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Abstract

Given an n vertex simple polygon M, we show how to compute the Euclidean center of M constrained to lie
in the interior of M, in a polygonal region inside M or on the boundary of M in O(nlogn + k) time where k is
the number of intersections between M and the furthest point Voronoi diagram of the vertices of M. We show
how to compute the geodesic center of M constrained to the boundary in O(nlogn) time and the geodesic center
of M constrained to lie in a polygonal region in O(n(n + k)) time where k is the number of intersections of the
geodesic furthest point Voronoi diagram of M with the polygonal region. Furthermore, we show how to compute
the link center of M constrained to the boundary of M in O(nlogn) time. Finally, we show how to combine
several of these criteria. For example, how to find the points whose maximum Euclidean and Link distance are
minimized.

Computing such locations has applications in such diverse fields as Geographic Information Systems (G.I.S.)
and the manufacturing industry. The following problem was one of the main motives of this work. In the
manufacturing industry, finding a suitable location for the pin gate (the pin gate is the point from which
liquid is poured or injected into a mold) is a difficult problem when viewed from the fluid dynamics of the
molding process. However, experience has shown that a suitable pin gate location possesses several geometric
characteristics, namely the distance from the pin gate to any point in the mold should be small and the number
of turns on the path from a point in the mold to the pin gate should be small [19], [31]. The locations that
possess these geometric characteristics are the constrained centres discussed above.

1 Introduction

In the manufacturing industry, two of the most popular classes of production methods are injection molding and
gravity casting. Each of the two methods produces an object by filling a mold or cast of the given object with
a liquid, and removing the object once the liquid has hardened (see Figure 1). The difference between the two
methods is that liquid is injected into the mold in injection molding whereas liquid is poured into the mold and
gravity is the sole force acting on the liquid in gravity casting [11]. A mold or cast, as defined in [5], refers to
the whole assembly of parts that make up a cavity into which liquid is poured to give the shape of the desired
component when the liquid hardens.

In this paper, we consider the problem of determining a suitable location for the pin gale. The pin gate is the
point on the mold from which the liquid is poured or injected into the cavity. The location of the pin gate plays an
important role in determining whether or not an object built by one of the two manufacturing processes will have
surface defects. Many factors play a role in determining a suitable location for the pin gate when considered from
the point of view of fluid dynamics and physics of the whole molding process. To date, trial and error, guided by
engineering experience, has been the main method in determining a suitable location for the pin gate [19], [31],
[40]. However, through this experience, a few of the key characteristics of an ideal location for a pin gate have
been uncovered.
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Figure 1: An object and its cast.

If the distance from the gate to the extremities of the mold cavity is too great, the metal freezes
prematurely, and misruns result. [19]

This quote points out one of the key problems faced by cast designers. In order to avoid this problem, designers
must place the pin gate at a location where the distance from it to the extremities of the mold cavity is not too
great. Another key characteristic of casts that leads to surface defects is the presence of many “sharp corners
or overhanging or protruding sections...” [1]. These “sharp corners” disrupt the flow of molten liquid leading to
surface defects. Therefore, the pin gate must be placed in a location such that the flow of molten liquid from the
gate does not encounter too many sharp corners or make too many turns. For an overview of the many other
factors causing defects in molds and casts, the reader is referred to [19], [1].
These observations allow one to deduce the following properties for a good location for a pin gate:

Property 1: The maximum distance from the pin gate to any point in the object should be small.

Property 2: The maximum number of turns the liquid takes on its path from the pin gate to any point in the
object should be small.

When viewed from a purely geometric perspective, these problems can indeed be solved optimally. The
geometric solutions provide an initial approximation that can aid in the search for a suitable location. In this
paper, we solve the pin gate location problem for molds modelled as simple polygons which find applications in
polymer molds. In practice, many 3-dimensional objects are almost flat so that in effect they can be considered as
2-dimensional. Therefore the 2-dimensional theory is more important than may appear at first glance, and sheds
some light on the 3-dimensional problem.

The two properties that a pin gate should satisfy have several geometric interpretations. Property 1 can
be interpreted as the point inside the simple polygon whose maximum distance to any point in the object is
minimized. If distance is measured in the Euclidean metric, this point is referred to as the constrained Euclidean
center. Sometimes a pin gate is constrained to lie on the boundary of the mold. In such a case, Property 1
can be interpreted as the point on the boundary of the simple polygon whose maximum distance to any point in
the polygon is minimized with respect to all points on the boundary. This point is referred to as the boundary-
constrained Euclidean center. On the other hand, distance can be measured by the geodesic metric, i.e., the
minimum distance the liquid must travel inside the mold to reach a destination. In this case, Property 1 places
the pin gate at the geodesic center, which by definition is constrained to lie inside the polygon, and the boundary-
constrained geodesic center, respectively.

Property 2 can be interpreted as the link metric. The link metric measures the number of turns in a path
between two points. For example, if two points can be joined by a line segment, then they are at link distance
1. The points inside a simple polygon, whose link distance to any other point in the polygon is minimized,



are referred to as the link center. If the pin gate is constrained to the boundary, then it is referred to as the
boundary-constrained link center.

2 Constrained Euclidean Center

In this section, we show how to find the point inside a simple polygon P as well as the point on 0 P whose maximum
Euclidean distance to every point of P is minimized. These points are known as the Fuclidean center constrained
to lie in the polygon, and the Fuclidean center constrained to lie on the boundary of the polygon, respectively.

We first review the problem of finding the Euclidean center. Given a set S of n points in the plane, the Fuclidean
center is the center of the smallest circle enclosing the points of 5. This problem has a rich history. We summarize
as in [30]. The search for an efficient algorithm seems to have begun in 1860 by Sylvester [38]. Later, Rademacher
and Toeplitz [32] noted that the smallest enclosing circle is unique and is either the circumcircle of three points of
the set or defined by a diametrical pair. This immediately gives an O(n*) algorithm. Elizinga and Hearn [12, 13]
improved this to O(n?). Much work was done from an Operations Research perspective by viewing the problem
as a minimax facility location problem, where the Euclidean center is the point whose greatest distance to any
point of the set is minimized [17, 39, 20]. An O(nlogn) time solution to this problem was proposed by Shamos
and Hoey [34], but Bhattacharya and Toussaint [6] pointed out some errors in [34] and subsequently proposed
an alternate O(nlogn) time solution. Preparata [29] and Melville [25] also proposed an alternate O(nlogn) time
solution. However, no Q(nlogn) time lower bound for the problem was known. A search for a resolution to this
problem ensued, culminating in the discovery of an elegant ©(n) time solution to the problem by Megiddo [23].

Euclidee.an Center

Figure 2: Euclidean center outside polygon.

The Euclidean center of the vertices of a simple polygon may be a good candidate for the location of the pin
gate, but the center might lie outside the polygon (see Figure 2). Therefore, the location of the center must be
constrained to lie inside the polygon or on its boundary since otherwise it cannot serve as a pin gate. Therefore,
given an object modelled as a simple n vertex polygon, we wish to find the point lying inside the polygon whose
maximum Fuclidean distance to any point is minimized with respect to all points in the polygon. Since the furthest
neighbor of a point must be a vertex, we can restrict our attention to finding the point lying inside the polygon
whose maximum Euclidean distance to any vertex is minimized with respect to all points in the polygon. We also
want the point on the boundary whose maximum Euclidean distance to any vertex is minimized with respect to
all points on the boundary. Although the Euclidean center is unique, the Fuclidean center constrained to lie inside
the polygon as well as the Euclidean center constrained to lie on the boundary of the polygon need not be unique,
as depicted in Figure 3.
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Figure 3: Constrained Euclidean center may not be unique.

