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Abstract

In this paper we are concerned with computing non-degenerate perspective projections
of sets of points and line segments in three-dimensional space. For sets of points we give
algorithms for computing perspective projections such that (1) all points in the projection
have distinct z-coordinates, (2) all points in the projection have both distinct z- and y-
coordinates, (3) no three points in the projection are collinear, and (4) no four points
in the projection are cocircular. For sets of line segments we present an algorithm for
computing a perspective projection such that no two segments in the projection are
parallel. All our algorithms have time and space complexities bounded by low degree
polynomials. We also discuss the problem of removing some intrinsic degeneracies for
point and line segment sets in the plane by using perspective projections.

Keywords: Degeneracies, general position, perspective projections, robustness of
algorithms, visualization, computer graphics, computer vision, computational geometry.

1 Introduction

Algorithms in computational geometry are usually designed for the real RAM (random access
machine) assuming that the data input is in general position in a large variety of senses
that often depend on the nature of the problem and the algorithm designed to solve the
problem. These assumptions are made in order to simplify the algorithm design process and
often to obtain more efficient algorithms that do not need to check special degenerate cases.
Yap [17] has distinguished between intrinsic or problem-induced degeneracies (such as three
collinear points and four cocircular points) and extrinsic or algorithm-induced degeneracies
(such as two points in the plane with the same z-coordinate). Due to the practical importance
of having algorithms work correctly for degenerate input, there has recently been a flurry
of activity on this problem in the computational geometry literature. There are at least
two methods of coping with intrinsic degeneracies: approximation and perturbation [2, 7,
8,9, 16, 17]. Gomez et al. [12] have studied several ways of removing algorithm-induced
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degeneracies. Their method consists of performing a global rigid transformation on the
input data that removes the algorithm-induced degeneracies. Once the solution to a problem
has been obtained, they perform the inverse transformation on the result. Their methods
make crucial use of orthogonal projections of the input data. Here we look at the problem
of removing intrinsic degeneracies for point and line sets in the plane by using perspective
projections as the global transformation. Not all intrinsic degeneracies can be removed with
perspective projections. Intrinsic degeneracies that can be removed via perspective projection
are called quasi-intrinsic degeneracies. For example, given a set of points on the zy-plane
which has four or more cocircular points, we are interested in finding a center of projection
and a plane such that the projection of that set of points does not contain four cocircular
points. However, we are not interested in projecting on planes which are far away from the
zy-plane since this could radically change the positions of the points. We must therefore
look for planes that are close to the zy-plane. We consider the more general problem of
computing a non-cocircular perspective projection of an arbitrary set of points in space. For
other degeneracy assumptions we also solve the problem of finding a non-degenerate (non-
collinear, non-parallel, etc) perspective projection in space.

In the scientific world we are frequently concerned with visualizing, describing and analyzing
data consisting of three-dimensional (3-D) sets of points or line segments. We often have at
our disposal only a 2-D medium, such as a computer-graphics screen, on which to display a
necessarily incomplete representation of the data we are interested in. Therefore it is desirable
to obtain 2-D representations of our data that make it easy for us to discover the structure
in the real data in 3-D. Our methods for computing non-degenerate projections are also
applicable to this family of problems that falls in the areas of scientific visualization [11, 14],
computer graphics [3, 13] and computer vision [4, 15].

This paper is structured as follows. In Section 2 we give algorithms for computing perspective
projections of a set of points such that all points in the projection have distinct z-coordinates;
have both distinct z- and y-coordinates. In Section 3 we give an algorithm for computing
a perspective projections of a set of points such that no three points in the projection are
collinear. In Section 4 we give an algorithm for computing a perspective projections of a set
of points such that no four points in the projection are cocircular. In section 5 we present an
algorithm for computing a perspective projection of a set of line segments such that no two
segments in the projection are parallel. In section 6 we discuss the problem of removing some
quasi-intrinsic degeneracies for point and line segment sets in the plane by using perspective
projections. Finally, in Section 7 we present conclusions and future work.

2 Projections with distinct z-coordinates

Motivated in part by the problem of visualizing a point set projected onto a plane, Gémez,
Ramaswami and Toussaint [12] solve the problem of finding the orthogonal projection of
a given point set that has the property that the projected points have distinct z and y
coordinates. In this section we are concerned with the perspective version of that problem.
Throughout this section we assume the plane of projection to be the zy-plane (Figure 1).



Figure 1: Projected points with the same x-coordinate

For the sake of simplicity of description we now introduce some terminology: let P =
{p1,---,pn} be a set of n distinct points in space and ¢ be a center of projection. We
denote by P* = {p7,---,p}} the perspective projection of P from c¢. When necessary, we will
underline the dependency of P* on ¢ by writing P*(c) or p(c).

