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Abstract

Given a planar polygon (or chain) with a list of edges {e1, e2, €3, . .,
en—1,€n}, we examine the effect of several operations that permute
this edge list, resulting in the formation of a new polygon. The main
operations that we consider are: reversals which involve inverting the
order of a sublist, transpositions which involve interchanging subchains
(sublists), and edge-swaps which are a special case and involve inter-
changing two consecutive edges. Using these permuting operations,
we explore the complexity of performing certain actions, such as con-
vexifying a given polygon or obtaining its mirror image. When each
edge of the given polygon has also been assigned a direction we say
that the polygon is signed. In this case any edge involved in a reversal
changes direction. The complexity of some problems varies depending
on whether a polygon is signed or unsigned. An additional restriction
in many cases is that polygons remain simple after every permutation.

1 Introduction

Much focus has been placed recently on the problem of sorting a permutation
of n integers by reversals [HP98, BP95]. As one might guess, a single reversal
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is applied to a consecutive set of these integers and the result is that their
order is inverted. The key problem that arises is determining the minimum
number of reversals necessary to sort a given permutation. This number is
called the reversal distance of the permutation. A variation of this problem
involves signed permutations [BMYO01]. In this case any integer affected by
a given reversal also changes parity.

Each of these interesting combinatorial problems has its roots in bioin-
formatics and molecular biology [HP98, HP96, BP95, CJM*00, BMYO01].
Specifically, genomes have been modeled as linear or cyclic sequences, where
each element in a sequence is a block of smaller elements that are never
separated. A popular model for mutation involves inverting parts of these
sequences. In order to determine the number of such mutations needed to
transform one genome to another, one may compute the reversal distance of
the associated permutations. An extension of this model is to consider the
direction of each block. This leads to the study of signed permutations. We
illustrate signed inversions in Figure 1 which has been modified from [BP95].
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Figure 1: A most parsimonious evolutionary scenario for the transformation
of human into mouse chromosome assuming that the X chromosome evolves
solely by inversions [BP95]. Each block represents a conserved linkage group
of genes. Reversal distance is equal to six.
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The problem of computing transposition distance also stems from bioin-



formatics. In this case, a transposition involves exchanging two disjoint sets
of consecutive integers in a permutation. Computing reversal distance has
been shown to be NP-hard [Cap99] for unsigned permutations, but for the
signed version a linear time algorithm exists [BMY01]. Computing transpo-
sition distance is of unknown complexity [CJM100]. The reader may also be
interested in [BHKO01, BP98, EEK*01].

In this paper we extend the ideas mentioned above from one dimension
to two. Instead of considering permutations of integers, we consider permu-
tations of edges which form polygons or chains. We define operations such
as edge-swaps, reversals and transpositions, in analogy to R'. We introduce
the notions of signed permutations of polygons and chains. These concepts
give rise to a wide range of problems to be solved.

2 Definitions

First we introduce the notion of a signed polygon or signed permutation of a
polygon. Any polygon P may be described by a list of edges {e1, es, €3, ...,
en_1,6en}. A signed polygon is no different, except that each edge is also
assigned a direction. The same holds for chains. This is a generalization
of the notion of parity that is used in R'. If the directions of all edges are
consistent as we traverse a polygon or chain, then this polygon or chain is
oriented. In Figure 2 we illustrate some signed polygons and chains.

)

Figure 2: From left to right, a signed polygon, signed chain, oriented polygon,
oriented chain.

Without loss of generality, suppose that we are dealing with an oriented
polygon. A transposition of two edges A and B involves interchanging their
positions so that the resulting polygon remains oriented. This is illustrated in



Figure 3. If A and B are consecutive, this operation is defined as an edge-swap
or plainly swap (Figure 4a). It is not difficult to see that entire subchains
may also be transposed. A single-edge transposition involves transposing an
edge with an empty subchain. One may also think of this operation as a
transposition between the single edge and one of its neighboring subchains
(Figure 4b).

Figure 3: Transposing two edges A and B.
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Figure 4: (a) An edge swap. (b) A single-edge transposition.

@

A reversal of a subchain belonging to a polygon involves inverting the
order of the edges in the subchain. Geometrically this rotates the subchain
rigidly in the plane by an angle of 7 so that its endpoints are placed exactly at
each other’s original location. For unsigned polygons this operation appears
identical to the flipturn operation introduced by Joss and Shannon [GZ01].
However, here we allow reversals to take place on any subchain, not only



on pockets. For signed polygons the direction of each edge involved in the
reversal is switched, as is done for parity in R'. In Figure 5 we illustrate a
reversal of subchain {e;, ..., e;} for a signed (initially oriented) polygon. One

Figure 5: Reversing a subchain of a signed polygon.

can see that for unsigned polygons, an edge-swap is merely a transposition or
a reversal of two consecutive edges. For signed polygons there is a difference
in the resulting direction of each edge.