2.1 Center Constrained to a Polygonal Region

We solve a slightly more general problem than the one mentioned in the introduction. Suppose we are given a set
S = {s1,82,...,8;} of k points (in general position) in the plane E?, and an n vertex simple polygon P. We wish
to find the point ¢ in P whose maximum distance to any point in 5" is minimized. If ¢ is not constrained to lie in
P, then it is the Fuclidean center of 5. However, we refer to ¢ as the Euclidean center of S constrained to P and
denote it by ECp(S5).

Our algorithms make use of the furthest point Voronoi diagram of the set S, denoted as FPVD(S). Given
a point x € E?, we let ¢(z) denote the furthest neighbors of z in §, that is the set of points in S such that
d(z,¢(z)) = maxyesd(z,y) where d is the Euclidean distance function. The FPVD(S) partitions the plane into
unbounded convex cells, V(s;), such that for any point p € V(s;), s; € ¢(p). This structure can be computed in
O(nlogn) time [30]. A list of the many geometric properties of the furthest point Voronoi diagram can be found
in [26, 30, 6].

We first review some properties of the Euclidean center which will help us in finding its constrained counter-
part.

Lemma 2.1 [30, 6] The Fuclidean center of S lies on the midpoint of the diameter of the set S, DIAM(S),
provided that the circle with DIAM(S) as diameter contains the set S.

Lemma 2.2 [30, 6] If the Euclidean center does not lie on the midpoint of DIAM(S), then it lies on the vertex
of the FPVD(S) that yields the smallest spanning circle.

These two lemmas characterize the location of the Fuclidean center. When considering the constrained version
of the problem, notice that if the Fuclidean center happens to lie inside the constraining polygon, then it is also
the constrained Euclidean center. However, difficulties arise when the Euclidean center does not lie inside the
polygon. These difficulties are resolved in the following lemmas.

Lemma 2.3 The FEuclidean center of S constrained to lie in P is the midpoint of DIAM(S) provided that the
diametral circle contains the set S, and the midpoint is contained in P.

Proof: Follows from Lemma 2.1. n



Before tackling the problem of determining the location of £Cp(.5) when it is not on the midpoint of DIAM(.S),
we first establish a lemma that will prove useful. Let a,b be two points in § such that both @ and b are on the
convex hull of 5, [ab] is not the diameter of S, and V(a) and V(b), the two cells of FPVD(S) representing a and
b, respectively, are adjacent and separated by an edge e. Let z be a point on the interior of e, and let € > 0 be
any small constant.

Bisector of [ab]

e

Figure 4: Hlustration for proof of Lemma 2.4.

Lemma 2.4 There exists a point y € e with d(z,y) < € such that d(y,a) < d(z,a) and d(y,b) < d(z,b).

Proof: See Figure 4. The edge e must lie on the bisector of line segment [ab], since the points on e are equidistant
from both @ and b. The points a, b, z must form a triangle because otherwise [ab] would be the diameter. Since z
is contained in nt(e), let y be a point on e in A(abz) such that d(z,y) < e. The lemma follows. ]

Lemma 2.5 If ||S|| > 1 then a point b of S cannot lie in V(b).
Proof: Let z € S be a point distinct from b. Note that d(b,b) = 0, however, d(b,z) > 0 which contradicts the
fact that b € V(b). n

We now complete the characterization of ECp(S5).

Lemma 2.6 If the Fuclidean center of S constrained to lie in P is not the midpoint of DIAM(S), then it lies on
one of the following points that yields the smallest spanning circle:

1. a vertezx of the FPVD(S) contained in P,
2. a proper intersection point of the FPVD(S) and the boundary P,
3. a vertex of the polygon P,

4. a point x on an edge e of P with the property that Yy € e, if p(y) = ¢(z) then d(y, ¢(z)) > d(z, ¢(z)).

Proof: If ECp(5) does not lie on any of the points mentioned in the statement of the lemma, then it must lie in
one of the regions described in the following four cases. We show that each of these cases leads to a contradiction.
For simplicity of exposition, let ¢ = ECp(5).

Case 1: cis a point in the interior of a cell of the FPVD(S), and in int(P). Let V(b) be the cell containing c.
By the Jordon Curve Theorem [27], line segment [bc] must intersect P or V(b) since b ¢ V(b) by Lemma
2.5. Let 2 be the intersection point closest to ¢. The point z must be in V(b). Therefore the circle centered
at z with radius d(z,b) encloses the set S. However, d(z,b) < d(c,b) by construction. Hence, we have a
contradiction.



Case 2: ¢ is a point in the interior of a cell of the FPVD(S), and in the interior of an edge e of P but does
not satisfy the property that Vy € e, if ¢(y) = ¢(c) then d(y,¢(c)) > d(c¢,¢(c)). Since the latter property
is not satisfied, a point @ € e such that ¢(z) = ¢(c) and d(z, ¢(c)) < d(c,$(c)) must exist. However, the
very existence of z contradicts that ¢ is the constrained Euclidean center since the circle centered at z with

radius d(z, ¢(c)) encloses S.

Case 3: cis a point in the interior of an edge e of the FPVD(S), and in int(P). Let V(a) and V(b) be the two
cells separated by the edge e. Since ¢ is not on the diameter of the set 5, by Lemma 2.4 we know that there
exists a point z in e and in ini(P) such that d(z,a) < d(c,a) and d(z,b) < d(c,b). This contradicts that ¢
is the constrained Euclidean center.

Case 4: ¢ is a point in the interior of an edge e, of the FPVD(S), and in the interior of an edge e, of P such
that e, and e, intersect but not properly. Same argument as Case 3.

Lemma 2.3 and Lemma 2.6 characterize the location of EC'p(5). We outline the following algorithm to compute
this point.

Algorithm 1: Fuclidean Center of P constrained to lie in S

Input: A set of points 5 = {s1,s2,...,5,} and a simple polygon P = {p1,p2,...,pn}-
Output: ECp(S)

1. Compute the FPVD(S).

2. Compute DIAM(S).

3. Compute the circle C" having DIAM(S) as diameter.
4

. Preprocess P in O(nlogn) time for point inclusion testing in O(logn) time using the algorithms of Kirkpatrick
[18] or Sarnak and Tarjan [33].

5. If the midpoint of C'is contained in P and all the points of 5 are contained in C' then exit with the midpoint
of DIAM(S).

6. Compute the set of vertices of FPVD(S) contained in P. Let V, represent this set.
7. Compute the set of intersections I. = {i1,%2,...,i} of P with FPVD(S).

8. Partition each edge e; of P such that for every pair of points z,y € e;, we have that ¢(z) = ¢(y). Denote the
4t partition of e; by €;j-

9. For each e;;, compute the point on e;; closest to ¢(e;;). If this point is not an endpoint of e;;, place it in the
set F..

10. Let P, represent the vertices of P. For each point ¢ in V., I., P., FE., compute the smallest spanning circle
with center ¢. Let SP represent this set.

11. Select all the smallest circles in SP, and output their centers and the radius.

Notice that we assumed that the number of vertices of P equals the number of points in 5. Clearly, this need
not be the case, however, this assumption simplifies the complexity of notation. It is straightforward to repeat the
complexity analysis when P and S have different cardinalities.

Theorem 2.1 Given a set of points S = {s1,82,...,8,} and a simple polygon P = {p1,p2,...,pn}, we can
compute the Euclidean center of S constrained to lie in P in time O(nlogn + k) where n is the size of the input
and k is the number of intersections between the edges of the FPVD(S) and P.