If there are two points in P that determine a line parallel to the y-axis, then the perspective
projection of P will contain points with the same z-coordinate. Let us find how to detect
this situation first.

Lemma 2.1 Given a set of n distinct points, whether there are two points that determine a
line parallel to the y-axis can be decided in O(nlogn) time and linear space.

Proof. Tt suffices to project P orthogonally onto the zz-plane and check the resulting projected
points for duplicates. Using a lexicographic sort of the projected points followed by a scan of

the sorted list, we can determine whether there exist any such duplicates in O(nlogn) time.
O

Theorem 2.1 Given a set of n distinct points such that no two of them determine a line
parallel to the y-axis, deciding whether a given projection has distinct x-coordinates can be
done in ©(nlog n) time and ©(n) space in the algebraic decision tree model.

Proof. 1t is sufficient to check for duplicate z-coordinates by sorting lexicographically the
projected points on the zy-plane. This takes O(nlog n) time.

The element-uniqueness problem is to determine, given an input set of real numbers, whether
any two of them are equal. This decision problem was shown to have complexity ©(nlog n),



in the algebraic decision tree model, by Dobkin and Lipton [5]. Given a set of real numbers
A = {ay,---,ay}, let us consider the set of distinct points P = {(a;,i,1),7 = 1,---,n}.
The perspective projection of center (0,0,2) onto the zy-plane maps the set P onto the set
P* = {(2a;,2i), i = 1,---,n}. Points of P* have distinct z-coordinates if and only if there
are not two identical numbers in A. Thus we have a linear time reduction from the element-
uniqueness problem to the distinct projected z-coordinates decision problem. This proves
that the latter is also Q(nlog n).

O

2.1 Existence of projections with distinct z-coordinates

We now look at the existence problem, namely: does a projection with distinct z-coordina-
tes always exist? A point is said to be a forbidden point if it produces a projection with
non-distinct z-coordinates when projecting from it. A plane is called a forbidden plane if
it contains a pair of points of P and intersects the zy-plane at a line parallel to the y-axis.
Furthermore, every pair of points in P yields a forbidden plane and there are no others. Since
all forbidden points are contained in O(n?) planes, and these planes have measure zero in
space, we conclude that there always exists a perspective projection whose z-coordinates are
all distinct.

2.2 Computation of projections with distinct z-coordinates

Let us now turn to the computation problem: given a set of n points, to find a center
whose projection has distinct z-coordinates. As we saw before, the forbidden directions have
measure zero and hence centers of projection are allowed in abundance. In particular, the
following theorem shows how to find a valid projection center on the z-axis.

Theorem 2.2 Given a set of n distinct points such that no two of them determine a line
parallel to the y-azis, a projection with distinct x-coordinates can be computed in O(nlogn)
time and linear space.

Proof 1. If necessary, we first change the coordinate system so that P lies in the first octant
(that is, all points have positive coordinates). Next we project P orthogonally onto the zy-
plane, and taking that projection as a planar set, compute the perspective projection from
the origin onto some line. If such projection is not regular, then we will find a new center
on the negative part of the z-axis which does produce a regular projection. (Recall that in
a regular projection all projected points are distinct; see [1]). An algorithm whose running
time is O(nlogn) can be used in order to compute that new center. We note that after all
these operations the z-axis cannot be a forbidden line. That is because no point of P belongs
to the yz-plane and there is no plane containing the z-axis and more than one point of P.

The following step finds a valid projection center on the positive z-axis. Actually, the algo-
rithm not only computes a valid center, but also obtains an open line segment of valid centers.



If we used a brute force algorithm, then we should take into account €2(n?) forbidden planes
to be intersected with the z-axis and that would lead us to a quadratic complexity. How-
ever, we show that it is not necessary to examine all planes to obtain the desired center of
projection.

Let zp be a positive number such that zp > max{z(p;)|i = 1,---,n}, where z(p;) is the
z-coordinate of p;, and c(zg) = (0,0, 29) is a point on the z-axis. Let us consider P*(z) the
perspective projection of P from ¢(z) = (0,0,2),z > zy onto the zy-plane. If P*(zp) turns
out to have all its z-coordinates distinct, then the process is completed. Let us assume it
is not so. In that case, we know that in P*(z;) there are at least two points with the same
z-coordinate. When varying the parameter z, z > z( in a continuous way, the points of P*(z)
move in a continuous way too. Let ¢(z1) = (0,0, z1) be the nearest forbidden point to ¢(zp).
In the set P*(z1), there must exist two points, pfj (zl),p;-“jJr ,(#1), whose z-coordinates when
sorted are equal. Since the order of the projected points only changes at a forbidden point
when ¢(z) varies, it follows that points P;; (21) and Pl (z1) were already consecutive at ¢(zp).
Therefore, it suffices to consider only those planes passing through two consecutive points in
the ordering by z-coordinate at zy. For each one of those planes, we compute the intersection
with the z-axis and select the nearest point ¢(z1) to ¢(z9). Any point of the open line segment
c(z0)c(z1) is an allowed point. The algorithm runs in O(nlogn) time and uses O(n) space.
O

