On Removing Extrinsic Degeneracies in
Computational Geometry*

Francisco Gomez
Department of Applied Mathematics
Universidad Politecnica de Madrid
Madrid, Spain

Suneeta Ramaswamsi
Department of Computer Science

Rutgers University
Camden, NJ, USA

Godfried Toussaint
School of Computer Science

McGill University
Montréal, Québec, Canada

Abstract

Existing methods for removing degeneracies in computational geometry can
be classified as either approzimation or perturbation methods. These methods
give the implementer two rather unsatisfactory choices: find an approzimate so-
lution to the original problem given, or find an ezact solution to an approzima-
tion of the original problem. We address an alternative approach for removing
ertrinsic degeneracies that has received little attention in the computational
geometry literature. Often a typical computational geometry paper will make
a non-degeneracy assumption that can in fact be removed (without perturbing
the input) by a global rigid transformation of the input. Once the solution is

*This research was carried out during the first author’s visit to and the second author’s post-
doctoral fellowship at McGill University in 1995. The first author was self-supported, and the
second and third authors were supported by NSERC Grant no. OGP0009293 and FCAR, Grant no.
93-ER-0291.

obtained on the transformed non-degenerate input, it can be transformed back
trivially to yield the solution to the original problem. In these situations, by
applying suitable pre- and post- processing steps to an algorithm, we obtain
the ezact solution to the original problem using the algorithm that assumes a
non-degenerate input, even when that input is in fact degenerate.

We consider several non-degeneracy assumptions that are typically made in
the literature, propose algorithms for performing the pre- and post- processing
steps that remove these degeneracies, analyze their complexity and, for some
of these problems, give lower bounds on their worst-case complexity. The as-
sumptions considered here include: (1) no two points in the plane have the
same z-coordinate, (2) no two points in space lie on a vertical line, (3) no two
points in space have the same z-coordinate, (4) no three points in space lie on
a vertical plane, and (5) no two line segments lie on a vertical plane.

Incorporating our algorithms with those in the literature that make these
non-degeneracy assumptions, allows those algorithms to work even when the
degeneracies are present, albeit at the cost of increased complexity.

We propose low-degree polynomial-time solutions for the decision, compu-
tation and optimization versions of all these problems. For the optimization
version of problem (5) we give an O(n*) time algorithm, reducing the previous
best Tunning time of O(n®logn).

1 Introduction

Algorithms in computational geometry are usually designed for the real RAM (ran-
dom access machine) assuming that the input is in general position. More specifically,
the general position assumption implies that the input to an algorithm for solving a
specific problem is free of certain degeneracies. Yap [34] has distinguished between
intrinsic or problem-induced and algorithm-induced degeneracies. For example, in
computing the convex hull of a set of points in the plane, where “left” turns and
“right” turns are fundamental primitives, three colinear points constitute a problem-
induced degeneracy. On the other hand, for certain vertical line-sweep algorithms
two points with the same z-coordinate constitute an algorithm-induced degeneracy.
Computational geometers make these assumptions because doing so makes it not only
much easier to design algorithms but often yields algorithms with reduced worst-case
complexities (see [7], for example). On the other hand, to the implementers of ge-
ometric algorithms these assumptions are frustrating. Programmers would like the
algorithms to work for any input that they may encounter in practice, regardless of
the degeneracies such an input contains. In this paper, we discuss techniques to re-
move some commonly occuring algorithm-induced, or eztrinsic, degeneracies in the
input set.

Due to the practical importance of having algorithms work correctly for degenerate
input, there has recently been a flurry of activity on this problem in the computa-

tional geometry literature. A survey of various techniques available for coping with
degeneracies, and their interaction with the real RAM assumption, was written by
Fortune [22]. In one class of methods to deal with degeneracies for solving a problem,
the approach is to compute some approzimation to the exact solution of the problem
when a degenerate input is encountered. For example, Iri and Sugihara [25] proposed
an algorithm for constructing the planar Voronoi diagram that does not “crash” when
it encounters certain degeneracies. It does this by computing a topologically consis-
tent output that may, however, be numerically incorrect. The other well known class
of methods for handling degeneracies is via perturbation. Here the input is perturbed
in some way by an infinitesimal amount so that the degeneracies are no longer present
in the perturbed input. Problem-dependent perturbation methods have actually been
around for some time. For example in 1963 Dantzig [12] proposed one such scheme for
linear programming. For a review of other examples of problem-specific perturbation
schemes, see [20, 32]. More general and powerful methods have recently been pro-
posed by Edelsbrunner and Miicke [17], Yap [34, 33] and Emiris and Canny [19, 20].
An insightful discussion of perturbation methods and their short-comings is given by

Seidel [32].

The above methods give the implementer two rather unsatisfactory choices: find
an approzimate solution to the original problem given, or find an ezact solution to
an approzimation of the original problem. Sometimes it may be possible to convert
the approximate solution obtained from perturbation methods to the exact solution
by using some kind of post-processing step but this step may be difficult and com-
plicated [9]. In fact, Seidel [32] questions the wisdom of using perturbation methods
altogether.

In this paper we address an issue concerning the assumption of extrinsic non-
degeneracies which has received little attention in the computational geometry lit-
erature. Often a typical computational geometry paper will make a non-degeneracy
assumption that can in fact be removed (without perturbing the input) by a global
rigid transformation of the input (such as a rotation, for example). Once the solution
1s obtained on the transformed non-degenerate input, the solution can be transformed
back trivially (by an inverse rotation) to yield the solution to the original problem.
In these situations, by applying suitable pre- and post- processing steps, we obtain
the ezact solution to the original problem using an algorithm that assumes a non-
degenerate input, even when that input is in fact degenerate.

We consider several extrinsic non-degeneracy assumptions that are typically made
in the literature, propose efficient algorithms for performing the pre- and post-processing
steps (suitable rotations) that remove these degeneracies, analyze their complexity in
the real RAM model of computation and, for some of these problems, give lower
bounds on their worst-case complexity. While degeneracies are a practical concern
and the real RAM may be, from the practical standpoint, a poor model if num-
bers become long due to computation of rotations, we restrict ourselves in this work

to infinite precision in order to focus on the purely geometric aspects of removing
algorithm-induced degeneracies. In the practical implementation of our algorithms,
where numerical robustness is important as well, the rational rotation methods of
Canny, Donald and Ressler [10] may be incorporated.

The assumptions considered here include:

1. no two points in the plane have the same z-coordinate,
2. no two points in space lie on a vertical line,

3. no two points in space have the same z-coordinate,

4. no three points in space lie on a vertical plane,

5. no two line segments lie on a vertical plane

Therefore, incorporating our algorithms with those in the literature that make
these non-degeneracy assumptions allows those algorithms to work even when the
degeneracies are present, albeit at the cost of increased complexity.

These problems are also intimately related to those of obtaining “nice” orthogo-
nal projections of polygons and skeletons of spatial subdivisions in such disciplines
as knot-theory [27], graph-drawing [6] and visualization in computer graphics [5].
It is worth pointing out that in the visualization community, the above situations
((1)-(5)) are sometimes referred to simply as degeneracies in the input (see [26], for
example), without necessarily making the distinction between intrinsic and extrinsic.
Removing assumptions (1), (2) and (3) is equivalent to computing so-called regular
and Wirtinger projections of point sets. Removing assumption (4) is equivalent to
finding a plane such that the orthogonal projection of the points onto that plane has
no three projected points co-linear. Removing assumption (5) ensures that no two
projected edges are co-linear and is a well known projection method for visualizing
“wire-frame” objects [26]. We would like to point out that the techniques presented
in this paper may be used to find projections (of points in space) that contain no
four co-circular points. However, this method would require an oracle that computes
intersections between high-degree curves on a sphere. Since such a model of compu-
tation is impractical, we do not present the result here. Also, in order to keep the
paper self-contained, we will discuss new techniques as well as results that follow from
existing methods in computational geometry.