Proof:  The correctness of the algorithm follows from Lemmas 2.3 and 2.6.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be computed in O(nlogn) time
using the algorithm of Shamos [30]. Step 2 can be computed in O(nlogn) time by first computing the convex hull
of S and then finding the diameter of the convex hull. Preprocessing for point inclusion can be done in O(nlogn)
using the algorithm of Kirkpatrick [18] or Sarnak and Tarjan [33]. Step 5 can be achieved in O(nlogn) time by
using the point inclusion test. Step 6 can be done in O(nlogn) time using the point inclusion test. Step 7 can
be computed in O(nlogn + k) time where k is the number of intersections between P and FPVD(S) using the
algorithm of Chan [7]. If we color the segments in F'PVD(S) blue and the edges of P red, then the algorithm of [7]
reports the intersections along each edge of P in sorted order. Once these intersection points have been computed,
Step 8 and 9 can be achieved in O(n + k) time. Step 10 can be computed in O(n + k) time since it takes constant
time to compute the circle and there are O(n 4 k) points in the set SP. Finally, Step 11 can be computed in
O(n + k). Therefore, the total complexity of the algorithm is O(nlogn + k) time. ]

For simple polygons, k can be O(n?), however, for convex polygons, we notice the following: a line segment
can intersect a convex polygon only twice. Therefore, since FPVD(S) consists of O(n) line segments, there can
only be O(n) intersections between FPVD(S) and an n vertex convex polygon. Therefore, we have:

Corollary 2.1 Given a set of points S = {s1,52,...,8,} and a convezx polygon P = {p1,pa,...,pn}, we can
compute the Fuclidean center of S constrained to lie in P in time O(nlogn) where n is the size of the input.

2.2 Center Constrained to a Polygonal Chain

With a slight modification, Algorithm 1 can compute the Fuclidean center constrained to lie on the boundary of
the polygon, denoted as ECyp(5). These modifications are outlined below.

Lemma 2.7 The Fuclidean center of S constrained to lie on the boundary of P is the midpoint of DIAM(S)
provided that the diametral circle contains the set S, and the midpoint is on the boundary of P.

Proof: Follows from Lemma 2.1. n

Lemma 2.8 Ifthe Fuclidean center of S constrained to lie on the boundary of P is not the midpoint of DIAM(S),
then it lies on one of the following points that yields the smallest spanning circle:

1. a vertex of the FPVD(S) on the boundary of P,
2. an intersection point of the FPVD(S) and the boundary P,
3. a vertex of the polygon P,

4. a point x on an edge e of P with the property that Yy € e, if p(y) = ¢(z) then d(y, ¢(z)) > d(z, ¢(z)).

Proof: If FCyp(S) does not lie on any of the points mentioned in the statement of the lemma, then it must lie in
one of the regions described in the following four cases. We show that each of these cases leads to a contradiction.
For simplicity of exposition, let ¢ = EC5p(5).

Case 1: cis a point in the interior of a cell of the FPVD(S5), and in ¢nt(P). This cannot happen since ¢ must
be on the boundary of P.

Case 2: ¢ is a point in the interior of a cell of the FPVD(S), and in the interior of an edge e of P but does
not satisfy the property that Vy € e, if ¢(y) = ¢(c) then d(y,¢(c)) > d(c¢,¢(c)). Since the latter property
is not satisfied, a point & € e such that ¢(z) = ¢(c) and d(z, ¢(c)) < d(c, $(c)) must exist. However, the
very existence of z contradicts that ¢ is the constrained Euclidean center since the circle centered at z with

radius d(z, ¢(c)) encloses S.



Case 3: ¢ is a point in the interior of an edge of the FPVD(S), and in int(P). Again, ¢ cannot lie in int(P)
since it is constrained to the boundary.

Case 4: ¢ is a point in the interior of an edge e, of the FPVD(S), and in the interior of an edge e, of P such
that e, and e, intersect but not properly. Let V(a) and V' (b) be the two cells separated by the edge e,. Since
c is not on the diameter of the set 5, by Lemma 2.4 we know that there exists a point z in e, and in e, such
that d(z,a) < d(c,a) and d(z,b) < d(c,b). This contradicts that c is the constrained Euclidean center.

Lemma 2.7 and Lemma 2.8 characterize the location of ECyp(.5). The modifications to Algorithm 1 for computing
these points are straightforward. Therefore, we conclude with the following.

Theorem 2.2 Given a set of points S = {s1,89,...,8,} and a simple polygon P = {p1,p2,...,pn}, we can
compute the Fuclidean center of S constrained to lie on the boundary of P in time O(nlogn + k) where n is the
size of the input and k is the number of intersections between the edges of the FPVD(S) and P.

Corollary 2.2 Given a set of points S = {s1,52,...,8,} and a convezx polygon P = {pi,pa,...,pn}, we can
compute the Fuclidean center of S constrained to lie on the boundary P in time O(nlogn) where n is the size of
the input.

3 Constrained Geodesic Center

Both versions of the constrained Fuclidean center serve as good first approximations for the locations of the pin
gate. However, in some cases the constrained Euclidean center may not be a point satisfying Property 1, as
intended (see Figure 5). In fact, it may be quite bad in the sense that the liquid may have to travel quite far
despite the fact that the pin gate is located at the constrained or boundary-constrained FEuclidean center. The
reason is that the Fuclidean distance of the pin gate to all the points may not be a good measure of the actual
distance the liquid must travel inside the polygon. For example, in Figure 5, the Euclidean center, constrained
Euclidean center and boundary-constrained Fuclidean center all lie on the same vertex indicated on the polygon.
However, the distance that the liquid must travel inside the polygon from that point to vertex v is quite large
compared to vertex c¢. Although for convex or “near” convex objects, the Fuclidean metric may be good, it seems
that the geodesic metric may serve as a better approximation since liquid is travelling inside the polygon.

Constrained
Euclidean Center

Figure 5: Constrained Fuclidean center may not be a good approximation for the best pin gate location.



In the geodesic metric, the distance between two points inside a simple polygon is defined as the length of the
shortest path connecting the two points inside the polygon. The geodesic center of a simple polygon is the point
whose maximum geodesic distance to any other point in the polygon is minimized. Therefore, by definition, the
geodesic center of a simple polygon lies inside the polygon. Although the geodesic center and boundary-constrained
geodesic center may serve as better approximations for the location of a pin gate, computing both centers is more
difficult than their Euclidean counter-parts as we shall see.

3.1 Geometric Properties

The problem of computing the geodesic center of a simple n vertex polygon P, denoted GC(P), was first tackled
by Asano and Toussaint [4]. They gave an O(n3loglogn) time algorithm for computing the center. In [4], it is
shown that the geodesic center is unique and located on a vertex of the geodesic furthest point Voronoi diagram of
P, denoted GFPVD(P). The GFPVD(P), like its Euclidean counter-part, divides the polygon P into cells V(v;),
such that the locus of points in V(v;) is further from v; than any other vertex of P (with distance measured with
the geodesic metric). Later, Pollack, Rote and Sharir [28] reduced the complexity of computing the geodesic center
to O(nlogn) time. They used a different approach and achieved their time bound by a modification of Meggido’s
technique. Recently, Aronov et al.[2] presented an O(nlogn) time algorithm for computing the GFPVD(P), thus
providing an alternate O(nlogn) time solution for computing the center. Therefore, to compute the geodesic
center of a simple polygon, any one of the above algorithms may be used, however, all of these algorithms are
complicated and involved.