Next we describe an alternate second approach for computing perspective projections with
distinct z-coordinates also in O(nlogn) time and linear space. Although this algorithm
is more complicated up to a constant factor, unlike the previous algorithm, it yields an
unbounded interval of valid projection centers located on the z-axis. This may prove useful
for stability purposes in some applications in computer vision [4, 15].

Proof 2. This second algorithm is based on the observation that when we project a point
set P from a projection center ¢ on the z-axis onto the zy-plane, two points p; and p; of P
project to points with the same z-coordinate if and only if, in the orthogonal projection P’
of P onto the zz-plane, we have that the projected points p} and p;- are collinear with the
projection center c. So, to compute a perspective projection of the point set P with distinct
z-coordinates, it suffices to determine a point in the z-axis that is non collinear with any two
points of P’. This is only possible when the points of P’ are distinct.

The algorithm uses several results from [12]. In particular the algorithms there for computing
regular orthogonal projections of planar points onto a line, and of 3-dimensional points onto
a plane.

As with the first algorithm we start by changing the coordinate system, if necessary, so that P
lies strictly in the first octant of the coordinate space. Then we rotate P so that the orthogonal
projection P’ of P onto the zz-plane is a regular projection, i.e., the points of P’ are distinct.
This can be done in O(nlogn) time with the algorithm in [12]. Let P” be the projection of
P’ onto the z-axis. Note that P"” may have duplicates. Now perform a lexicographic sorting
of P" to first delete duplicates and then compute the smallest (non-zero) gap between an
adjacent pair in the points of P” that are not discarded. Call this gap Gy_min. This step is
also O(nlogn). Next compute the difference in z-coordinates between the highest and lowest



(maximum and minimum z-coordinates) points in P’. Call this difference H, ;45 Let Spaz
equal the ratio of H, ,,4; over Gy_min- Note that S;,4; is an upper bound on the maximum
slope (nearest to vertical) determined by any pair of points in P’. This follows from the fact
that P’ is a regular orthogonal projection of P.

Finally, let py denote the point on the xz-plane whose z and z coordinates are equal to the
maximum z and z coordinates, respectively, of the points in P’. We construct a line with slope
equal to the negative of S, such that it passes through py and we compute the intersection
point ¢y that this line makes with the z-axis. By this construction any point on the z-axis
above ¢y cannot be collinear with two points of P’. Therefore the perspective projection of
P from any such center above ¢y will not have two points with the same z-coordinate.

O

2.3 Perspective projections with distinct x and y coordinates

It is quite natural to ask for projections that not only have the z-coordinates distinct, but
also the y-coordinates. This problem can be easily solved using the ideas put forward above.

To determine whether a given projection has distinct z- and y-coordinates it is enough to
sort the points lexicographically and check for duplicates. The forbidden planes are those
that pass through a pair of points of P and are parallel to either the z-axis or the y-axis.
As a consequence, we can conclude that projections with distinct z- and y-coordinates are
always possible to find.

Finding a projection with distinct z-coordinates has already been solved. However, such a
center may not produce a projection with distinct y-coordinates and we need to do some
extra work.

By using the algorithm presented in proof 1 of Theorem 2.2, we obtain an open line segment
of valid centers. Let ¢(z2) be an interior point of that segment. If ¢(z2) is not a forbidden
center, then we have found our center. If it is we adapt the algorithm presented in proof 1 of
Theorem 2.2 so that it finds the point ¢(z3) closest to ¢(z2) such that it is a forbidden center
for the y-coordinates. If we let z4 = min{z1, 23}, then any point of the open line segment
c(z2)c(z4) is a valid projection center.

We can also use the algorithm presented in proof 2 of Theorem 2.2 to obtain an unbounded
segment of projection centers. Initially we rotate P so that it yields regular orthogonal
projections on both the zz-plane and the yz-plane. Then we proceed to compute ¢y based
on the zz-plane. Finally, we compute a candidate ¢; based on the yz-plane and select the
maximum of the two candidates for our z-value. Then any point on the z-axis above this
z-value will serve as the center of projection.