Looking at these degeneracy problems from the point of view of finding “nice” pro-
jections, uncovers additional desirable properties that we would like the transformed
non-degenerate input to have. In order to increase the robustness of our solution even
further, we are interested in obtaining the most non-degenerate input possible. Hence
the five problems itemized above also have their optimization counterparts. We also
give algorithms for such optimal removal of degeneracies.

4

We propose low-degree polynomial-time solutions for the decision, computation
and optimization versions of all these problems. For the optimization version of
problem (5) we give an O(n*) time algorithm, reducing the previous best running

time of O(n®logn) [26].

2 No Two Planar Points on a Vertical Line

Many papers in computational geometry assume that no two points of a given pla-
nar set S have the same z-coordinate. For example, in [29] the assumption is used
to obtain a random monotonic polygon with vertex set S in O(K) time, where
n < K < n?is the number of edges in the visibility graph of the monotonic
chain with vertex set S. We remark that the non-degeneracy assumption made in
[29] is not a convenience but crucial for their algorithm. In this section, we consider
the problem of removing this non-degeneracy assumption.

y-axis

/ 8e
et
: : : 10e
) :
3? 64) 11
5é
S i .
: xX-axis
H ~

Figure 1: A non-regular projection of points on the z-axis.

A projection of S on a line L is said to be regular if each point in S projects to
a distinct point on L, i.e., there are no vertical line degeneracies. In other words the
projection contains n distinct points. Without loss of generality, when a line L is
given, we will assume L to be the z-axis. If this is not the case, then in linear time,
we may always rotate the configuration of points and line together so that L coincides
with the z-axis. Figure 1 illustrates a set of points with a non-regular projection onto
the z-axis.

2.1 The Decision Problem

We consider first the decision problem: given a set S, does it contain a degeneracy
or does it give a regular projection on the z-axis. A very simple algorithm suffices
since we simply need to check for duplicates in the z-coordinate values of the point

set S. This can be done in O(nlogn) time by sorting these values. The projection is
regular if and only if there are no duplicates.

Furthermore, by a reduction from the element-uniqueness problem?, a lower bound
of Q(nlogn) can be established for the regular projection decision problem: Given a
set of n real numbers A = {a;, -, a,}, the input S to the regular projection problem
will be the set of planar points {(a;, %) | 1 < < n}. The elements of A are unique if
and only if S has a regular projection on the z-axis. Thus we have the following.

Theorem 2.1 Given a set S of n distinct points in the plane and a line L, whether
S admits a regular projection onto L can be determined in ©(nlogn) time.

We should point out that the expected complexity of the algorithm can be reduced
to O(n) by allowing the use of floor functions as primitive operations and using a
bucket sorting [14] algorithm.

2.2 The Computation Problem

Let us now turn to the computation problem: given a set S of n distinct points in
the plane, find a rotation of S that removes the degeneracies, or equivalently, a line
L such that S yields a regular projection on L. That a regular projection always
exists follows from the fact that the only forbidden directions of projections are those
determined by the lines through pairs of points of S. The forbidden directions are
represented as follows: Let the circle C'2, representing the set of directions, be the
unit circle in the plane, centered at the origin. For every pair of points in S, translate
the line through them so that it intersects the origin. Intersect each such line with
C? to yield a pair of forbidden points on C2. We now have n(n — 1)/2 not necessarily
distinct forbidden points on C2. Although there are O(n?) such forbidden directions,
they have measure zero on the circle of directions C?. Hence there is indeed no
shortage of directions that allow regular projections. We may determine a direction
for a regular projection by finding a point in the interior of any arc of C? that is
bounded by two distinct adjacent forbidden points. Such a point on C'? may be found
easily in O(n?log n) time by using the brute-force approach of sorting the forbidden
points.

Observe that using the O(nlogn) time slope selection algorithm [11] to find the
k-th and (k+1)-st slopes, which define an allowable interval of directions for obtaining
a regular projection, will not necessarily lead to an improvement in run-time. This is
because the slopes are not necessarily unique and hence the k-th and (k+1)-st slopes
may have the same value. In fact, there may be several slopes, as many as £2(n?),
with the same value.

!The element uniqueness problem is to determine, given an input set of real numbers, if any two
of them are equal. This decision problem was shown to be Q(nlogn) by Dobkin and Lipton [15].

y-axis 8
e Y 7
: 10e y A
3 6l 9e il maxtiy)
* e i e
Polose i
P24 : i
x-axis
o
min{Ax}

Figure 2: Computing a bound on the second largest distinct slope.

By combining the decision problem discussed above with a simple bounding tech-
nique we obtain an efficient algorithm for this problem. Given S, and our goal to
determine a regular projection, first check if the vertical projection of S on the z-axis
is regular. This takes O(nlogn) time, as described in the previous section. If it is,
we have the desired direction.

Hence assume that the projection of S onto the z-axis is not regular. This implies
that the maximum slope, denoted by M, is equal to infinity. As mentioned above,
looking for the next-largest non-duplicate slope, i.e, the maximum slope with the
constraint that it not be infinite, could be costly. Let us denote this slope by Ms.
The key realization for obtaining an efficient algorithm is that we do not need this
constrained maximum slope. All we need is the value M of some slope such that
M, < M < M, which may be found as follows (refer to Figure 2).

Let Az and Ay denote, respectively, the absolute value of the difference in z and
y coordinates of two distinct points in S. The slope of the line going through this pair

A
of points in § is given by A—y Let maxs{Ay} denote the maximum value that Ay
T

can take over all pairs of points in S, 1.e., the width of S in the y-direction. Similarly,
let ming{Az} denote the minimum value that Az can take over all pairs of points in
S, 1.e., the smallest gap in the z-coordinate values of the points in S. Of course, since
the projection on the z-axis is not regular, we have that ming{Az} = 0 (leading to an
infinite maximum slope). To find a non-infinite upper bound on the second highest
slope, first do the following: Sort the points in S by z-coordinate in order to remove
all duplicates from the projected set of points on the z-axis. Let S* C S denote this
reduced set of points with the property that no pair has the same z-coordinate. If
there is just one point in S§*, then we have the case that all points are colinear on
a line parallel to the y-axis. In such a situation, any line except the z-axis will give
us a regular projection. In other words, the desired slope M can be any non-infinite
value.

The desired direction (slope) for rotating S is then given by any finite value

maxs{Ay}
ming«{Az}’
of points that determine ming« Az could be the same pair that yields maxsAy, and
hence S may contain a pair of points that realize the slope M, 1.e., My < M. Since
ming«{Az} > 0 we have that M < M; = oo. Computing maxs{Ay} takes linear
time and computing ming«Az takes linear time once S* has been found, giving us
the following result.

greater than Note that this bound is tight in the sense that the pair

Theorem 2.2 Given a set S of n distinct points in the plane, finding a regular pro-
jection onto the x-azis takes O(nlogn) time.

Once again, the expected complexity of the algorithm can be reduced to O(n) by
allowing the use of floor functions as primitive operations and using a bucket sorting
algorithm [14] in the sorting step.