The problem of computing the boundary-constrained geodesic center of a simple polygon P, denoted as
GC(0P), has not previously been addressed. We concentrate on solving this problem. Like its Euclidean counter-
part, the geodesic center constrained to the boundary is not necessarily unique, and not necessarily an intersection
point of GFPVD(P) and P. Figure 3 shows an example of this. If an algorithm for computing the geodesic center
already exists, the following heuristic may serve as a good approximation of the boundary-constrained geodesic
center.

Heuristic 3.1 A heuristic for computing the boundary-constrained geodesic center is to compute the point on the
boundary closest to the geodesic center.

In some cases, this heuristic actually gives the boundary-constrained geodesic center, as seen in Figure 3. In
the next section, we present an O(nlogn) time algorithm to compute the boundary-constrained geodesic center
exactly. The main idea behind the algorithm is the following. We divide the polygon boundary into polygonal
chains such that the geodesic furthest neighbor of any point on a given chain is the same. Then, we compute
for each chain, the point, which we call the candidate for that chain, whose distance to the furthest neighbor is
the smallest compared to any other point on the chain. We select the smallest candidates as the geodesic center
constrained to the boundary. We modify an algorithm of Suri [36], similar to [2], to compute this.

Given two points @, b in a polygon P, there is a unique geodesic path connecting a,bin P. We denote this path
by 7(a,b) and its length by dg(a,b). Since geodesic distance is a metric, the triangle inequality holds. Therefore,
we have that dg(z,y) < dg(z,z) + dg(z,y) for every three points z,y,z in P. The geodesic furthest neighbors of
a point z in P, denoted by ¢(z), are the set of points y in P such that dg(z,y) = maxy ,ep{dg(z,2)}. Asano
and Toussaint [4] showed that the geodesic furthest neighbor of a point is always a convex vertex of the polygon.
The geodesic diameter of a polygon P, denoted as GDIAM(P), is determined by the pair of points in P whose
geodesic distance is maximum over all pairs of points in P. If two shortest paths do not share a point, we say they
are disjoint; otherwise, we say that the paths intersect.

An important property of geodesics, at the heart of the algorithm, is the Crossing Property described in the
following lemma.

Lemma 3.1 (Crossing Property) [36] Let p1, ps, ps, pa be four points in this order on the boundary of P. Sup-
pose that ps € ¢(p2) and py € ¢(p1). Then we also have ps € ¢(p1) and ps € ¢(p2).



To compute the boundary-constrained geodesic center, we first compute a constrained geodesic decomposition
of the boundary of polygon P, which is a decomposition of the boundary of P into polygonal chains (¢1, ¢z, ..., ¢)
such that (J!_; ¢; = P and for every z,y € ¢;, ¢(z) = ¢(y). We denote this decomposition as 9-CGD(P). Given
this decomposition, the constrained geodesic center can be easily identified, as shall be shown in the next section.
The crossing property is the key behind the algorithm. It suggests a divide-and-conquer approach to solving the
problem of computing the constrained geodesic decomposition of @P. We first consider a restricted version of the
decomposition problem, and then we show how to use its solution to compute the whole decomposition.

3.2 Restricted Geodesic Decomposition

The restricted version of the decomposition problem is described as follows. Let U = (uq, ..., us) be the counter-
clockwise chain from point u, to point u; on the boundary of P. Let V = (v,,...,vq) be the clockwise chain from
v. to vy on the boundary of P, such that both chains are disjoint except possibly at the endpoints. The set of
points which are the furthest neighbors of & restricted to V' is denoted by ¢y (z). We want to decompose U into
polygonal chains (¢1/,¢5/,...,¢s") such that Jj_; ¢,/ = U and for every z,y € ¢/, ¢v(z) = ¢v(y). We refer to this
decomposition as the restricted decomposition of U with respect to V', denoted by RGDv (U).

Let ug, up, v4, v, be four points on @ P appearing in that order in a counterclockwise traversal of dP. Plug, up; v, v4]
denotes the region of P obtained by joining the counterclockwise chain of dP from u, to u; and the clockwise
chain of P from v, to vg with 7(u,,v.) and 7(up,vq) (see Figure 6). We say that a polygonal region R C P is
geodesically convez if for every pair of points z,y € R, we have that 7(z,y) € R.

Figure 6: Plu,, up; v, v4] is shaded.

Lemma 3.2 [36] Pluy, up; ve, vq] is geodesically convex.

Lemma 3.2 implies that the restricted geodesic decomposition of U with respect to chain V can be done entirely
within Plu,, up; ve, vg]. Below, we outline the algorithm to compute this decomposition.

Algorithm 2: RGD(Plug, up; v, v4])

1. If Plug, up; v, vq] is degenerate then

Find a vy, € [vg,...,vq] such that dg(u,, vy,) = max{dg(u,,v;)|c < j < d};
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Find the point umin € [Uq, . .., us] such that dg(Umin, vm)
= min{dg(u;, vm)la < ¢ < b}.

OUtPUt Umin, Um, [uav ey Ub], dG(umina /Um)-

2. Else if (b—a) < 2 and wu,,u; are vertices then
Determine ¢(u,) and ¢(up).
If ¢(uq) = ¢(up) then
let v, = ¢(ug).
Find point wmin on [ug, us] such that de(wmin, vm)
= min{dg(p, vim)|p € [ta, up]}-
Output wmin, Vm, [Ya, U], d6(Umin, Vm ).
Else
Compute partition points z1,z9,...,2, on edge [ugup).
Sort these partition points including the endpoints.
Let [uy, ug,. .., uss2] be the points ordered on edge [ug, up)].
let k= 1[(s+2)/2].
Find a v, € [v,...,vq] such that de(ug, vm,)
= max{dg(uk,vj)c < j < d}
Construct and triangulate Plug, uk; vm, vg] and Plug, up; v, m];
Call RGD(Plug, uk; Vm,v4]) and RGD(Plug, up; ve, vp]).
3. Else if (b —a) < 2 and wu,, up are not both vertices then
Determine ¢(u,) and ¢(up).
If ¢(uq) = ¢p(up) then
let v, = ¢(ug).
Find point wpmin on [ug, us] such that de(wmin, vm)
= min{dg(p, vim)|p € [ta, up]}-
Output wmin, Vm, [Ya, U], d6(Umin, Vrm ).
Else
solve directly by computing upper envelopes.
4. Else
let k= [(a+b)/2]
Find a vy, € [vg,...,vq] such that dg(uk, vy,) = max{dg(uk,v;)|c < j < d}
Construct and triangulate Plug, ug; vy, vg] and Plug, up; ve, v

Call RGD(Plug, uk; U, v4]) and RGD(Plug, up; ve, vpm)).

Not only does algorithm RGD compute the restricted geodesic decomposition of U into polygonal chains
(er',ed, ... ¢s) such that Ji=; ¢,/ = U and for every @,y € ¢, ¢v(z) = ¢v(y), but for each chain ¢;" it computes
the point on the chain whose distance to its furthest neighbor is minimum. We prove the correctness of the
algorithm and at the same time, elaborate on some of the steps such as how to compute the partition in Step 2.

We say that Plug, up; ve, v4] is degenerate if w(u,,v.) and 7(up, v4) are not disjoint. Given a degenerate instance
of Plug,up; ve,vq] computing the decomposition of U with respect to V is straightforward. Let 2 be a point on
T(Uq, ve) N m(up, vg). Every shortest path between a point y in U and a point z in V must contain z. Therefore,
the point vy of V furthest from z is also the point furthest from all points in U. The point v; can be computed
by traversing the shortest path tree of z. Since this tree can be computed in linear time [16], we conclude with
the following.
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Lemma 3.3 If Plu,, up; v, vq) is degenerale and vy is the furthest point from x € w(uq,v.) N T(up,vq), then
the point vy on 'V is ¢y(z) for all z € U. The point vy can be compuled in lime proportional to the size of
P[ua,Ub;?)C,?)d].