3 Non-collinear perspective projections

In this section we turn our attention to computing non-collinear projections of a set of points
in space, that is, a center of projection such that there are no three collinear points on
the projection. Note that the condition of being collinear only depends on the position of
the center with respect to the points in space, and hence, it is independent of the plane of
projection. Because of this, we fix the zy-plane as the plane of projection throughout this
section (Figure 2).

Figure 2: Collinear projection

If three or more points in space are collinear then they will also be collinear in any projection.
In [12] Gémez et al. describe an algorithm that, in O(n?) time and space, decides if a set
of points in space contains three or more collinear points. We will take their algorithm as a
preliminary step for the decision and computation problems to be solved below.

3.1 Existence of non-collinear perspective projections

Theorem 3.1 Given a set of n distinct points, deciding whether a given center produces a
non-collinear projection can be done in O(n?) time and space.

Proof. We first apply the algorithm in [12] to the point set in space before carrying on. If there
are collinear points, then we conclude that the desired projection cannot exist. Otherwise, we
project P onto the zy-plane. The projection is then transformed into a dual set of lines via
the standard map (a,b) — y = azx + b. It is well known that there are three collinear points
in the primal space if and only if there are vertices of degree six or more in the arrangement
of lines in the dual space. Constructing such an arrangement and checking for those vertices
takes O(n?) time and space (see [6]).

O

The decision problem admits a reduction from the 3-collinear-problem. We recall the latter
problem belongs to the so-called 3-SUM-hard class (see [10]).



Theorem 3.2 Given a set of n distinct points, to decide whether a given center produces a
non-collinear projection is 3-SUM-hard.

Proof. Let P* = {p},---,p;} be a set of points in the zy-plane and denote by p} = (z;, yi),
i = 1,---,n its coordinates. Given a number d > n, for i = 1,---,n consider the point

d—i d—1
pi = (szz, szi, z) and the set P = {p1,---,pn} formed by those points. The perspec-

tive projection of the center (0,0,d) onto the zy-plane maps set P onto set P*. Therefore,
there exist three collinear points in P* if, and only if, there exist three collinear points in P.
O

A point in space is said to be a forbidden point (for non-collinear projections) if the projection
of P from that point contains three or more collinear points. A plane determined by three
points in P is then called a forbidden plane. Since all forbidden points belong to O(n?)
forbidden planes, and planes have measure zero in space, non-collinear perspective projections
always exist.

3.2 Computation of non-collinear perspective projections

Theorem 3.3 Given a set of n non-collinear points in space, computing a non-collinear
projection can be done in O(n?) time and space.

Proof. Let P = {p1 = (z1,¥1,21),""*,Pn = (Tn,Yn,2n)} be the set of non-collinear points.
We begin by computing a perspective projection onto the zy-plane so that all z-coordinates
are distinct. To do so, we use the first algorithm described in the previous section. We recall
that this algorithm returns as output an open line segment of valid centers of projection.
Furthermore, the projected points have positive z- and y-coordinates and zy > max{z; |i =
1,---,n} > 0. As a first candidate we pick c(z1) = (0,0, z1); if ¢(z1) is not a forbidden center,
then we are finished. If it is not the case, we keep looking for a valid center.

Let ¢(z) = (0,0,2) be a point on the z-axis with z > z;. When point p; = (z;,v;,2;) is
£ yi>. Note that

projected from c¢(z) onto the zy-plane, we obtain the point (
z—2z 22— %
z

>1,Vi =1,---,n, the term
Z— 2 Z—Z
and, therefore, p}(z) tends to (z;, y;).

since z > z; and tends to 1 as z goes to infinity

Consider the projection P*(z) of P from c¢(z) = (0,0,2),z > 2z;. For the set P*(z), in
particular, we construct its dual arrangement A(P*(z1)) with the mapping (a,b) — y = az+b.
Since we have guaranteed that P*(z;1) does not have repeated z-coordinates, the arrangement

does not contain parallel lines. For each z > 2z, we look at the dual arrangement A(P*(z)). As
z

z increases from z1, for 1 = 1,---,n, the lines r; : y = (sz) T+ y; of the arrangement

z—2; z—2;
A(P*(z)) tends to the lines r : y = z;z + y;. All lines pass through a fixed point f; = (_%” 0)

and since z; > 0 and ;% = > 1 the slope 2 7L is kept positive, while decreasing continuously

until reaching z; (Figure 3).
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Figure 3: Line transformation

During this process, for z > z; the arrangement A(P*(z1)) transforms into the arrangement
A(P*(z)). The first intersection of three lines, by continuity, will take place among three
lines that form a triangular cell in A(P*(z1)). Thus, it suffices to compute the O(n?) planes
determined by the triplets of points which give triangular cells in the dual space. Intersecting
those planes with the z-axis produces a set of forbidden points; by selecting the closest one
to ¢(z1), we obtain the desired open line segment of valid centers.