As an example of the application of our algorithm to remove degeneracies, let us
return to the method of [29]. Our results imply that with a little extra work, their
algorithm will run without having to invoke the assumption that no two points of S
have the same z-coordinate. In particular, combining our results implies that we can
solve the problem in O(nlogn + K) time.

2.3 The Optimization Problem

We consider now the question of not merely removing the degeneracies (finding a
regular projection), but removing them in the best way possible, i.e., we want to find
the projection that is most robust or tolerant in a way that will be made precise
below. One natural definition of tolerance is the idea, which comes from computer
graphics, that the projected points are the result of viewing the points from some
directional angle, perhaps by a viewer or a camera. Once the regular projection has
been obtained it is desirable that the projection remain regular during subsequent
perturbations of the position of the camera. In fact we would like to find, among all
the regular projections, the one that has maximum tolerance in this sense, namely,
the projection that allows the greatest angular deviation of the viewpoint without
violating the regularity of the projection, i.e., without creating degeneracies. We
call this the regular projection with mazimum projective tolerance. The previous
discussion implies that the solution to this problem is determined by the mid-point
of the largest gap among consecutive forbidden points on C?, the circle of directions.
The largest gap can be found by sorting the O(n?) forbidden points.

A more general weighted version of this problem was first solved by Ramos in his
thesis [31] on the tolerance of geometric structures [1]. He uses much more complicated
techniques involving lower envelopes of trigonometric functions, but obtains the same
time complexity as the above algorithm. It is interesting to note that such a simple
algorithm exists for the unweighted case. The result is stated below.

Theorem 2.3 Given a set S of n distinct points in the plane, a regular projection
with the mazimum projective tolerance can be computed in O(n®logn) time and O(n?)
space.

If the model of computation allows the use of the floor function as a primitive
operation then there is a surprising and elegant linear time algorithm based on the
“pigeon-hole” principle and due to Gonzalez [24, 30] for computing the largest gap
of a set of numbers on the real line. This algorithm can be extended to work on
the circle C?, giving us an O(n?) time algorithm for computing a projection with the
maximum projective tolerance.

3 No Two Points in Space on a Vertical Line

The remaining sections of this paper are concerned with removing non-degeneracy
assumptions in 3-D (three-dimensional space), where there exists a greater variety
of possible degeneracies than in the plane. In this section we consider the type of
degeneracy that occurs when two points in space differ in only one of their coordinates,
say the z-coordinate, i.e., when two (or more) points lie on a vertical line. This is one
natural generalization of the planar degeneracy considered in the previous section.

Let S be a set of n distinct points in Euclidean space and let H be a plane. The
definition of a regular projection in 3-D is similar to the one in the plane: a projection
of S on H is said to be regular if each point in S projects to a distinct point on H,
1.e., if no vertical line degeneracies occur when H is the zy-plane. Without loss of
generality, when a plane H is given, we will assume H to be the zy-plane. It is
convenient in 3-D to represent the directions of projection by points on the surface
of the unit sphere centered at the origin, which we denote as C3.

3.1 The Decision Problem

In the decision problem we wish to decide, given a set of points S in 3-D, if it contains
any vertical-line degeneracies, 1.e., if it gives a regular projection on the zy-plane. As
in 2-D, a simple sorting algorithm gives the solution.

Let S, denote the set of points obtained by projecting S onto the zy-plane. First,
sort the points in S, lexicographically by z and y coordinates. In other words, the
points of S;, are sorted by z-coordinate, and if two points have the same z-coordinate,
they are ordered by their y-coordinates. Scan through the sorted list to determine
whether two (or more) points in S, have the same ¢ and y coordinates. If there are
two such points, the projection on the zy-plane is not regular. If there are no such
points, we conclude that there are no vertical line degeneracies in S. The run-time is
dominated by the lexicographic sort step, which takes O(nlogn) time.

Figure 3: Computing a regular projection.

Once again, it is easy to establish a lower bound of @(nlogn) for this decision
problem by showing a reduction from the element-uniqueness problem, for example.
Thus we have the following.

Theorem 3.1 Given a set S of n distinct points in space and a plane H, determining
whether S admits a reqular projection onto H is ©(nlogn).

As in the 2-D case we can obtain O(n) expected time algorithms using bucket
sorting if floor functions are allowed in the model of computation.

3.2 The Computation Problem

In this section, we want to compute, given a set S of n distinct points in space, a
rotation of S that removes vertical-line degeneracies or equivalently, a plane H such
that S yields a regular projection onto H. As in the two-dimensional case, the only
forbidden directions of projections are given by lines in space going through pairs of
points in .S, because S does not admit a regular projection onto planes perpendicular
to these lines. By translating every such line to the origin and intersecting it with

the sphere of directions, we obtain O(n?) (not necessarily distinct) forbidden points
on C3.

We obtain an efficient algorithm for the computation problem in 3-D by applying
a strategy similar to the one in 2-D. First check to see if the set S already projects
regularly onto the zy-plane, which takes O(nlog n) time. Assume now that this is not
the case (i.e., the zy-plane is not a regular projection plane). This implies that there
is at least one forbidden point at the “north-pole” of the sphere of directions C*. Pairs
of points in S that lead to a fixed slope in space correspond to points on “latitude”
circles on C® (see Figure 3). The proper second highest slope corresponds to the

10

smallest such circle containing the north pole (this is the “northernmost” latitude
circle shown in Figure 3). To find a regular projection, it suffices to find a point other
than the “north-pole” that lies in the interior of this smallest latitude circle.

Let Sy, S and S, denote the sets of planar points obtained by projecting S onto
the zy-plane, z-axis and y-axis, respectively. Sort each of S;,, S, and S, lexicographi-
cally. Scan through each sorted list to remove multiple occurrences of a point (keeping
one copy). Call these new sorted lists Sy, Sy and Sy, respectively. As before, let A,
Ay and Az denote the difference in @, y and z-coordinate values, respectively, of any

two distinct points in 3-D.

The algorithm for the computation problem is as follows: Compute the width of S
in the z-direction, i.e., maxs{Az}. Also compute d = min{ming; {Az}, mins:{Ay}}.
The required slope M that lies between the largest slope (call this M; = oo) and
the next largest slope (M>) is given by M = maxg{Az}/d. Observe that d > 0. We

explain some details in the following paragraphs.

Consider a line going through two points in S. Its slope is given by Az/\/(Aw)2 + (Ay)2.
Since the projection onto the zy-plane is not regular, it follows that there is a pair of
points in S for which (Az)® + (Ay)? is zero. The line through this pair of points has
maximum slope M; (= oo), which leads to a forbidden point at the north-pole. Our
objective is to find a non-infinite upper bound on the second-highest slope. In other
words, we find a pair of points from S that maximizes Az and a pair of points from S
that gives the smallest possible non-zero value for (Az)*+ (Ay)?. The former is given
by a pair of points in S that define the width of S in the z-direction i.e., maxg{Az},
which can be computed in linear time. The latter is in fact given by the closest-pair
in S;, .

Computing the closest pair in S;, in O(nlogn) time requires some non-trivial
method, such as Voronoi diagram construction. However, to keep the algorithm as
simple as possible, we avoid the use of such a method. Observe that it is not necessary
to actually find the closest pair - a positive value less than the closest-pair distance
suffices. A simple argument shows that d is less than or equal to the closest-pair
distance: If the closest pair of points in S is either co-vertical or co-horizontal,
then d will in fact be the closest-pair distance. If the closest-pair is neither co-
vertical nor co-horizontal, then d will be less than the closest-pair distance. Therefore,
M = maxg{Az}/d gives us the required value lying between the largest (M;) and
second-largest (Ms) slope, i.e., My < M < M; = oo. Clearly M can be computed in
O(nlog n) time. S admits a regular projection onto a plane perpendicular to any line
with finite slope greater than M.