Given an instance of Plug,up; ve,vq], if (¢q,...,us) is a polygonal chain, then by the crossing property, we
can divide the chain in half and recurse. However, if u, and wu, are the endpoints of an edge, it is not clear how
to proceed. In such a situation, we resolve the problem by partitioning the edge into subedges. We require the
following property on each subedge s; of [u,,up]. For every pair of points z,y on s;, we want the shortest path
from z to every vertex v; on (v, ...,vq) to be identical to the shortest path from y to v; except for the first link.
We refer to this property as the path-invariant property of a subedge.

To see how to compute a partition of the edge respecting the path-invariant property, let us look at Figure 7.
In Figure 7(a), notice that once the shortest paths from v; to u;, and v; to ug are computed, the path-invariant
partition of the edge falls out by extending the edges in both paths to [uy, ug]. In this partition of the edge, every
point on a subedge (u;,u;41) has the same shortest path to v; except for the first link. To extend this partition
to two vertices, see Figure 7(b). In Figure 7(b), the partition with respect to v; and v;41 differs by only one point
located between ug and uz. Again, each subedge has the property that for every point on the subedge, the shortest
paths to both »; and v;y; are the same except for the first link. By continuing in this manner, the edge can be
partitioned with respect to the chain (v, ..., vq).

v
Vi
U u,uyu, Ug U U, Uugl; u,u,u, Ug U u, U
Partition of edge (U, Ug ) with respect toV; . Partition of edge (U;Ug ) with respect tov and Vi ,; .
@ (b)

Figure 7: Partitioning an edge.

Let m be the size of Plu,,up;ve, vq]. Since Plug, up; ve, vy4] is triangulated, the shortest path tree of w, and
up can be obtained in O(m) time using the algorithm of [16]. Once the shortest path trees have been computed,
all the partition points on the edge can also be obtained in O(m) time, by traversing the two trees. Finally,
O(mlogm) time is used to sort the partition points. Hence, we conclude with the following.

Lemma 3.4 Given an instance of Plu,,up;v.,vq] of size m, where [u,,up| is an edge, we can partition in
O(mlogm) time the edge [u,,up] into subedges such that each subedge respects the path-invariant property with
respect to the chain (ve, ..., vq).

The reason we partition the edge into subedges, when faced with an instance of Plu,,up; v, vg] where [u,, up]
is an edge, is quite simple. First, it allows us to continue the divide-and-conquer algorithm. Second, the base
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problem that we are faced with at the end of the recursion can be solved directly because of the path-invariant
property. As the algorithm computes the decomposition of the U chain, eventually in Step 3, we are faced with
an instance Plu,,up; v, vq] where u,, up are the endpoints of a subedge respecting the path-invariant property,

and (v.,...,vq) is a polygonal chain. Because of the path-invariant property, we know that the distance from a
vertex v; € (vg,...,vq) to a point z on [u,, up] has the form k; + VA% 4 2? where ky is a constant whose value is

the geodesic distance from v; to the last vertex, say v;, before z on 7(v;,x), and Vvk? 4 22 is the distance from v
to z with k as the orthogonal distance between the line L containing [u,, up] and v;, and z represents the distance
between z and the point on L that is the orthogonal projection of v; onto L. Consider the example in Figure 8.
The constant k1 accounts for the distance from v; to v;49. By the path-invariant property, this value is the same
for all points on the subedge. The distance from v;15 to z is accounted for by vk% + 22.

Figure 8: Distance function from subedge to vertex.

Let d,,(z) denote the distance function from v; € (v.,...,v4) to a point z in [ug,us]. These functions are
simple and can be used to solve directly the decomposition of [u,, up] into subedges such that for each point in the
subedge, the furthest neighbor is the same vertex of (v.,...,vq). This can be achieved by computing the upper
envelope of the functions d,,(z) for all v; € (v.,...,vq). The following lemma gives the key to solving this in time
that is linear in the size of the problem instance.

Lemma 3.5 Lel py1, p2, ps, pa be four points in this order on the boundary of P. If dg(p1,ps) > da(p1,ps) then
dc(p2, pa) > da(p2, p3)-

Proof:  Suppose dg(p1,pa) > dc(p1,ps) and dg(p2,ps) > da(p2,pa). We see that dg(p1,ps) + da(p2,ps) >
da(p1,ps) + da(pz, pa). By the relative positions of the points, 7(py, ps) must intersect 7(pz,ps). Let z be a point
on this intersection.

By the triangle inequality, dg(p1,p4) < dg(p1, )+ de(z, pa), and dg(ps, ps) < da(p2, )+ da(z, ps3). But since
x € w(p1,p3) N w(pz2,pa), we contradict our assumption, proving the lemma. [

The above lemma implies that we can compute the upper envelope in linear time simply by inserting the
functions in the order (v, ...,vq) or the reverse order. Both arguments are symmetric. Let us look at an example
to see why this is so. Suppose we are inserting the functions in the order d, (z),d,, ,(z),...,d, (z). Consider
the example in Figure 9 where the first three functions have been inserted. The upper envelope consists of d,,(z)
between u, and uy, d,, ,(z) between u; and uy, and d,, ,(z) between uy and uy. The next function to be added
is dy,_,(z). If dy,_,(z) is below d,, ,(z) between uy and wu; then it cannot lie on the upper envelope because
if it did, we would have a situation contradicting Lemma 3.5. If d,, .(«) intersects d,,_,(z) between u; and u

then we update the upper envelope by adding the intersection point, but we no longer need to compare d,,,_,(z)
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with any other function on the upper envelope by Lemma 3.5. Finally, if d,, ,(z) is above d,, ,(z) between
uy and up then remove the intersection point ug, remove d,, ,(z) from the upper envelope, and repeat the test
on the next piece of the upper envelope, namely d,,  (z). Therefore, when we add the functions in the order
dy,(z),dy, (2),...,dy (), the amount of time spent adding a function can be determined in constant time plus
the time proportional to the number of functions and intersection points deleted which is linear time overall. We

conclude with the following lemma.

Ua Uy uz Up

Figure 9: Computing upper envelopes.

Lemma 3.6 Given an instance of Plug, up; v, vq] where [u,,up] is a segment with the path-invariant property,
[wq, up] can be decomposed, in time proportional to the size of Plug,up;ve,vq], into subedges such that for each
point in the subedge, the furthest neighbor is the same vertex of (ve,...,vq).

The algorithm to compute RGDy(U) stems from the crossing property described in Lemma 3.1. We show
that this property holds at all levels of recursion. The algorithm is initiated with a call to RGD(P[ug, up; ve, v4)).
At each invocation, the algorithm either makes two recursive calls with smaller problem instances or solves the
problem directly. The calling relation forms a binary tree, which we refer to as the recursion tree. A node of this
tree having two children is an instance of RGD where two recursive calls were made. A leaf of the recursion tree
is an instance of the problem that is solved directly. The root of the tree represents the initial call. The depth of
a node in the tree represents its level of recursion.

Lemma 3.7 Let U = (uq,...,up) and V = (v, ...,vq). Given an initial call of RGD(Plug,us; v, v4]), every
recursive call RGD(Plug, u,; vs, v¢]) has the property that for all x € (uy, ..., u,), we have that ¢pv(z) € (vy, ..., ;).

Proof: = We proceed by induction. The initial call has the property that for every z € U, ¢y (2) is in V. Let us
assume, by induction, that all subproblems at depth k in the recursion tree have the desired property. We show
that all problems at depth k + 1 have the desired property given that the property holds at depth k.