It only remains to establish the complexity. A projection with all z-coordinates can be
computed in O(nlogn) time. To determine whether a projection is collinear takes quadratic
time by virtue of the results proved above. Constructing the arrangement of lines also takes
quadratic time as pointed out before. Finally, computing the forbidden planes given by the
triangular cells and intersecting them with the z-axis can be done in quadratic time also.

O

4 Non-cocircular perspective projections

A perspective projection of a point set in space is said to be non-cocircular if it contains no
four cocircular points. Note that the property of being cocircular simultaneously depends
on the position of the center and the plane of projection. Without loss of generality, we will
assume the plane of projection to be the zy-plane (Figure 4).

Theorem 4.1 Given a perspective projection of a set of n points in space, we can decide
whether it is cocircular in O(n®) time and space.

Proof. Let P = {p1,---,pn} be the set of points and P* = {p7,---,p}} its projection from a
given center. Consider the dual of P* given in the following way. Each point in the zy-plane
is lifted to the paraboloid z = 22 4 y? and associated to its tangent plane. The following two
properties of the dual map allow us to solve the decision problem: (1) three planes intersect
at a point if, and only if, the corresponding points are non-collinear and, (2) four planes
are concurrent if and only if the corresponding points are cocircular. By constructing the
arrangement of planes, we can determine if there are four or more concurrent planes in O(n?)
time and space (see [6]).



Figure 4: Cocircular projection

4.1 Existence of non-cocircular perspective projections

A center of projection is called a forbidden center if it produces a cocircular projection. As
before, let us call P* = {p},---,p}} the set of projected points and, for i, 5, k,! all distinct,
let us denote by R, the region of forbidden centers for the four points p;j,pj,pg,p;- If
these points are cocircular, then their liftings to the paraboloid are coplanar. Four points
are coplanar if, and only if, the volume of the tetrahedron formed by them is zero; this
characterization leads to the following equation
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The region of forbidden points is given by the solution of the equation. The equation has
degree 6 and the region has measure zero in space. Therefore, there always exists a non-
cocircular projection.

4.2 Computation of non-cocircular perspective projections

From now on we assume the intersection of each forbidden region with the z-axis can be
computed in O(1) time.

Theorem 4.2 Computing a center of a non-cocircular perspective projection can be done in
O(n?) time and space.

Proof. We begin by computing a non-collinear projection. This can be done with an algorithm
put forward in the previous section. As we have already seen, that algorithm provides a line



segment whose interior points are all allowed points. Furthermore, the line segment can
be chosen so that the z- and y-coordinates are all positive and its endpoints have greater
z-coordinates than any point in P. Note that the z-axis is not a line of forbidden points
because the intersection of the forbidden regions with it consists of a finite set of points. Let
c(z1) = (0,0, z1) be the center of a non-collinear projection. If ¢(z1) produces a non-cocircular
projection we have finished. Otherwise, we continue looking for a valid center.

We recall from the previous section that a point p; = (z;,y;,2;) is projected from center

z z
(0,0,2),z > 2 to point p*(z) =

i, —— yi> and as z tends to infinity, p*(z) tends
to point (x;,y;) continuously. Let P* (zl)Z be the piojection of P from ¢(z;) and let us consider
the set of planes given by the dual of P*(z;) via the map z = z2? + y? as described above.
For a projected point (z,y), the normal of its dual plane is (2z,2y, —1). Since there are no
two points with the same z-coordinate, the normals are all distinct and therefore, no parallel
planes exist. As in P*(z1) there are no three collinear points, in the dual there will not be
planes intersecting at a line. Let us then construct the arrangement of planes and call it

A(P*(z1)).-

For each point ¢(z') = (0,0,2'),2' > 21, let P*(2') be the projection of P from ¢(z') onto
the zy-plane. Consider the dual planes corresponding to that set via the map z = 22 + 92
and let A(P*(2')) be the arrangement given by those planes. As 2’ increases from 2z, for all
1=1,---,n, planes

S Lm*(pi)x—l-i)y*(pi)y_ ((Lpi)m*(pi))? + (Lpi)y*(pi))z)

2 — z(p;) z' — z(p; 2zl — 2( 2 —2z(

are continuously transformed into the planes:

ez =2x"(p;i)r + 2y" (pi)y — (37*(171')2 + y*(pi)Q) .

All these planes pass through a fix line r; in the plane z = 0 whose equation is

ri 20" (pg)x + 2% (pi)y — (¥ (p)” + 4" (pi)?) = 0
and whose slope is negative and equal to —z*(p;)/y*(p;) (Figure 5).