Theorem 3.2 Given a set S of n distinct points in space, finding a reqular projection
of S onto the zy-plane takes O(nlogn) time.

11

Figure 4: The largest empty circle.

3.3 The Optimization Problem

As in the two-dimensional case, it is desirable to remove vertical-line degeneracies in
an optimal way, i.e., a direction of projection from which we can deviate the most
without introducing degeneracies. As before, we call this a regular projection with
the maximum projective tolerance.

The above discussion implies that the solution to this problem is determined by
the center of the largest empty circle among the O(n?) forbidden (and not necessarily
distinct) points on C?, the sphere of directions (see Figure 4). We can find and discard
all duplicate points on C® by performing a lexicographic sort of the forbidden points.
Then the largest empty circle can be found by computing the Voronoi diagram of
the remaining points on the sphere. Augenbaum and Peskin [4] give an O(m?) time
insertion method for computing the Voronoi diagram of a set of m points on a sphere.
There is a faster algorithm given by Brown [8], in which the Voronoi diagram is
obtained in linear time from the convex hull of the set of points (treating them as a
set of points in three space). The convex hull of a set of m points in three dimensions
can be constructed in O(mlogm) time (even in the presence of degeneracies such as
four or more coplanar points; see [16]). We then have the following result.

Theorem 3.3 Given a set S of n distinct points in space, a reqular projection plane
with the mazimum projective tolerance can be computed in O(n?logn) time and O(n?)
space.

12

4 No Two Points in Space with the Same Coordi-
nates

Many geometric algorithms dealing with point sets in 3-D assume that no two points
have the same coordinate along one or more axes (see [13], for example). Note that
in 2-D the assumptions that (1) no two points lie on a vertical line and (2) no two
points have the same z-coordinate, are equivalent. In 3-D on the other hand, the
two problems are different. A set of points in 3-D that admits a regular projection
onto the zy-plane may still have points with the same z-coordinate. In this section
we first consider the problem of rotating a set of points in 3-D so that no two points
have the same z-coordinate. Then we show how to generalize this result so that no
two points have the same coordinate for two or all three coordinate axes.

4.1 The Decision Problem

Given a set S of n distinct points and a line L in 3-D, the decision problem is to
decide if S contains a degeneracy or if it admits a regular projection onto L. We may
assume, without loss of generality, that L is the z-axis. By sorting the points of S
by their z-coordinate value, we can determine if any two points of S have the same
z-coordinate, 1.e., if the projection onto the z-axis is regular or not. Once again, we
reduce element-uniqueness to this problem to show an (nlogn) lower bound.

Theorem 4.1 Given a set S of n distinct points in space, whether S admits a reqular
projection onto the x-azis can be determined in ©(nlogn) time.

4.2 The Computation Problem

Given a set S of n distinct points in 3-D, the problem is to find a rotation of S that
removes the degeneracies or, equivalently, find a line L such that S yields a regular
projection onto L. This can be done as follows: first find a plane of regular projection
for S. From Theorem 3.2 we know that this can be done in O(nlogn) time. Let H
be such a plane and let Sy be the planar set of points obtained by projecting S onto
H. In the plane H, find a line of regular projection for Sy. From Theorem 2.2 we
know that this can be done in O(nlog n) time as well. Since there are no duplicates
in Sg, this line i1s also a line of regular projection for S. Finally, we can translate and
rotate the line so that it coincides with the x-axis.

In [13], it is actually assumed that the points have distinct coordinates in all their
coordinate axes i.e. no two points have the same x, no two points have the same
y and no two points have the same z-coordinate. We can extend our technique to
handle this more general case as well, within the same time bound. First we obtain,

13

using Theorem 3.2, a rotation of S such that the new rotated set S, yields a regular
projection onto the zy-plane. Next we seek a rotation of S, about the z-axis so that
the resulting rotated set S| has regular projections on both the z and y axes. We do
this as follows: Regardless of whether the projection of S, is or is not regular on the z-
axis, we find (using Theorem 2.2) a bound é; for the angle of rotation of S, to achieve
the desired result. Then we repeat this procedure to determine a second bound 6,
for a positive angle of rotation to make the projection on the y-axis regular. Finally,
we would like the rotated set S’ to also have a regular projection on the zy-plane (a
property we will need later). Therefore, using Theorem 3.2 again, we find a bound
03 for an angle of rotation to accomplish this task. Finally to obtain S. we rotate S,
about the z-axis by an angle § = min{d;, 2,05}. We still need to ensure that there
are no degeneracies along the z-axis. To do this we rotate S/ about the z-axis. Note
that since the previous rotation ensured S. has a regular projection on the zy-plane,
we can do this. However, although such a rotation will not re-introduce degeneracies
along the z-axis, it may do so along the y-axis. To prevent this, we proceed along
lines similar to the first step: we find two bounds d4 and 5 for rotations which will
ensure that the y and z axes, respectively, have no degeneracies and we rotate S,
about the z-axis by the smaller of §; and d5. Therefore we have the following result.

Theorem 4.2 Given a set S of n distinct points in space, a rotation of S such that
no two points have the same coordinate can be computed in O(nlogn) time.

4.3 The Optimization Problem

In this section, we give an algorithm for the optimization problem, i.e., for removing
degeneracies in such a way that the resulting line L of regular projection is the most
robust. The projection of S onto L will then be said to have the maximum projective
tolerance. We make this precise in the remainder of this section.

Consider the direction orthogonal to a plane through a pair of points of S. In this
axial direction the two points have the same coordinate. Therefore this is a forbidden
direction for the final z-axis. This situation is true for every plane through the pair
of points. Therefore, a pair of points in S yields a great circle on the sphere C® as
the set of forbidden directions for the desired z-axis. Thus the entire set S yields an
arrangement of O(n?) great circles on C®. To find a regular projection we must find
a point in the interior of any face of this arrangement.

To find a projection of maximum projective tolerance, we need to find a point on
the sphere C® which is the center of the largest spherical disc contained in a face of
the arrangement of great circles (see Figure 5). There are O(n?) great circles with a
total of O(n?) intersections in the arrangement. Compute the entire arrangement and
the largest spherical disc contained in each face, which takes time linear in the size
of the face. It follows that a line L in space such that S yields the regular projection

14

onto L with the maximum projective tolerance can be found in O(n*) time and space.

Figure 5: The largest circle contained in a face of the arrangement

Theorem 4.3 Given a set S of n distinct points in space, a line L in space such
that S yields a regular projection onto L with the mazimum projective tolerance can
be found in O(n*) time and space.

It is possible, with a slight increase in run-time, to reduce the above space com-
plexity to O(n?) as follows: Let G be the set of (forbidden) great circles on C® and
let A(G) denote the arrangement of these great circles. For any great circle a on C?,
we have the following notation: n(a) denotes the line through the origin and normal
to a. Let d(p, @) be the perpendicular distance from a point p on C? to the plane
containing « and (by a slight abuse of notation) d(p,l) the perpendicular distance
from a point p to the line I through the origin. Let N(a) and N'(a) denote the two
anti-podal points at which n(a) intersects C® and P be the set of all such points
obtained from G ie. P = {N(a)la € G} U{N'(a)|a € G}. Finally, we use £(p) to
denote the line through the origin containing the point p on C3.

