm and run an O(n log n) time algorithm to compute the entire Delaunay

triangulation of S.

The values of κ that we use are κ = 22i

for i = 0, 1, 2, . . . , dlog log ne. Since the algorithm will
terminate once κ ≥ k or κ ≥ √

n, the total cost of all runs of the algorithm is therefore

T (n, k) =

dlog log ke
∑

i=0

O(n log 22i

) =

dlog log ke
∑

i=0

O(n2i) = O(n log k) ,

as required.

3.2 Pivots

A key subroutine in our algorithm is the pivot2 operation illustrated in Figure 3. A pivot in the set of

points S takes as input a ray and reports the largest circle whose center is on the ray, has the origin of

the ray on its boundary and has no point of S in its interior. We will make use of the following data
structuring result, due to Chan [4]. For completeness, we also include a proof.

Lemma 1 (Chan 1996). Let S be a set of n points in R
2. Then, for any integer 1 ≤ m ≤ n, there exists a

data structure of size O(n) that can be constructed in O(n log m) time, and that can perform pivots in S in

O(n
m log m) time per pivot.

Proof. Dobkin and Kirkpatrick [9, 10] show how to preprocess a set S of n points in O(n log n) time

to answer pivot queries in O(log n) time per query. Chan’s data structure simply partitions S into n/m
groups each of size m and then uses the Dobkin-Kirkpatrick data structure on each group. The time to

build all n/m data structures is n
m ×O(m logm) = O(n log m). To perform a query, we simply query each

of the n/m data structures in O(log m) time per data structure and report the smallest circle found, for
a query time of n

m × O(log m) = O(n
m log m).

In the following, we will be using Lemma 1 with a value of m = κ2, so that the time to construct

the data structure is O(n log κ) and the query time is O(n
κ2 log κ). We will use two such data structures,

2The term pivot comes from linear programming. The relationship between a (polar dual) linear programming pivot and
the circular pivot described here is evident when we consider the parabolic lifting that transforms the problem of computing
a 2-dimensional Delaunay triangulation to that of computing a 3-dimensional convex hull of a set of points on the paraboloid
z = x2 + y2. In this case, the circle is the projection of the intersection of a plane with the paraboloid.

5

r

b
C

b′ r

b
C

b′

C1

r′

(a) (b)

Figure 4: The (a) first and (b) second pivot used to find a bichromatic edge (r′, b′).

one for performing pivots in the set R of red points and one for performing pivots in the set B of blue

points.

3.3 Finding the First Edge

The first step in our algorithm is to find a single bichromatic edge of the Delaunay triangulation. Refer

to Figure 4. To do this, we begin by choosing any red point r and any blue point b. We then perform a
pivot in the set B along the ray with origin r that contains b. This gives us a circle C that has no blue

points in its interior and has r as well as some blue point b′ (possibly b = b′) on its boundary. Next, we

perform a pivot in the set R along the ray originating at b′ and passing through the center of C. This
gives us a circle C1 that has no point of S in its interior and has b′ and some red point r′ (possibly r = r′)
on its boundary. Therefore, (r′, b′) is a bichromatic edge in the Delaunay triangulation of S.

The above argument shows how to find a bichromatic Delaunay edge using only 2 pivots, one
in R and one in B. The second part of the argument also implies the following useful lemma.

Lemma 2. If there is a circle with a red point r and a blue point b on its boundary, and no red (respectively,

blue) points in its interior, then r (respectively, b) contributes to the decision boundary.

3.4 Finding More Points

Let Q be the set of points that contribute to the decision boundary, i.e., the set of points that are the

vertices of bichromatic triangles in the Delaunay triangulation of S. Suppose that we have already found

a set P ⊆ Q and we wish to either (1) find a new point p ∈ Q \ P or (2) verify that P = Q.

To do this, we will make use of the augmented Delaunay triangulation of P (see Figure 5). This is

the Delaunay triangulation of P ∪{v1, v2, v3}, where v1, v2, and v3 are three black points “at infinity” (see

Figure 5). For any triangle t, we use the notation C(t) to denote the circle whose boundary contains the
three vertices of t (note that if t contains a black point then C(t) is a halfplane). The following lemma

allows us to tell when we have found the entire set of points Q that contribute to the decision boundary.

Lemma 3. Let ∅ 6= P ⊆ Q. The following statements are equivalent:

1. For every triangle t in the augmented Delaunay triangulation of P , if t has a blue (respectively, red)

6

v1 v2

v3

Figure 5: The augmented Delaunay triangulation of S.

t

C(t)

b

r

Figure 6: If Statement 1 of Lemma 3 is not true then P 6= Q.

vertex then C(t) does not have a red (respectively, blue) point of S in its interior.