There are only two places in the algorithm where a recursive call takes place. Let us first look at the call in
Step 4. The same argument holds for the other call in Step 2. Let Plug, u,; vy, v;] be an instance of a problem
at depth k. By induction, we know that for all z € (ug,...,u,), we have that ¢y(z) € (vs,...,v:). In Step 4,
Plug, uy; vs, v¢] is split into two instances, Plug, Ug; v, vp] and Plug, u,; vs, v,,]. By the crossing property, we know
that for all z € (ug,...,ux), we have ¢y (z) € (vp,,...,vp) and for all z € (ug,...,u,), ¢v(z) € (vs,...,v,). Thus,
the lemma follows by induction. |
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We are now in a position to prove the correctness of algorithm RGD.

Theorem 3.1 Algorithm RGD correctly computes the restricted geodesic decomposition of chain U with respect
toV.

Proof: By Lemma 3.7, if the root of the recursion tree is an instance of RGD( Plug, us; ve, vq]) with the property
that for all @ € (ug,...,us), we have that ¢y(z) € (v.,...,vq), then all recursive calls, i.e. all other nodes of the
tree, have this property. Therefore, the correctness of the restricted geodesic decomposition of U with respect to
V rests on the correctness of the leaves of the recursion tree, that is, the instances of RG'D that solve the problem
directly.

If the leaf instance is degenerate, then the problem is solved directly in Step 1. The correctness of this step is
proved in Lemma 3.3. If the problem is solved directly in Step 2 (in the first if statement), then the correctness
is verified by the crossing property. Similarly, if the problem is solved directly in the first part of Step 3, the
correctness is guaranteed by the crossing property. Finally, if the problem is solved directly by computing upper
envelopes in Step 3, then it is correct by Lemma 3.6. Since, we have shown that all instances where the problem
is solved directly are correct, the theorem follows. |

We now turn our attention to the complexity analysis of algorithm RGD. We show that the algorithm runs in
O(nlogn) time and uses O(n) space. To do this, we first show that there are O(logn) levels of recursion. Then we
show that an instance of RGD(Plug, up; v, v4]) (excluding recursive calls and sorting of partition points) runs in
time proportional to the size of Plu,, up; v., vq]. Finally, we show that the total size of all polygons at a particular
level of recursion is O(n). The main ideas in the complexity analysis to follow stem from the analysis given in

Suri[36].

Lemma 3.8 Algorithm RGD(Plu,, up; ve,vq]) runs in time proportional to the size of Plug, up; ve, vq], excluding
recursive calls and sorting partition points.

Proof:  Let m be the size of Plug, us;ve,vq]. Step 1 runs in time O(m), by Lemma 3.3. A furthest neighbor
of a point in Plug, up; v, v4] can be found in O(m) time using the algorithm of [16]. Therefore, the first part of
Step 2 runs in O(m) time. Because of the structure of Plug,us; v, v4], constructing and triangulating the two
subpolygons in the second part of Step 2 (in the Else statement) and in Step 4 can be done in O(m) by a simple
algorithm in [36] or a more complex algorithm of Chazelle [8]. Since we are excluding the sorting of partition
points, Step 2 and Step 4 can be done in O(m). Finally, Step 3 can be achieved in O(m) time as proved in Lemma
3.6. The lemma follows. |

We first show that the number of distinct edges among all the polygons constructed by algorithm RGD is
O(n), where n is the size of the polygon in the initial invocation. Recall that Plug, us; v, v4] denotes the region of
P obtained by joining the counterclockwise chain of 9P from u, to up and the clockwise chain of dP from v, to
vqg With m(ug,v.) and w(up, vq) (see Figure 6). We refer to m(u,,v.) and 7(up, vq) as connecting paths. There are
three types of edges in Plug, up; ve, v4]. An edge that belongs to P is a primary edge, an edge that is a subedge
of an edge belonging to dP is a partition edge, and an edge that belongs to a connecting path is a connecting edge.
The number of distinct primary edges is O(n) since all primary edges are contained in the initial polygon. We
now show that there are O(n) distinct partition edges and connecting edges.

Lemma 3.9 Let B be a simple polygon. Let a,c be two arbitrary but fixed points on the boundary of B and let b, d
be two other points on the boundary of B such that a,b,c,d appear in this order in a counterclockwise traversal of
the boundary of B. Then, all edges of (b, d), except perhaps three, belong to E(a)U E(c), where E(a) denotes the
set of edges in the shortest path tree of B from the point a.

Proof:  The proof is identical to the proof of Lemma 4 in Suri [36], except there are three edges rather than
one that do not belong to E(a)U E(c) since we consider points on the boundary of the polygon whereas Suri was
dealing with vertices of the polygon. |
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Lemma 3.10 The total number of partition points added is O(n) where n is the size of the initial instance of

RGD(Plug, up; ve, v4)).

Proof:  Let Plu,, up; v, v4] represent the initial n vertex polygon. We have U = (ug,,...,up) and V = (v, ..., vq).
Let n, represent the number of vertices in the U chain and n, the number in the V' chain. We refer to an instance
of RGD(Plug,u,;vs,v¢]) where [ugy, u,] is an edge of P and (vs,...,v) is a polygonal chain belonging to JP as a
partition instance.

Notice that a vertex in the V chain can appear in only two partition instances, since each time during the
execution of RGD that the V chain is divided, only the dividing vertex appears in common in the two ensuing
subinstances. Therefore, we can conclude that at most 2n, vertices from the V' chain are considered among all
partition instances.

Partition points are created by extending the edges in the shortest path between a vertex v; in the V' chain
and a vertex u; in the U chain. So the number of partition points introduced is bounded by the number of distinct
edges of all the shortest paths considered to create the partition points. By Lemma 3.9, all but three edges of
m(v;, uj) appear in E(ug) U E(up). The size of E(ug)U E(up) is O(n). Since at most 2n, vertices of the V' chain
are considered, there are at most 3 - 2n, € O(n) edges not accounted for by E(u,) U E(up). Therefore, a total of
O(n) partition points are introduced. ]

Since a total of O(n) partition points are added given that the size of the initial instance of RGD( Plug, up; ve, v4))
is n, we conclude that the total time spent sorting all partition points is O(nlogn). Therefore we have the following.

Lemma 3.11 Given an initial instance of RGD(Plu,, up; ve,vq]) of size n, the total time spent sorting partition
points is O(nlogn).

Lemma 3.12 There are O(logn) levels of recursion where n is the size of the initial instance of RGD( Plug, up; ve, vq]).

Proof:  Let Il = (41,12,...,%,) represent the the longest root to leaf path in the recursion tree. Each i; of the
path II represents the problem instance occurring at recursion level k along the path. On any root to leaf path,
there can be only one partition instance. Let us suppose that II has a partition instance and let 7, represent it.
The argument is similar if II does not have a partition instance.

From 4; to i, at each step, the U chain is divided in half as seen in Step 4 of algorithm RGD. Therefore,
there are O(logn) instances from 7; to the partition instance. At the partition instance 7,, by Lemma 3.10, at
most O(n) points are introduced. Again, from i, to i,,, at each step the partitioned edge is divided in half as seen
in Step 2. So, the length of the path from ¢, to i,, is also O(logn). Therefore, II has length O(logn). Since the
longest root to leaf path in the recursion tree has length O(logn), there are O(logn) levels of recursion. n

Lemma 3.13 There are O(n) distinct edges among all polygons constructed by RGD(Plug, up; ve, v4))-

Proof: By Lemma 3.12, the height of the recursion tree is O(log n) where n is the size of Pu,, up; v, v4]. Since
the recursion tree is a binary tree, there are O(n) nodes in the tree. This means that at most O(n) polygons are
constructed in total. Since each polygon has two connecting paths, at most O(n) connecting paths are constructed
in total.