The largest empty spherical disc contained in a face of A(G) is centered at a point
on C® that maximizes the minimum distance from a point to the great circles in G.
Note that for every point on C® that satisfies this condition, so does its anti-podal
pair. Consider such a point p,,.

For a point p on C® and a great circle «, it is easy to see that d(p, @) increases
as d(p,n(a)) decreases. Furthermore, d(p,n(a)) = d(N(a),£4(p)) = d(N'(a),£(p)). In
particular, the relation is (d(p, a))*+(d(p,n(a)))® = (d(p, @))*+(d(N(a),£(p)))* = 1.
It follows from this observation that since p,, maximizes the minimum distance from
a point to the great circles in G, therefore £(p,,) minimizes the maximum distance
from a line to the points in P.

15

Figure 6: Non-colinear projections.

Therefore, computing the largest spherical disc contained in a face of the arrange-
ment of G is equivalent to computing a line through the origin that minimizes the
maximum distance of the points in P to that line. This is the problem of computing
the thinnest anchored cylinder containing P. Follert [21] gives an O(mAg(m)logm)
time and O(m) space algorithm for this problem, where Ag(m) is the maximal length
of any Davenport-Schinzel sequence of order six over an alphabet of size m and is
known to be slightly superlinear [2]. In our case, m = |P| = O(n?).

5 No Three Points in Space on a Vertical Plane

Another non-degeneracy assumption that is commonly made for a set of points in
three dimensions is that no three of them lie on a vertical plane. For example,
Guibas et al. [3], give a linear-time algorithm for constructing the convex hull of
a set of points in three dimensions with certain special properties and one of the
assumptions in their algorithm is that no three of the input set of points lie on a
vertical plane. Furthermore, some geometric algorithms use the projected points
in intermediate steps, in which they use algorithms that make the non-degeneracy
assumption that no three of the projected points are colinear. This assumption is
equivalent to the assumption that the input set of points in three dimensions has no
three on a vertical plane (see Figure 6). Therefore it is desirable to find directions
of projection in which this degeneracy does not hold. In this section, we consider
the problem of finding such a direction of projection and therefore, of removing this
non-degeneracy assumption.

Let S be a set of distinct points in Euclidean space and let H be a plane. The
projection of S onto H is said to be a non-colinear projection if no three of the
projected points are colinear, i.e., there are no vertical plane degeneracies when H is
the zy-plane. Note that each of the projected points must also be distinct, so that a

16

non-colinear projection is also a regular projection.

5.1 The Decision Problem

Assume, without loss of generality, that H is the zy-plane. We would like to decide if
the input set S of n points in space has vertical-plane degeneracies or if the projection
onto the zy-plane is a non-colinear projection. To solve the decision problem, first
determine if there are any vertical-line degeneracies using Theorem 3.1. If there are,
then S has vertical-plane degeneracies. If there are not, first project S onto the zy-
plane to obtain S, and find an orientation for the z-axis such that no two points
in S, have the same z-coordinate, which takes O(nlogn) time (see Theorem 2.2).
Checking for colinearities can be done by using the dual map (a,d) — y = az + b of
Sey- The dual is an arrangement of n lines. In the arrangement, a vertex of degree
six corresponds to three colinear points. Constructing the whole arrangement and
checking for vertices of degree six or more can be done in O(n?) time and space (see

1))

The problem of deciding whether three points from a set of points in space lie on
a vertical plane admits the obvious reduction from the problem of deciding if there
are three colinear points in a set of points in the plane (the 3-colinear problem). This
reduction shows that the decision problem belongs to the class of 3sUM-hard problems
[23]. Problems in the class are at least as hard as the problem of determining, given a
set of integers, if there are three that sum up to zero. In [23], a linear time reduction
from this base problem to the planar 3-colinear problem is shown. Hence we have the
following.

Theorem 5.1 Given a set S of n distinct points in space and a plane H, determining
whether S admits a non-colinear projection onto H takes O(n?) time and space.

5.2 The Computation Problem

In this section, we give an efficient algorithm to compute, for a given set S of n
distinct points in space, a rotation of S that removes vertical-plane degeneracies;
in other words, an algorithm to find a plane H such that S yields a non-colinear
projection onto H.

Observe that if S has three (or more) colinear points, there are no non-colinear
projections. It follows from this that the computation problem for finding a non-
colinear projection is 3sUM-hard. This is because any algorithm for this computation
problem must (a) either output a direction of non-colinear projection or (b) indicate
that no such direction exists. In the former case, no three points in the input set
are colinear and in the latter case, there must be at least three colinear points in the

17

input set. Therefore, the 3-colinear problem for a set of points in space, which is
3sUM-hard, has a linear-time reduction to the problem of computing a direction of
non-colinear projection. Three points in the input are colinear if and only if there is
no direction of non-colinear projection.

We now give an algorithm for the computation problem. Assume that no two
points in S have the same = coordinate. As shown in Section 4.2, we can find in
O(nlogn) time an orientation of the axes such that this assumption is true. It
follows therefore that the north pole of the sphere of directions represents a regular
projection plane.

First determine whether three or more points in S are colinear. If there are,
indicate that no non-colinear projection exists and stop. Checking for colinearities
among points in 3-D takes O(n?) time and space, as described below: Project S onto
the zy-plane to obtain S,,. If three points in .S are colinear, their projected images
in Sy, will also be colinear. However, the converse is not true i.e. if three (or more)
points in S, are colinear, the corresponding three points in S are not necessarily
colinear. Consequently, our goal is to check, for all colinear points in S,,, whether
the corresponding points in S are colinear or not. Given aset S;, C Sy of m colinear
points, let S" C S be the set of points that gives rise to S, . Clearly all points in
S’ lie on a vertical plane. Therefore, we can check if three points in S’ are colinear
in O(m?) time, since it is a co-planar set of points (as described in Section 5.1, for
instance). The algorithm then is the following: Construct the arrangement A(L) of
the set of lines £ given by the dual of S,,. Note that the lines are distinct and no
two are parallel. Let V be the set of vertices of A(L). All lines of £ that go through
a vertex v of V correspond to a set of deg(v)/2 colinear points in Sy, where deg(v)
1s the degree of vertex v. As pointed out earlier, the corresponding set of points in
S can be tested for colinearities in O((deg(v))?) time. Therefore, the total run-time
of the algorithm is < ¢ 3,y (deg(v))?, where ¢ is some positive constant. By using

induction on the number of lines in the arrangement, it can be shown that this total
is in fact O(n?).

In particular, we show that 3, (deg(v))®? < 8n®. For the base case of n = 2,
we have Y ,cp (deg(v))? = 16 and hence the claim is true. Assume now that the
claim is true for |[£| = n. Given an arrangement A(L) of n lines, let a new line ¢
be added to this arrangement to give us an arrangement of n + 1 lines. Of the set
of vertices of A(L), let V4 be the subset of vertices that ¢ does not go through and
let Vg be the subset that ¢ does go through. Let Vg be the new vertices created
by the addition of £. Note that the degree of every vertex in Vg increases by two
in the new arrangement A(L U £) and all the vertices in Vi have degree 4. The
set V of vertices of A(L U £) is simply the union of V4, Vs and V. Therefore,
ey (deg(0))? = Tuey, (deg(v))? + Soery (dog(v) + 27 + Toere (deg(v)? =
Dvev, (deg(v))2‘|’zveVB (deg(v))2+42veVB deg(’v)—l—EvaB 443 ev, 16. By the
inductive hypothesis, ¥ ,cy, (deg(v))®+ Xoev, (deg(v))® < 8nr®. Observe also that

18

Figure 7: Computing a non-colinear direction of projection.

since the number of vertices that lie on £ can be at most n, we have |Vg| + |Ve| < n.
Furthermore, we have)y, deg(v) = 2(n — |V¢|), because each line in £ that
does not give rise to a new vertex (€ V¢) must contribute two towards this sum.
Therefore, continuing the above equation, we have Y,y (deg(v))? < 8n® + 8(n —
\Vel) + 4|Vs| + 16|Ve| < 8n? + 8n + 4|Vs| + 8|Ve| < (from the first observation
stated above) 8n® + 16n < 8(n + 1)?, which proves our claim. Therefore, checking for
colinearities among n points in 3-D takes O(n?) time and space.