Therefore, during that process the arrangement of planes A(P*(z1)) is transformed into
A(P*(2")) in a continuous way. This is because the coefficients of the planes are continuous
functions of z. The first intersection to be found, by continuity, must take place among
four planes that form a tetrahedral cell in A(P*(z1)). This implies that it is sufficient to
compute the O(n?) forbidden regions identified by the vertices of tetrahedral cells. Once
computed, we intersect them with the z-axis and select the closest forbidden point to ¢(z1),
say ¢(z2) = (0,0, 22). The open line segment ¢(z1)c(z2) is the desired set of valid centers.



Figure 5: Plane transformation

It only remains to establish the complexity. A non-collinear perspective projection can be
computed in quadratic time and space. To check if ¢(z1) is a non-cocircular projection and
construct the arrangement A(P*(z1)) takes O(n3) time. Finally computing the forbidden
regions for the selected cells and finding ¢(z2) is also cubic time. Thus, the total time and
space complexity is O(n?).

O

5 Non-parallel perspective projections of line segments

In this section we show how to compute, given a set of n disjoint line segments in space,
a projection such that there are no parallel segments in the projection. Such projections
receive the name of non-parallel projections. If there are two line segments which are parallel
to each other and parallel to the zy-plane, then no center of projection will allow us to obtain
a non-parallel projection. Let us find how to detect this situation first (Figure 6).

Lemma 5.1 Given a set of n disjoint line segments, whether there exist two of them parallel
to each other and parallel to the zy-plane can be determined in O(nlogn) time and linear
space.

Proof. Let S = {s1,---,sp} be the set of line segments and a; = (Za;,Ya;>%a;):0i =
(@b;, Yb;» 2p;) the endpoints of s;,i = 1,--+,n. Among all segments in S we select those
parallel to the zy-plane, that is, those such that z,, = 2zp,. Next we detect if there are two
segments parallel to each other in that subset. In order to do that, we project the line seg-
ments onto the xy-plane and translate them to the origin so that the line segments have a
positive z-coordinate. Next we intersect the segments with the unit half-circle with positive
z-coordinates and keep the intersection points. All that can be done by making the followings
assignments
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Figure 6: Parallel projection

1. if zq; < xp,, then a; = xp, — 74, and 5; = yp, — Ya;,
2. if x4, = xy,, then oy = 0 and B; = |yp, — Ya; !

3. if ¢4, > mp,, then oy = xo, — xp, and B; = ya;, — Ys,-

Finally, we define the number ~; as follows

7._( % bi )z’—l---n
T b 7 - b 7 -
Voi+82 \JoR + 87

Two segments s;,s;,i # j are parallel if, and only if, this equality holds v; = ;. This
condition can be checked in O(nlogn) time by sorting the values 7;’s in lexicographic order
on the half-circle and finding if there are duplicates.

O

From now on, we assume that the set S of disjoint line segments does not contain line segments
parallel to each other and parallel to the zy-plane.

Theorem 5.1 Given a center of projection, deciding whether the perspective projection of the
set S is non-parallel can be done in O(nlogn) time and O(n) space in the algebraic decision
tree model.

Proof. In order to decide if there are parallel segments in the projection it suffices to check
for duplicates by sorting the projected segments by their «; values as in Lemma 5.1. This
takes O(nlogn) time.



To show an 2(nlog n) lower bound, we reduce the element-uniqueness problem to our decision

problem in linear time. Given the set of real numbers M = {my,---,m,}, let us consider the
set S of segments s;,7 =1,---,n, whose endpoints are

v (8 ni b._(i i(i +m;) n+1—i>

\"n’ n )’ 7 n4+1l 7 on+1 ]
Observe that the segments of S are disjoint and no segment of S is parallel to the zy-
plane. For i = 1,---,n, the perspective projection of center (0,0,1) onto the zy-plane
maps the segment s; of the set S onto the segment s; of the set S* whose endpoints are
al = (n,1),b = (n+ 1,9+ m;). Since the slope of segment s} is m;, we can conclude that

there are not two parallel segments in S* if and only if there are not two identical numbers
in M.
O

5.1 Existence of non-parallel projections

A center is called a forbidden center if the projection from it is parallel. The forbidden points
for two segments s;, s; with respect to the zy-plane are those centers that project them onto
parallel segments. We denote by P; ; such a region and present an algebraic characterization
of it. Let C = (z,y, z) be a center of projection; two projected segments are parallel if, and
only if, the following relation holds

(xbi—x_a:ai—x> Yo =Y Ya; — Y\ ybi—y_yai_y) Toj =T Loy — %
Z— 2z, 2 Zg Z— 2y 2 Za Z— 2y, 2 Zg Z—2y,  Z—Za; )

Working out the equations, we obtain the following quadric:

P,j:A2* + Bxz+ Cyz+ Dz + Ey+Fz+G =0.