Each of the operations above results in the same shape when used on a
polygon, regardless of the directions of its edges. In other words, to compute
how a polygon changes shape, one can imagine that it is oriented. However,
for chains alternate definitions exist. For example consider the oriented chain
in Figure 6. We may choose to perform a reversal on edges (A, B,C) in at
least two ways. One way (shown on top) is identical to what is done for poly-
gons. This is convenient but also means that the endpoints of the chain will
never move. A second way (shown at the bottom) is to preserve orientation.
This may allow the chain to form more interesting configurations. We use
the latter definition in Theorem 3.6 in the next section.

3 Permuting Polygons

Scott [Sco82] has shown that precisely two permutations of an edge list form
oriented convex polygons, and these have maximal area. It is also known
that if the longest edge of a polygon has unit length, this polygon may be
permuted to fit into a circle of radius v/5 [GYT79].
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Figure 6: Two ways that a reversal may be defined on a chain.

For the remainder of this section we present our results concerning per-
mutations of polygons or chains. We impose the restriction that simplicity
must be maintained at all times, unless mentioned otherwise.

In Figure 7a we show a polygon which does not admit any edge-swaps.
Examples such as this one may be extended easily to create any n-gon which
will not admit edge-swaps. In Figure 7b we show a polygon which does not
admit single-edge transpositions, with the exception of a few edge-swaps for
some edges that are almost collinear. These transpositions cannot change
the basic shape. Thus we see that sometimes local permutations will not be
sufficient to achieve desired reconfigurations.
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Figure 7: Polygon (a) does not admit edge-swaps. Polygon (b) does not
admit single-edge transpositions.




Theorem 3.1 A simple polygon may be converified with O(n?) reversals
while maintaining simplicity after each reversal.

Proof: 'This result holds for the more restricted reversal operation of
flipturns [ABC*00]. !

Theorem 3.2 A star-shaped polygon can be convezified with O(n?) edge-
swaps while maintaining star-shapedness after each edge-swap, and this bound
15 tight in the worst case.

Proof: Let k be a point in the kernel and without loss of generality
suppose that the polygon is oriented clockwise. If the polygon is not convex,
there must exist two successive edges ab and bc which form a left hand turn
(see Figure 8a). Since the polygon is star-shaped, b is the only vertex in
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Figure 8: Using edge-swaps to convexify a star-shaped polygon.

the cone formed by the half-lines ka and kc. If we edge-swap ab and b_c>, we
obtain the configuration shown in Figure 8b. The new position of b (shown
as b') must be somewhere in the triangle (a,c, k'). The swapped edges are
still visible from k, and they do not interfere with the other edges of the
polygon. Thus the polygon remains star-shaped. Furthermore any point in
the kernel remains in the kernel and any point in the polygon remains in the
polygon.

Every edge e may be found only within a halfplane determined by a line
parallel to e that passes through k. Now suppose that two edges, ab and
cd form a right hand turn. This means that b and c coincide as shown
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Figure 9: Any pair of edges may be swapped at most once.

in Figure 9. It is impossible to move these edges within their respective
halfplanes and into a left hand turn without obstructing visibility from & to
either b or c. Thus once a pair of edges forming a left hand turn are swapped,
they will never form a left hand turn again. The polygon will become convex
only when there are no swaps to be made on left hand turns. Since any pair
of edges may be swapped at most once, O(n?) swaps suffice to convexify a
star-shaped polygon. In Figure 10 we show that this bound is tight. Every
edge e; (2 < i < n — 2) must be swapped with edges e;,...,e;_; for the
polygon to become convex. O
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Figure 10: A star-shaped polygon which requires (n?) edge-swaps to become
convex.
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For the following two theorems we do not enforce simplicity.

Theorem 3.3 Determining whether a signed polygon may be permuted using
transpositions so that its shape is rotated by an angle of m takes ©(nlogn)
time in the algebraic decision tree model of computation.

Proof: Since only transpositions are allowed, each edge of the polygon
must have its opposite also present in the polygon. This property also suffices
if we do not impose the restriction of maintaining simplicity at all times. By
“opposite” we mean an edge with the same angle, but opposite direction.
For example, in Figure 11 edges a,b,c,d, e of the polygon on the left are
matched by edges @, b, ¢, d, &. This means that the shape of this polygon may
be rotated by an angle of 7 (shown on right) with appropriate transpositions.