Suppose now that no three points in S are colinear. To see which directions are
forbidden (for the plane normals), consider a triple of points in S. Each such triple
defines a plane and every direction contained in that plane gives a forbidden direction
(because the projection onto a plane perpendicular to that direction will have the said
triple of points colinear). By intersecting those planes of forbidden directions with
the sphere of directions we obtain a set of great circles. On C® we thus have (g) great
circles as the set of forbidden directions. To compute a non-colinear direction we
must find a point that does not lie on any of the great circles. If S,, is a non-colinear
projection we are done. Otherwise, a certain number of great circles pass through
the north pole of C3. We denote by A the set of great circles containing the north
pole (vertical great circles). For each great circle not in A we compute its distance
to the north pole. The smallest such distance, which can be found in O(n®) time,
determines a circle v whose center is at the north pole (see Figure 7). Observe that
has only vertical great circles intersecting it and is the largest such circle with center
at the north pole.

Among all great circles in A we find the two distinct a, b that are adjacent when
viewed from above. These can be found in O(r®) time. If ¢ is a great circle through
the north pole whose slope is between a and b, its intersection with « leads to an open
arc of non-colinear directions of projection. Note that if A has only one distinct great
circle, 1.e., @ = b, then ¢ can be any great circle through the north pole excepting a.
Thus a non-colinear projection can be computed in O(n?) time and O(n) space.

We show in the remainder of this section that this straightforward O(n?®)-time

19

algorithm to find a direction of non-colinear projection can in fact be improved to
an O(n?)-time algorithm, but which requires O(n?) space. Since this computation
problem is 3sUM-hard, it appears unlikely that this run-time can be improved. This
improvement is obtained by making two observations that give us faster run-times
for each of the two steps in the algorithm described above: (a) A pair of distinct
great circles from the set A that are adjacent when viewed from above can, in fact,
be found in O(n?) time, and (b) Instead of finding the largest circle centered at the
north pole that does not contain any non-vertical great circles (the circle v that we
computed earlier), it is enough, in fact, to compute some circle smaller than -, and
this can indeed be done in O(n?) time.

Theorem 5.2 Given a set S of n distinct points in space, deciding if a non-colinear
projection exists and computing one, if it does, takes O(n?) time and space.

Proof: As described above, deciding if there are three (or more) points of S that
are colinear takes O(n?) time and space. If there are, indicate that no non-colinear
projection exists and stop. If not, proceed with the remainder of the algorithm given
below.

First we demonstrate (a) above. Consider the set A, i.e., all the great circles that
go through the north pole. These great circles represent the set of all triples of points
of Sy, that are colinear in the zy-plane. Comnsider the arrangement of lines in the
dual of S;,. Note that since we have ensured that no two points in S have the same
z-coordinate, there will be no parallel lines in the dual of S;,. Hence, three or more
co-linear points in S,, are represented in the dual by vertices that have degree six
or more. In order to identify two adjacent great circles from A (when viewed from
above), it is sufficient to identify the vertices of degree 6 (or more) in the arrangement
that have the smallest and second smallest z-coordinate. Since the arrangement can
be computed in O(n?) time, the first step of our algorithm has the same run-time. In
other words, we have identified, in O(n?) time, two distinct great circles a and b that
go through the north pole and that are adjacent.

Now let us proceed to (b), i.e., the question of computing a circle (call it §)
containing the north pole so that no non-vertical circles go through it. Let S be the
input set of » points in 3-space. Consider any point of § and call it p. Of all the
planes defined by triples of points in S, point p has O(n?) planes going through it.
These planes define a set of O(n?) great circles on C®: call this set G, and let T,
be the non-vertical great circles from G,. We find a circle d, centered at the north
pole so that no great circle from 7, goes through it, and we do this for every p. The
required circle § will then simply be the smallest circle from the set {6, | p € S}.

We now describe a linear-time algorithm to find ¢,. For any a € G,, let N, be
the point on C? that represents the normal to (the plane through) . There are two
points on C? that represent the normal to «; it suffices, for our purposes, to consider

20

only those normal points that lie on or above the equator. If a is a wvertical great
circle, N, will lie on the equator of C®. In other words, the z-coordinate of N,,
z(Ny), will be zero. However, for every a € T,, z(N,) will be non-zero. To find a
non-vertical plane that is closest to the north-pole, we need to find an N, with the
smallest z-coordinate greater than zero. This would then give us the largest circle
centered at the north-pole so that no circle from 7}, goes through it. In order to find
a 6,, however, it is sufficient to find some non-zero value that is smaller than z(N,)
for all a € T,

Consider now a great circle 8 € T,. B is given by a plane that goes through p and
two other distinct points, say « and v. We denote by S the set of points obtained
from the input set S by identifying p with the origin and every other point with its
central projection® on the unit sphere centered at the (new) origin. By a slight abuse
of notation, we will continue to use the same symbol to refer to a point in S as the
corresponding point in S; hence, p (= (0,0,0)), « and v now refer to points in s’
The great circle g then is given by a plane that goes through p, w and v.

Let 4 = (T, Yu, 2u) and v = (24, Yy, 2,). The cross-product of the vectors pu and
pv gives us a vector Ngj normal to §. Assume, without loss of generality, that this

vector lies above the equator. Né has the following coordinates:

N,B = puXpv = (yuzv = Yo2u, Loy — Lulv, Lulv — wvyu)

Observe that the coordinates of N['_j may not be equal to the coordinates of Ng.

This is because Né 1s not necessarily a unit vector. However, the magnitude of Né is
always at most one. This is an important observation, because it implies that z(Ng)
1s always greater than or equal to z(Né). Therefore, when we find a value less than
z(N[;) for all such pairs of vectors, we have found a value less than z(N,) for all
a €T,

We show now that we can find, in linear time, a non-zero value less than z(f)ﬂ)
x pv), where u,v € S’ are distinct and not colinear with p. Consequently, we obtain a
0, 1n linear time. z(N['_j) = ZyuYy — TyYy, Which is simply the area of the parallelogram

P defined by the two vectors pu and pv when they are projected onto the zy-plane.

Let 1, (I,) be the length of the vector A, (h,) obtained by projecting pu (pv) onto
the zy plane. The area of the parallelogram P is given by [,[, sin 6, where 6 is the

(smaller) angle between the two lines going through h, and h, respectively.

Let 1, be the length of the smallest vector among all such i;;, u € S', u # p. Let

Omin be the smallest non-zero angle between any pair of lines given by the vectors h,,.
Clearly then (lpin)? sin b < smallest non-zero area of all such parallelograms P,

2The central projection of a point (say s) on the unit sphere centered at the origin is the point of
intersection between the directed half-line s and the unit sphere.