The term A = (zp, — Ta;)(Ys; — Ya;) — (Ub; — Ya:)(Tp; — Ta;) is never zero since the segments
si, s; are non-parallel. The z-axis intersects each quadric at two points at most since the
equation for points on the z-axis yields a degree-two polynomial. Therefore, the z-axis is not
a line of forbidden centers. Since the quadrics have measure zero in space, there always exist
non-parallel perspective projections.

5.2 Computation of non-parallel projections

Theorem 5.2 Given a set of n disjoint line segments, a center of non-parallel projection
can be computed in O(nlogn) time and linear space.

Proof. We will find an allowed center on the z-axis. We first pick a positive number 2z
such that zp > max{z,,,2,,%? = 1,---,n} and check if the perspective projection of S from



c(z0) = (0,0,2p) is non-parallel. If so, then process is finished. Otherwise, we consider
c(z1) = (0,0, z1), the closest forbidden point to ¢(zp) and show how to compute it in O(nlogn)
time and linear space. A straightforward approach to obtain c¢(z1) would be to compute all
the forbidden regions P; ; and intersect them with the z-axis, and finally, select the closest
forbidden point to ¢(zp). This approach takes quadratic time, and by using a continuity
argument, we show how to lower the complexity to O(nlogn).

Let S*(z) be the projection of S onto the zy-plane from c(z) = (0,0,2),z > zo. Let us
associate each projected segment s}(z) with its pair +;(z) as defined above. These pairs
allow us to sort the projected segments lexicographically. In particular, we know that in the

set {71(#1), - ,7n(#1)} there must be two repeated points because c(z1) is also a forbidden
point. Let s} (z1) and s7, (21) be the two consecutive segments such that v;, (2) = 7i,,, (2)-

From the continuity of function v;(z) as z varies from zy to 2, it follows that v;, (29) and
Yixs: (%0) were already consecutive in the sorting. Thus, it suffices to consider the O(n)
quadrics determined by consecutive segments in the sorting at zy. Intersecting these quadrics
yields a linear number of candidates among which ¢(z;) is found. The total complexity is
O(nlogn) because of the sorting.

O

6 Removal of quasi-intrinsic degeneracies

If a perspective projection is applied to a set of points or a set of lines, only the projective
properties are preserved, but not the affine and metric ones. For example, properties such
as incidence, intersection and collinearity are invariant under projections while cocircularity,
parallelism and perpendicularity are not.

Some degeneracies in the plane considered as intrinsic such as four cocircular points, two
parallel lines or two perpendicular lines, can be removed through perspective projections.
Intrinsic degeneracies that can be removed via perspective projections are referred as quasi-
intrinsic degeneracies or degeneracies removable by perspective projections. Traditionally,
such intrinsic degeneracies are removed with perturbation methods such as those in [6]. The
perspective projection methods proposed here offer a new approach to handling intrinsic
degeneracies in planar problems.

We study two typical inputs, point and line sets in the plane, and show how to eliminate
some of their quasi-intrinsic degeneracies. In case the input is composed of lines, we need to
carry out a previous step in which vertical lines are removed (this is because many of our
methods imply the use of arrangements of lines.) This step consists of a a rotation of the
lines such that vertical lines disappear. The procedure to remove quasi-intrinsic degeneracies
is the following (Figure 7):

1. We assume that the input I is embedded in space

2. We pick a line e in the zy-plane and an angle « and rotate the zy-plane around e. The
criterion used to choose the values of e and o will be specified later. The new plane 7,



also contains a new input I,.

3. A center ¢ = (0,0,d),d > 0 of projection on the z-axis is chosen and I, is projected
back onto the zy-plane from ¢, giving place to I,(c), the final perturbed input. The
way of choosing ¢ will be also made concrete below.

c¢=(0,0,d)

L)
[¢]

Y

Figure 7: Approzimation by rotation and projection

We now specify the criterion for choosing the line e, the angle o and the center ¢ so that the
input I,(c) does not have quasi-intrinsic degeneracies and is still a good approximation of
the original input I.