Now, a connecting path joins a point u; on the U chain to a point v; on the V chain. By Lemma 3.9, all but
three edges of 7(u;, vj) appear in E(u,)U L (up). The size of E(u,)UE(up)is O(n). Since at most O(n) connecting
paths are constructed, there are at most O(n) edges not accounted for by E(u,)U E(up). This adds up to a total
of O(n) distinct connecting edges. By Lemma 3.10, there are only O(n) distinct partition edges. By definition,
there are only O(n) distinct primary edges. The lemma follows. |
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All that remains to be shown is that the summed complexity of all the polygons constructed in one particular
level of recursion is O(n). To do this, we show that a distinct edge can belong to only a constant number of
polygons in a particular level of recursion. By the construction of polygons in Step 2 and Step 4, we see that
partition edges and primary edges cannot occur in two polygons at the same level of recursion. This follows from
the way the U chain and V chain are divided. We now show that a connecting edge can only occur in a constant
number of polygons on the same level of recursion.

In order to show this, we must consider the connecting edges as directed. All connecting paths are directed
from the U chain to the V chain. Therefore, the edges of the connecting paths are arcs that are directed from one
chain to the other. Consider the two paths in Figure 10. Both are connecting paths from the U chain to the V
chain, and both have the edge e in common. However, e is directed one way in one of the paths and the opposite
way in the other. This distinction is important in the analysis to follow.

Edge e directed
one way

u
a Edge e directed
the other way

Figure 10: Directed edges must be considered.

Lemma 3.14 [36] Let ay, a3, as,by,bs, bs be siz points in this order in a counterclockwise traversal of P. Suppose
that the directed shortest paths w(ay1,b1) and w(as,bs) have a directed edge e in common. Then, the same directed
edge e also is included in the shortest path m(ag,bs).

We only need to consider non-degenerate polygons at the same level of recursion. Given a degenerate polygon
at recursion level ¢, algorithm RGD solves the problem directly at this stage. Therefore, since the degenerate
polygon is derived from a non-degenerate polygon at level ¢ — 1, the complexity of the degenerate polygon can be
accounted for by the non-degenerate ‘parent’.

Lemma 3.15 Let Plug,, up,; ve,, vd, |, Pltay, Wby Vey, Vay ], and Plug,, Up,; ve,, V4, | be three non-degenerate polygons
that occur at the same level of recursion, such that a1 < by < ag < by < a3z < bz, and c3 < dz < ey <dy <1 < ds.
Then, the directed connecting paths of Plug, , up,; ey, va,] and Plug, , Up,; Ve, , vd,| are edge-disjoint.

Proof:  The proof of this lemma is similar to the proof of Lemma 7 in [36]. Suppose that the two directed
connecting paths 7(z1,y1) and 7(z3,ys) share an edge e, where z1 € {u,,,us, } and z5 € {ug,,up, }. Then by
Lemma 3.14, 7(uq,,vs,) and 7(up,, vq,) must also share edge e, contradicting the fact Plu,,, us,; ve,, v4,] is not
degenerate. |

Theorem 3.2 Algorithm RGD computes the restricted geodesic decomposition of chain U with respect to V' using
O(nlogn) time and O(n) space given an input of size n.
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Proof:  The correctness of the algorithm is shown in Theorem 3.1. Let P[ug, us; ve, v4] be the input polygon
of size n to algorithm RGD. By Lemma 3.8, we know that excluding recursive calls and sorting partition points,
algorithm RGD(P[ug, u,; vs,v¢]) runs in time proportional to the size of Plug, u,; vs, v¢].

The size of all the polygons constructed at the same level of recursion is O(n) by Lemma 3.13 and Lemma
3.15. There are O(logn) levels of recursion. Hence, the total time spent, excluding sorting partition points, is
O(nlogn) By Lemma 3.11, the time to sort all partitions points is O(nlogn). The theorem follows. ]

In the next section, we show how to use the restricted geodesic decomposition to solve our initial problem of
computing the geodesic decomposition of the boundary.

3.3 Geodesic Center Constrained to the Boundary

To compute the geodesic decomposition of the boundary of a simple polygon, we apply the algorithm for restricted
decomposition three times. The following lemma of Suri[36] provides the key.

For the following lemma, we assume that (uq, ug,...,u,) is the counterclockwise sequence of vertices of polygon
P. We let (ug,...,us) denote the counterclockwise chain of 9P from u, to up. Let u; be an arbitrary vertex of P.
Let u; € ¢(u;) be a geodesic furthest neighbor of u;, and u; € ¢(u;) be a geodesic furthest neighbor of u;. It is
possible that u; = uy. Let us assume, without loss of generality, that u;,u;, u; is the order of these vertices in a
counterclockwise traversal of P starting at vertex u;, then we have the following lemma.

Lemma 3.16 [36] Lel u; be an arbitrary vertex of P. Let u; € ¢(u;) and let uy € ¢(u;), such that u;, uj, and uy
are in this order in a counterclockwise traversal of P.

1. for any vertex u; € (u;,...,u;), there exisls another vertex u,, € (uj,...,u;) satisfying w,, € ¢(u;),
2. for any vertex w; € (uj,...,uy), there exists another vertex wy, € (U, ..., u;,...,u;) satisfying u,, € ¢(u;),
3. for any vertex w; € (ug, ..., u;), there exisls another vertexr u,, € (u;,...,uj,...,ux) salisfying w, € ¢(u;),

From the above lemma, we can conclude that to compute the geodesic decomposition of P, we simply solve
the following three instances of the restricted geodesic decomposition of P.

Instance 1 The U chain is (u;,...,u;) and the V' chain is (u;, ..., ug,..., ).
Instance 2 The U chain is (u;,...,u;) and the V chain is (ug,..., 4, ..., u;).
Instance 3 The U chain is (ug,...,u;) and the V chain is (u;, ..., 45, ..., ug).

Therefore, we have the following theorem.

Theorem 3.3 The geodesic decomposition of a simple polygon can be computed in O(nlogn) time and O(n) space
given an inpul of size n.

Once the geodesic decomposition of a polygon P has been computed, the boundary-constrained geodesic center
can be computed as follows. Let (c1,¢g,...,¢;) represent the polygonal chains in the geodesic decomposition of
the boundary of P where |Ji_, ¢; = P and for every z,y € ¢;, ¢(z) = ¢(y). For each ¢;, compute the point z € ¢;,
with the property that the geodesic distance from z to ¢(z) is smallest compared to all other points in ¢;. In other
words, dg(z, ¢(z)) = minyye,{da(y, #(y)}. The point z is referred to as the candidate for the chain c¢;. In fact,
algorithm RGD already computes the candidates for each chain as seen in steps 1, 2 and 3 of the algorithm. We
conclude with the following theorem.