Figure 11: Left: a signed polygon for which every edge is matched by an
“opposite”. Right: a permutation of the polygon with the same shape rotated
by an angle of .

If we translate every edge to the origin (so that they are directed away
from the origin), we obtain a set of n points. The shape of the given poly-
gon can be rotated if and only if every such point has a reflection through
the origin. This can be determined in O(nlogn) time with a radial sort,
and the matching lower bound is obtained by a reduction from Set Equality
(see [Ead88]). O

Theorem 3.4 Determining whether we can obtain the mirror image of a
signed polygon using transpositions takes ©(nlogn) time in the algebraic de-
ciston tree model of computation.



Proof: In order to be able to obtain a mirror image, there must exist
an axis through which every edge has its reflection present (allowing trans-
lation). For example consider the polygon on the left in Figure 12. If we
take a vertical line as an axis of symmetry, then edges d and j are reflections
of each other. The same holds for pairs (b, h) and (f, k). Vertical edges do
not need a matching edge. If such an axis exists, then a mirror image of the
polygon can be obtained using transpositions. As in Theorem 3.3 we can
place every edge at the origin to obtain a set of n points. The symmetries
of this point set may be found using the Knuth-Morris-Pratt string match-
ing algorithm [KMP77]. The overall time complexity is O(nlogn). This is
pointed out by Eades [Ead88] who also mentions that such reflection tests

have Q(nlogn) lower bounds on fixed degree decision tree machines. a
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Figure 12: Two polygons that are mirror images and have different permu-
tations of the same edge list.

Theorem 3.5 Given an oriented polygon P and a rectangle R, deciding
whether P can be permuted by transpositions into an oriented polygon P’
that can be drawn inside R is (weakly) NP-complete.

L This result also holds if P’ is to be placed inside a strip or circle, instead of a rectangle.
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Proof: Consider an integer partition problem with S = {ag,a1,...,a, 1}
and a; > 0 for alli. Let A=) _ca/2. Deciding whether there is a subset S’
of S with ) .o a = Ais (weakly) NP-hard. Consider the following polygon
P. Denote the edges of P in counter-clockwise order by {eg,e1,..., €213}
The edges with even indices are parallel to the z-axis; the edges with odd
indices are parallel to the y-axis. Let € be a positive number less than one.
The edge e has length ay + €. Edges e; for i =2,4,6,...,2n — 2 have length
a;p. Edge ey, has length A. Edge eg,;2 has length A + e. Edges e; for
1=1,3,5,...,2n+ 1 have length 1. Edge es,.3 has length n + 1.

We also assign directions to the edges, so that the edges form a counter-
clockwise traversal of P. All edges of length 1 go up. The edges e; for
1=0,2,4,...,2n—2 go from left to right. The few remaining edges go down
and right to left, as illustrated in Figure 13(a) with n=7.

€16

(a): polygon P

6 (b): polygon P

Figure 13: Polygons P and P’ with 18 vertices.

Let R be a rectangle of size A 4+ € by n 4+ 1. W.l.o.g assume that R has
(—€,0) and (A,n + 1) as its left-bottom and right-top corner. Suppose P
can be permuted into a polygon P’ that can be drawn in the rectangle R.
Again w.l.o.g assume that es, o of P’ lies along the top side of R and es, 3
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along the left side of R. This implies that the left and right endpoints of e,
are (0,y) and (A,y) for some value of y with 1 <y < n. Moreover the edge
eo lies below ey,. The edges form a counter-clockwise traversal of P'. Since
esn has a direction that goes from right to left, the horizontal edges above
ean connect the left endpoint of eg, with the right endpoint of e, 19, so their
lengths must add up to A. Therefore the partition has a solution if and only
if P can be permuted into a polygon P’ that fits in R. Figure 13(b) shows a
permutation of the polygon in Figure 13(a) that fits in rectangle R. O

Theorem 3.6 The mazimum endpoint distance over all permutations of an
oriented chain may be computed in O(nlogn) time.

Proof: Fix one endpoint at the origin. Endpoint distance depends only on
the direction of each edge. If we knew the direction in which to position the
second endpoint, it would be a simple matter to select the direction of each
edge in order to maximize the distance. Position two vectors at the origin
for each edge, representing its possible directions. Sort the vectors radially
and compute the sum of all vectors in one halfplane determined by a line
¢ through the origin. This represents the maximum distance in a direction
perpendicular to /. By rotating ¢ and updating the vector sum whenever a
vector enters or exits the rotating halfplane, we obtain the endpoint distance
over all directions. The time complexity is dominated by the sorting step, so
the entire procedure takes O(nlogn) time using O(n) space. O
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