2. P = Q.

Proof. First we show that if Statement 1 of the lemma is not true, then Statement 2 is also not true, i.e.,

P 6= Q. Suppose there is some triangle t in the augmented Delaunay triangulation of P such that t has
a blue vertex b and C(t) contains a red point of S in its interior. Pivot in R along the ray originating at

b and passing through the center of C(t) (see Figure 6). This will give a circle C with b and some red
point r /∈ P on its boundary and with no red points in its interior. Therefore, by Lemma 2, r contributes

to the decision boundary and is therefore in Q, so P 6= Q. A symmetric argument applies when t has a

red vertex r and C(t) contains a blue vertex in its interior.

Next we show that if Statement 2 of the lemma is not true then Statement 1 is not true. Suppose

that P 6= Q. Let r be a point in Q \ P and, without loss of generality, assume r is a red point. Since

r ∈ Q, there is a circle C with r and some other blue point b on its boundary and with no points of S
in its interior. We will use r and b to show that the augmented Delaunay triangulation of P contains a

triangle t such that either (1) b is a vertex of t and C(t) contains r in its interior, or (2) C(t) contains

both r and b in its interior. In either case, Statement 1 of the lemma is not true because of triangle t.

Refer to Figure 7 for what follows. Consider the largest circle C1 that is concentric with C and

that contains no point of P in its interior (this circle is at least as large as C). The circle C1 will have at

7

least one point p1 of P on its boundary (it could be that p1 = b, if b ∈ P). Next, perform a pivot in P
along the ray originating at p1 and containing the center of C1. This will give a circle C2 that contains
C1 and with two points p1 and p2 of P ∪{v1, v2, v3} on its boundary and with no points of P ∪{v1, v2, v3}
in its interior. Therefore, (p1, p2) is an edge in the augmented Delaunay triangulation of P .

The edge (p1, p2) partitions the interior of C2 into two pieces, one that contains r and one that
does not. It is possible to move the center of C2 along the perpendicular bisector of (p1, p2) maintaining

p1 and p2 on the boundary of C2. There are two directions in which the center of C2 can be moved

to accomplish this. In one direction, say
−→
d , the part of the interior that contains r only increases, so

move the center in this direction until a third point p3 ∈ P ∪ {v1, v2, v3} is on the boundary of C2. The

resulting circle has the points p1, p2, and p3 on its boundary and no points of P in its interior, so p1, p2

and p3 are the vertices of a triangle t in the augmented Delaunay triangulation of P . The circumcircle

C(t) contains r in its interior and contains b either in its interior or on its boundary. In either case, t
contradicts Statement 1, as promised.

Note that the first paragraph in the proof of Lemma 3 gives a method of testing whether P = Q,
and when this is not the case, of finding a point in Q\P . For each triangle t in the Delaunay triangulation

of P , if t contains a blue vertex b then perform a pivot in R along the ray originating at b and passing

through C(t). If the result of this pivot is C(t), then do nothing. Otherwise, the pivot finds a circle C
with no red points in its interior and that has one blue point b and one red point r /∈ P on its boundary.

By Lemma 2, the point r must be in Q. If t contains a red vertex, repeat the above procedure swapping

the roles of red and blue. If both pivots (from the red point and the blue point) find the circle C(t), then
we have verified Statement 1 of Lemma 3 for the triangle t.

The above procedure performs at most two pivots for each triangle t in the augmented Delaunay

triangulation of P . Therefore, this procedure performs O(|P |) = O(κ) pivots. Since we repeat this
procedure at most κ times before deciding that κ < k, we perform O(κ2) pivots, at a total cost of

O(κ2 × n
κ2 log κ) = O(n log κ). The only other work done by the algorithm is that of recomputing

the augmented Delaunay triangulation of P each time we add a new vertex to P . Since each such

computation takes O(|P | log |P |) time and |P | ≤ κ, the total amount of work done in computing all

these triangulations is O(κ2 log κ).

In summary, we have an algorithm that given S and κ decides whether the condensed set Q
of points in S that contribute to the decision boundary has size at most κ, and if so, computes Q.

This algorithm runs in O((κ2 + n) log κ) time. By trying increasingly large values of κ as described in
Section 3.1 we obtain our main theorem.

Theorem 2. The nearest-neighbour decision boundary of a set of n red and blue points in R
2 can be

computed in O(n log k) time, where k is the number of points that contribute to the decision boundary.

Remark: In the pattern-recognition community pattern classification rules are often implemented as

neural networks. In the terminology of neural networks, Theorem 2 states that it is possible, in O(n log k)
time, to design a simple one-layer neural network that implements the nearest-neighbour decision rule

and uses only k McCulloch-Pitts neurons (threshold logic units).

8

r b

p1

C

C1

r

p1 = b

C = C1

r b

p1
p2

C2

C1

r

p1 = b
p2

C1

C2

r b

p1
p2

t
p3

C2

C(t)

r

p1 = b
p2

t
p3

C2

C(t)

(1) (2)

Figure 7: If P 6= Q then Statement 1 of Lemma 3 is not true. The left column (1) corresponds to the
case where b 6∈ P and the right column (2) corresponds to the case where b ∈ P .