21

which is < z(N,) for all a € T,,.

We can find I, in linear time by projecting every point of S' onto the zy-plane,
computing its distance to the origin and finding the smallest of these. It is also
possible to find 6, in linear time from the arrangement A of lines given by the dual
of Sz, (the set S projected onto the zy plane), which has already been constructed
in step (a) of the algorithm. Let £ be the line representing the dual of the point p’ in
Szy obtained from p. By walking along £ in A, in linear time we obtain the complete

sorted order of the lines going through the vectors h,. By scanning this sorted list,
we find 6,,;, in linear time.

5.3 The Optimization Problem

The problem of finding a direction of projection that allows the most deviation with-
out introducing vertical-plane degeneracies, i.e., a projection with maximum projec-
tive tolerance, is reduced to the problem of finding the largest empty circle contained
in a face of the arrangement of the forbidden great circles. Since there are O(n?)
great circles in the arrangement, we have the following:

Theorem 5.3 Given a set S of n distinct points in space, a direction such that S
yields a non-colinear projection with the mazimum projective tolerance can be com-
puted in O(n®) time and space.

As before, the technique outlined in Section 4.3 can be used to reduce the space
complexity with a slight increase in run-time.

6 Removing Non-degeneracy Assumptions for Line
Segments

In this section, we consider the problem of removing certain non-degeneracy assump-
tions for line segments. First we dispense with a straightforward non-degeneracy
assumption, namely that no segment in the input set of n line segments is vertical. In
2-D and in 3-D, the decision problem is to check each segment until a vertical one, if
1t exists, 1s found. In 2-D, the slope of each segment defines a forbidden direction on
the circle of directions C%. In 3-D, we have n forbidden points on the sphere of direc-
tions C®. The computation problem is also straightforward, where the goal is to find
a non-vertical segment of largest slope. In 2-D, the slope of such a segment defines
an arc of directions on C?, any of which is a direction in which this non-degeneracy

22

assumption is removed. Similarly in 3-D. a non-vertical segment of largest slope de-
fines a spherical cap of directions centered at the north pole of C®. The direction
given by any point (other than the north pole) in the interior of this cap is an allowed
direction of projection. Clearly the decision and computation problems take linear
time in two and three dimensions. The optimization problems can also be solved as
before: In 2-D, find the midpoint of the largest gap among the n forbidden points
on C? and in 3-D, find the center of the largest empty circle among the n forbidden
points on C®. This can be done in O(rlog n) time and O(n) space.

In the remainder of this section, we consider the non-degeneracy assumption that
no two line segments from a set of line segments in 3-D lie on a vertical plane. In 3-D
computer graphics, the selection of a position of the eye. 1.e., a direction of orthogonal
projection is an important problem. For instance, in [26], Kamada and Kawai assert
that the resulting image of the 3-D object, which is typically a “wire-frame” object
made up of a collection of line segments, should be “easy to comprehend”. This means
that there should be as little loss of information as possible: information is lost, for
example, when two line segments in space project to colinear planar line segments,
or when line segments project to a single point. Therefore, when the line segments
are projected onto the zy-plane, this condition is equivalent to the non-degeneracy
requirement that no two line segments lie in a vertical plane. In [26], the authors
call such a direction of projection (eye-position), in which degeneracies are removed,
a “general eye-position”.

In order to compute a “most general eye-position”, i.e., a direction of projection
in which such degeneracies are removed in the best way possible, Kamada and Kawai
[26] give an algorithm that takes O(n°log n) worst-case time, where n is the size of the
input set of line segments in space. Removing degeneracies in the “best way possible”
is defined in a manner similar to the way in which we defined projections of maximum
projective tolerance in earlier sections: this is the direction of projection that allows
the most deviation without introducing any degeneracies of the type described above.

We give a more efficient algorithm for this problem by using the techniques de-
scribed in this paper. Let S be the input set of line segments in 3-D (as in [26],
assume no two line segments in space are colinear). Consider the plane, if it exists,
containing a pair of line segments in S. Every line contained in this plane gives a for-
bidden direction of projection (an eye-position which is not a “general eye-position”).
Therefore, this pair of line segments describes a great circle of forbidden directions
on C®. By doing this for every pair of line segments, we obtain an arrangement of
O(n?) great circles on C?.

We first briefly discuss the decision version of this problem, which can be solved
in O(nlogn) time as follows: If two or more segments in S are vertical, then clearly
we have two segments on a vertical plane. If just one segment s is vertical, check in
linear time if any other segment lies on a vertical plane with s. If not, consider the
set of segments obtained by projecting the non-vertical segments onto the zy-plane

23

and call this set S’. We want to check if two or more segments in S’ are colinear.
This can be done by lexicographically sorting the segments of S’ by slope and when
two segments s; and s, have the same slope m, ordering them by orthogonal distance
from the line y = ma through the origin (if s; lies in the half-plane y < mez, its
distance from the line y = mx is noted as negative and as non-negative otherwise).

To solve the computation version of the problem, we need to find a point that
does not lie on any of the forbidden great circles on C®. As described in Section 5.2,
this can be done by finding two distinct consecutive great circles going through the
north pole and the non-vertical great circle closest to the north pole (this defines, on
C?, a wedge of possible directions of projection such that no two segments lie on a
vertical plane). From the discussion there, it follows that this can be done in O(n?)
time and O(n) space.

Finally we have the optimization problem: The “most-general eye position”, a
direction giving the projection of maximum projective tolerance, is given by the center
of the largest spherical disc contained in a face of the arrangement of great circles.
Therefore for the case of wire frame objects we have the following theorem:

Theorem 6.1 Given a set S of n line segments in space, a direction such that S
yields a projection with no two line segments colinear and with the mazimum projective
tolerance can be computed in O(n*) time and space.

As in Section 4.3, let G be the set of great circles on C® and let P be the set of
pairs of points on C® normal to each great circle in G. As stated there, the above
problem is equivalent to computing the thinnest anchored cylinder of P and can
be solved using Follert’s algorithm [21]. This is equivalent to computing the two
smallest anti-podal spherical caps containing P. There are applications, such as GIS
and computer-aided architecture, in which it is desirable that the “eye-position” lies
“above” every forbidden plane, as given by the great circles in G. In such cases, the
problem reduces to finding the smallest enclosing spherical cap containing the points
P' C P that lie in the upper hemisphere. As explained below, this can be found by
computing the smallest enclosing sphere of P’ and intersecting it with C°.

Let H be the unit hemisphere. Let P’ be a set of n points on H. Let C be the
minimum spanning circle of P’, i.e., C' corresponds to the boundary of the smallest

spherical cap of H that contains P’. Let B be the smallest sphere that contains P’.
Then

Lemma6.1 B N H = C

Proof: Let S be the smallest sphere whose intersection with H is C. We will show
that S = B. First we show that S contains P’. Since S is the smallest sphere whose
intersection with H 1s C, it follows that C' is a diametral or great circle of S. Therefore
the diameter of S < diameter of H. Therefore P’ is contained in §.

24

It remains to show that S is the smallest containing sphere of P’. Assume there
exists a smaller containing sphere B’. Since the largest intersection that a sphere of
the same size as S can make with H is C, it follows that the intersection of B’ with
H is smaller than C. But this contradicts the assumption that C is the minimum
spanning circle.