Let e : y = mz + n be a line on the zy-plane. When applying a rotation in space of axis e
and angle a, a point p = (z,y) is mapped to point p,

1 2 1— 1— 2 . .
Po = +ﬂ_;gsa$+m(1+$§a)(y_n)’ m(1+16:25a)w+mli-:::zsa(y_n)+n,_ msina g 4 _sina (, _ p)
\/1+m2 \/1+m2

Point p, belongs to m,. Let ¢ = (0,0,d),d > 0 be a center on the z-axis. We compute the
projection of p, from ¢ onto the zy-plane; the projected point p,(d) has coordinates

d+ sin o (m:z:—y+n) ’ d+ sin o (m:v—y—i—n)

V14+m?2

(@) (d (Mrpes + 2iEmiy—n) (" + PEiEe v —n) + )
Pa = .
V14+m?2

It is straightforward to show that

lim p,(d) = p.

a—0



This expression implies that, by choosing « small enough, there always exists a good approx-

imation between the original input and the perturbed input which is independent of the axis

e and center c¢. For practical purposes, we recommend choosing an angle a close to zero; in

particular, if we want to use rational values we can work with a such that sina = % and
_ 6612

cosa = ggys3-

In the two remaining subsections we describe the scheme to set e for inputs composed of
points and of lines. Once e and « are determined, we apply to I, the algorithms described in
the first few sections of this paper in order to obtain a center of projection ¢ = (0,0, d) such
that the perspective projection of I, from ¢ removes the original quasi-intrinsic degeneracies.

6.1 Scheme for point sets

If we make d to tend to infinity, we obtain

. 14+ m?cosa m(l — cos @) m(1 — cos a) m? + cosa
1 = _
di’I{.lopa(d) ( 1+ m? vt 14+ m?2 (y—=n), 14+ m?2 ot 1+ m?2

vomen) <t

We call p/,, the result of calculating that limit. On the other hand, the square of the distance
from p = (z,y) to the axis of rotation is

(mz —y + n)?
d(pa 6)2 = W’

and, therefore, for the distance from p to p',, we have the following relation

— 21 _ 2
dlp.if)? = I E S0 621~ cosa
m

This nice equation provides us with the desired criterion for choosing e. Since « is already
fixed, the term we should minimize is d(p, €). Therefore, if P = {p1,---,pn} are the points of
the input, we choose e as the line given by the least-square fit, that is, the line that minimizes
the expression Y1 | d(p;,e)?.

6.2 Scheme for sets of lines

Given any line r : y = ax + b, let r, be the rotated line on plane 7, and r,(d) be the
projection of m, from ¢ = (0,0,d),d > 0 onto the zy-plane, as described above. As we did
before, we take limits and find the line r,,

lim r,(d) = r:l,
d—o0

whose equation is



) a(m?+cosa) + (1 —cosa)m  amn(l —cosa) + beosa(l + m?) + n(1 — cosa)
Tty =
(

1+ m?cosa) + am(1l — cos ) (1 4+ m?cosa) + am(1 — cos @)

If we associate point E = (m,n) with the axis e : y = mz + n and associate point R = (a,b)
with the line r : y = ax + b, it can be verified that, as d tends to infinity, the less the distance
d(R, E) is, the better is the approximation between lines r and T;. This remark suggests a
criterion for picking an optimal axis of rotation e. Let r; : y = a;z + b;,¢ = 1,---,n ben
non-vertical lines. We define R; = (a;,b;),7 = 1,---,n and choose axis e so that the function
S " d(R;,E)? is a minimum. Note that we are performing a least-squares fit in the dual
space.

6.3 The complexity of removing quasi-intrinsic degeneracies

Theorem 6.1 The complexity of removing quasi-intrinsic degeneracies is the same as that
of computing the projection center required to remove them.

Proof. The axis of rotation can be computed in linear time. Rotating and projecting the
input also takes linear time. Since the complexity of computing the projection center required
to remove the quasi-intrinsic degeneracies is higher than linear, the total complexity of the
removal process is the same as that of computing the projection center. Naturally, this
complexity depends on the class of quasi-intrinsic degeneracies removed by the process.

O

7 Conclusions and future work

In this paper we have considered several problems that are relevant to a variety of non-
degeneracy assumptions and resulting robustness of geometric algorithms. Algorithms have
been presented to compute a variety of non-degenerate projections: with distinct z-coordinates,
distinct z- and y-coordinates, no three points collinear, no four points cocircular, and with
non-parallel line segments. We also showed how to remove quasi-intrinsic degeneracies for
point and line segment sets in the plane by using perspective projections as a way of perturb-
ing the input. The results presented here are immediately applicable to graphics visualization
problems such as those investigated by Kamada and Kaway [13] as well as computer vision
problems such as those in [4] and [15].

Several avenues for further research remain unexplored. For handling degeneracies in com-
putational geometry, dimensions higher than three are also important. The results presented
here should extend to higher dimensions as well but the details remain to be worked out.
Finally, no lower bounds on the complexity of the computation problems considered here
have been obtained and so the optimality of our algorithms is not yet settled.
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