9

3.5 More than 2 Color Classes

Theorem 2 extends easily to the case where there are c > 2 colour classes and our goal is to find all
Voronŏı edges bounding two Voronŏı cells of different colour. In this case we build a pivot data structure

for each of the c colour classes. When performing pivots from a point in some colour class R, we perform

queries in all the data structures except the one for colour class R. (This is equivalent to a pivot in the
set S \ R.) This increases the cost of pivot operations to O(cn

m log m).

The only other modifications to the algorithm are the tuning of a few parameters. Note that c
is a lower bound on k because each colour class contributes at least 1 point to the decision boundary.

Therefore, we may assume that c ≤ κ ≤ n1/3 since we can always start our algorithm with κ = 22dlog log ce

and we can use an O(n log n) time algorithm when κ > n1/3. In the previous section, we chose m = κ2,

but could just as easily have chosen m = κ3 without affecting the analysis of the running time (this is
where the assumption that κ ≤ n1/3 is used). With this choice of m, the time to perform a pivot becomes

O
(cn

m
log m

)

= O
(n

κ2
log m

)

.

Each round of the algorithm performs O(κ2) queries. Therefore, each round can be implemented in

O((κ3 +n) log m) = O(n log κ) time. The rest of the analysis remains unaffected and the entire algorithm
runs in O(n log k) time.

Theorem 3. The nearest-neighbour decision boundary of a set of n points from c different colour classes

in R
2 can be computed in O(n log k) time, where k is the number of points that contribute to the decision

boundary.

4 Conclusions

We have given O(n log k) time algorithms for computing nearest-neighbour decisions boundaries of

bichromatic point sets in 1 and 2 dimensions, where k is the number of points that contribute to the
decision boundary. A standard application of Ben-Or’s lower-bound technique [1] shows that even the

1-dimensional algorithm is optimal in the algebraic decision tree model of computation. Simple variants

of these algorithms give solutions for computing the nearest-neighbour decision boundary of points sets
with c > 2 colours that run in the same time bounds.

We have not studied algorithms for dimensions d ≥ 3. In this case, it is not even clear what

the term “output-sensitive” means. Should k be the number of points that contribute to the decision
boundary, or should k be the complexity of the decision boundary? In the first case, k ≤ n for any

dimension d, while in the second case, k could be as large as Ω(ndd/2e). To the best of our knowledge,

both are open problems.

Acknowledgements

This research wash initiated at the McGill Worshop on Instance-Based Learning at Bellairs Marine Biology
Institute, Jan. 21–Feb. 6, 2003. The authors would like to thank the other workshop participants, namely,

Greg Aloupis, Jit Bose, Vida Dujmović, Ferran Hurtado, Danny Krizanc, Henk Meijer, Mark Overmars,

10

Tom Shermer, Sue Whitesides, and David Wood for helpful discussions and for providing a stimulating

working environment. The authors are also grateful to an anonymous referee for showing us how to
remove a log c factor from the running time in Theorem 3.

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In Proceedings of

the Fifteenth Annual ACM Symposium on Theory of Computing, pages 80–86, 1983.

[2] B. K. Bhattacharya and S. Sen. On a simple, practical, optimal, output-sensitive randomized planar
convex hull algorithm. Journal of Algorithms, 25(1):177–193, 1997.

[3] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. Journal of

Computing and Systems Science, 7:448–461, 1973.

[4] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete

& Computational Geometry, 16:361–368, 1996.

[5] T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Output-sensitive con-
struction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete & Com-

putational Geometry, 18:433–454, 1997.

[6] T. M. Cover and P. E. Hart. Nearest neighbour pattern classification. IEEE Transactions on Informa-

tion Theory, 13:21–27, 1967.

[7] B. Dasarathy and L. J. White. A characterization of nearest-neighbour rule decision surfaces and a
new approach to generate them. Pattern Recognition, 10:41–46, 1978.

[8] L. Devroye. On the inequality of Cover and Hart. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 3:75–78, 1981.

[9] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of poyhedral intersection. Theoretical Computer

Science, 27:241–253, 1983.

[10] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of convex
polyhedra. Journal of Algorithms, 6:381–392, 1985.

[11] C. A. R. Hoare. ACM Algorithm 64: Quicksort. Communications of the ACM, 4(7):321, 1961.

[12] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–35,

1983.

[13] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal on

Computing, 15(1):287–299, 1986.

[14] F. P Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, 1985.

[15] M. I. Shamos. Geometric complexity. In Proceedings of the 7th ACM Symposium on the Theory of

Computing (STOC 1975), pages 224–253, 1975.

[16] C. Stone. Consistent nonparametric regression. Annals of Statistics, 8:1348–1360, 1977.

[17] G. T. Toussaint. Proximity graphs for instance-based learning. Manuscript, 2003.

11

[18] G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen. The application of Voronoi diagrams to

non-parametric decision rules. In Proceedings of Computer Science and Statistics: 16th Symposium

of the Interface, 1984.

[19] R. Wenger. Randomized quick hull. Algorithmica, 17:322–329, 1997.

12