From the above lemma, it follows that in order to compute the smallest enclosing
spherical cap of P’, we first compute the minimum enclosing sphere of the points in
P’ (considering them to be just a set of points in space) and then intersect this sphere
with the sphere of directions C3. The former can be done in O(|P’|) time, as shown
in [28], where Megiddo describes a linear-time algorithm for linear programming in
three dimensions. The latter problem of computing the intersection of two spheres
can be done in constant time, giving us an O(n?) time and space algorithm for this
special case.

7 Summary of Results

We conclude by summarizing all the results obtained in the paper in the following
two tables. The first table shows the results for point sets and the second one shows
the results for line segments. In that table, we have also included the assumption that
no face of a polyhedron in 3-D is vertical. This result follows immediately from the
techniques described in the paper. Each face of the polyhedron describes a forbidden
great circle of directions on the sphere of directions. Consequently, the decision and
computation problems can be solved in linear time and the optimization problem can
be solved using the technique described in Section 4.3.

25

‘ Problem Decision ‘ Computation ‘ Optimization
‘ Point Sets
2-D
No two on a vertical | ®(nlogn) O(nlogn) O(n?logn) time and
line O(n?) space
O(n?) time and space
with floor functions
3-D
No two on a vertical | ®(nlogn) O(nlogn) O(n?logn) time and
line O(n?) space
No two with the same | ®(nlogn) O(nlogn) O(n*) time and space
z-coordinate
O(n?X¢(n?)logn) time
and O(n?) space
No two with the same | ®(nlogn) O(nlogn) OPEN
z, y or z-coordinate
No three on a vertical | (3SUM-hard) (3SuM-hard)
plane
O(n?) time and | O(n?) time and | O(n®) time and space
space space
O(n®) time and
O(n) space
‘ Problem Decision ‘ Computation ‘ Optimization
‘ Line Segments
2-D
No vertical O(n) O(n) O(nlogn) time and
O(n) space
3-D
No vertical O(n) O(n) O(nlogn) time and
O(n) space
No two on a vertical | O(nlogn) O(n?) time and | O(n*) time and space
plane O(n) space
O(n?Xe(n?)logn) time
and O(n?) space
‘ Faces
No face of a polyhe- | O(n) O(n) O(n?) time and space
dron vertical
O(nXs(n)logn) time
and O(n) space

26

Finally, we mention some open problems. The optimization problem for the assumption
that no two points in space have the same coordinates is open. We mentioned in the
introduction that the techniques presented in this paper can also be used to find projections
of points in 3-D that contain no four co-circular points, but in an impractical model of
computation. Whether a simpler method can be designed to compute such “non-co-circular
projections” is an interesting open problem.

Acknowledgments: The authors would like to thank Jean-Daniel Boissonnat, Hervé
Bronnimann, Olivier Devillers, Fady Habra, Pedro Ramos, Monique Teillaud and Mari-
ette Yvinec for useful discussions and references.

References

[1] M. Abellanas, J. Garcia, G. Hernandez, F. Hurtado, O. Serra, and J. Urrutia. Updating
polygonizations. Computer Graphics Forum, 12(3):143-152, 1993.

2| P. K. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds for the length of
g g
general davenport-schinzel sequences. Journal of Combin. Theory, Ser. A, 52:228-274,
1989.

[3] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A Linear-Time Algorithm for
Computing the Voronoi Diagram of a Convex Polygon. Discrete and Computational
Geometry, 4:591-604, 1989.

[4] J. M. Augenbaum and C. S. Peskin. On the construction of the Voronoi mesh on a
sphere. Journal of Computational Physics, 59:177-192, 1985.

[5] P. Bhattacharya and A. Rosenfeld. Polygons in three dimensions. Journal of Visual
Communication and Image Representation, 5(2):139-147, June 1994.

[6] P. Bose, F. Gémez, P. Ramos, and G. Toussaint. Drawing nice projections of objects
in space. In Proceedings of Graph Drawing 95, Passau, Germany, September 1995.

[7] P. Bose and G. Toussaint. Growing a tree from its branches. Journal of Algorithms,
19:86-103, 1995.

[8] K. Q. Brown. Geometric transforms for fast geometric algorithms. Ph.D. thesis, De-
partment of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1980. Re-
port CMU-CS-80-101.

[9] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computation.
In Proc. 5th ACM SIAM Symposium on Discrete Algorithms, 1994.

[10] J. Canny, B. Donald, and E. K. Ressler. A rational rotation method for robust geo-
metric computations. In Proceedings of the 8th ACM Symposium on Computational
Geometry, 1992.

27

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Cole, J. S. Salowe, W. Steiger, and E. Szemeredi. An optimal time algorithm for
slope selection. SIAM Journal on Computing, 18:792-810, 1989.

G. B. Dantzig. Linear Programming and FEztensions. Princeton University Press,
Princeton, 1963.

A. M. Day. The Implementation of an Algorithm to Find the Convex Hull of a Set of
Three-Dimensional Points. ACM Transactions on Graphics, 9(1):105-132, 1990.

L. Devroye and T. Klincsek. Average time behavior of distributive sorting algorithms.
Computing, 26:1-7, 1981.

D. Dobkin and R. Lipton. On the complexity of computations under varying sets of
primitives. Journal of Computers and System Sciences, 18:86-91, 1979.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg,
1987.

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):67-104,
1990.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Computing, 15(2):341-363, 1986.

I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.
Proc. 8th ACM Symposium on Computational Geometry, pages 74-82, 1991.

I. Z. Emiris and J. F. Canny. A general approach to removing degeneracies. SIAM
Journal of Computing, 24(3):650-664, June 1995.

F. Follert. Lageoptimierung nach dem maximin-kriterium. Master’s thesis, Universitat
des Saarlandes, Saarbriicken, 1994.

S. Fortune. Directions in Geometric Computing, chapter Progress in computational
geometry, pages 82-127. Antony Rowe Ltd., Bumper’s Farm, Chippenham, England,
1993.

A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational
geometry. Computational Geometry: Theory and Applications, 5(3):165-185, 1995.

T. Gonzales. Algorithms on sets and related problems. Technical report, Department
of Computer Science, University of Oklahoma, 1975.

M. Iri and K. Sugihara. Construction of the voronoi diagram for “one million” genera-
tors in single-presicion arithmetic. Proceedings of the IEEE, 80(9):1471-1484, Septem-
ber 1992.

T. Kamada and S. Kawai. A Simple Method for Computing General Position in Dis-
playing Three-Dimensional Objects. Computer Vision, Graphics and Image Processing,
41:43-56, 1988.

28

[27]

[28]

[29]

C. Livingston. Knot Theory, volume 24 of The Carus Mathematical Monographs. The
Mathematical Association of America, Washington, D.C., 1993.

N. Megiddo. Linear-time Algorithms for Linear Programming in R3 and Related Prob-
lems. SIAM Journal on Computing, 12(4):759-776, 1983.

J. S. B. Mitchell, J. Snoeyink, G. Sundaram, and C. Zhu. Generating random z-
monotone polygons with given vertices. In Proceedings of the Sizth Canadian Confer-
ence on Computational Geometry, pages 189-194, 1994.

F. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, 1985.

P. Ramos. Tolerancia de estructuras geometricas y combinatorias. PhD thesis, Uni-
versidad Politecnica de Madrid, 1995.

R. Seidel. The nature and meaning of perturbations in geometric computing. Discrete
and Computational Geometry, 1996. to appear.

C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. J.
Computer and Systems Science, 40:2-18, 1990.

C. K. Yap. Symbolic treatment of geometric degeneracies. Journal of Symbolic Com-
putation, 10:349-370, 1990.

29