Theorem 3.4 The boundary-constrained geodesic center of polygon P is the candidate z*, such that dg(z*, ¢(z*)) =
miny candidates y{dG(?J7 ?(y)}-
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Proof:  Suppose that z* is not the boundary-constrained geodesic center of polygon P. Let z be the boundary-
constrained geodesic center of polygon P. Now, z is on some chain ¢; of the geodesic decomposition of P. Since it is
the boundary-constrained geodesic center of polygon P, it must be the candidate for chain ¢;. The geodesic distance
from z* to ¢(a*) is less than or equal to the geodesic distance from z to ¢(z) by definition. If dg(z*, ¢(z*)) <
da(z,¢(z)), then z cannot be the boundary-constrained geodesic center. If dg(z*, ¢(z*)) = da(z, ¢(z)), then z* is
also a boundary-constrained geodesic center. Both are contradictions, thereby proving the theorem. |

3.4 Geodesic Center Constrained to a Polygonal Region

In this section, we address the problem of computing the geodesic center of a simple polygon P constrained to
lie inside a simple polygon (), where @) is contained in P. We denote this center as GCq(P). If @ equals P
then we simply have the geodesic center of the polygon P. We can further restrict the geodesic center to lie on
the boundary of polygon @, denoted GCyq(P). In this case, if @) equals P, then we have the geodesic center
constrained to the boundary of P. The reason we differentiated the problem of computing the geodesic center
constrained to the boundary from this problem is that we use the geodesic furthest point Voronoi diagram to
solve this problem, but to solve the former problem, we were able to avoid computing the geodesic furthest point
Voronoi diagram by modifying Suri’s algorithm [36]. The arguments we use to solve this problem are similar to
the arguments used to solve the Euclidean center constrained to a polygon region.

Since in this and the following subsection we make extensive use of the GFPVD(P), let us review a few of its
properties. In order to use the algorithm of [2], we assume that no vertex is geodesically equidistant from two other
vertices. This can always be guaranteed by applying a slight perturbation to the vertices if the condition is violated.
Like its Euclidean counter-part, GFPVD(P) partitions P into cells, V(p;), such that for every point p € V(p;), the
point p; is a furthest geodesic neighbor of p. A vertex of the GFPVD(P) is a point that is geodesically equidistant
to three vertices furthest from it. An edge between two Voronoi vertices is either a straight edge or a hyperbolic
arc. Finally, the boundary of a Voronoi cell consists of a concatenation of straight edges and hyperbolic arcs. For
more geometric properties of geodesic furthest point Voronoi diagrams, the reader is referred to [2, 3].

Lemma 3.17 [3, 28] The geodesic center of a simple polygon P lies on the midpoint of the geodesic diameter of
P (GDIAM(P)) or on a vertex of the GFPVD(P).

When the geodesic center of the polygon P lies on the midpoint of the geodesic diameter, it has a special
property. Let bis(a,b) represent the geodesic bisector of @ and b inside P, i.e. for every point z on bis(a,b),
dg(z,a) = dg(z,b). Let a,b be two points of polygon P, then we have the following.

Lemma 3.18 If the midpoint m of n(a,b) lies on the interior of the edge separating cells V(a) and V(b) of
GFPVD(P), then m is the geodesic center P and w(a,b) is the geodesic diameter of P.

Proof: We proceed by contradiction. Suppose m is not the geodesic center, and let ¢ be the geodesic center. The
bisector bis(a, b) partitions polygon P into two parts. Let P, represent the part where Va € P,,dg(z,a) < dg(z,b)
and P, be the part where Vo € Py, dg(z,b) < dg(z,a). If ¢ is on bis(a,b), then dg(c,a) > dg(m, a) since m is on
m(a,b) and geodesics are unique. If ¢ € P, then dg(c,b) > dg(m,b) since 7(c,b) must intersect bis(a,b) at some
point z by the Jordan Curve Theorem and dg(z,b) > dg(m,b). Similarly, if ¢ € P, then dg(c,a) > dg(m,a).
Therefore, by contradiction, m must be the geodesic center. Since m is the geodesic center, it follows that 7(a,b)
is a geodesic diameter.

Before continuing, we need a few definitions. Let a, b, ¢ be three points in a simple polygon P. The geodesic
angle Zabe is the smaller of the two angles between the first link on the geodesic path from b to ¢ and the first
link on the path from b to ¢. Now, consider the paths 7(a,b), (b, ¢), and 7(a,c). There exist points a’, b, and
¢’ such that the paths m(a,b) and 7(a, c) intersect in the path w(a,a’), the paths 7(b,¢) and 7(b, a) intersect in
the path 7(b,b'), and the paths 7(¢,a) and 7(¢,b) intersect in the path 7(¢,¢’). The three paths 7(a’,b"), (¥, '),
and 7(c’,a’) form what is known as a geodesic triangle, denoted Aa'b’'c’ (see Figure 11). The vertices o', b, ¢’, are
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the only convex vertices of the geodesic triangle and are referred to as the peaks of the triangle. Pollack et al.[28]
proved the following property concerning geodesic triangles.

2

Figure 11: A Geodesic Triangle.

Lemma 3.19 [28] If the geodesic angle Lba'c at @’ is greater than or equal to w/2, then dg(b, ¢) > dg(d’,b), da(d, c)

Lemma 3.20 The geodesic center of P constrained to lie in Q) is the midpoint m of GDIAM(P) provided that m
is the geodesic center of P and lies in ().

Proof: Follows from Lemma 3.17. [

To address the problem of determining the location of GCg(P) when it does not satisfy the conditions of
the above lemma, we establish the following lemmas. Let a,b be two vertices of P such that they each have a
corresponding cell V(a) and V(b), respectively, which are adjacent separated by an edge e in GFPVD(P). Also,
7(a,b) is not the geodesic diameter of P. Let z be a point on the interior of e, and let € > 0 be any small constant.

Lemma 3.21 There exisls a poinl y € e with dg(z,y) < € such that dg(y,a) < dg(z,a) and dg(y,b) < dg(z,b).

Proof:  The edge e must lie on bis(a,b), since the points on e are equidistant from both a and b. The point z
must be a peak of the geodesic triangle formed by the paths 7(z,a),7(z,b), and 7(a,b) since otherwise z would
be on the path m(a,b) which would imply that 7(a,b) was a geodesic diameter by Lemma 3.18. Also, a portion
of e must be contained in the geodesic triangle, since z is on the interior of e. Let y be a point on e in the
geodesic triangle. Since the geodesic angle Zayb must be no greater than 7, by Lemma 3.19 we conclude that
dg(y,a) < dg(z,a) and dg(y,b) < dg(z,b). The lemma follows. n

Lemma 3.22 A point b of P cannot lie in V(b).

Proof: Let z € P be a point distinct from b. If b € V(b) then dg(b,b) = 0. However, dg(b,z) > 0 which
contradicts the fact that b € V(b). n
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We now complete the characterization of GCq(P).

Lemma 3.23 If the geodesic center of P constrained to lie in () is not the midpoint of GDIAM(P), then it lies
on one of the following points:

1. a vertex of the GFPVD(P) contained in @,
2. a proper intersection point of the GFPVD(P) and the boundary of @,
3. a vertex of the polygon @),

4. a point x on an edge e of Q) with the property that Vy € e, if ¢(y) = ¢(z) then dg(y, ¢(z)) > da(z, ¢(z)).

Proof: If GCg(P) does not lie on any of the points mentioned in the statement of the lemma, then it must lie in
one of the regions described in the following four cases. We show that each of these cases leads to a contradiction.
For simplicity of exposition, let ¢ = GCq(P).

Case 1: cis a point in the interior of a cell of the GFPVD(P), and in int(Q)). Let V(b) be the cell containing
c¢. By the Jordon Curve Theorem [27], 7(bc) must intersect P or V(b) since b ¢ V(b) by Lemma 3.22. Let
z be the intersection point closest to ¢. The point z must be in V' (b). Therefore b is a furthest neighbor of
both & and c¢. However, dg(z,b) < dg(c,b) by construction. Hence, we have a contradiction.

Case 2: ¢ is a point in the interior of a cell of the GFPVD(P), and in the interior of an edge e of ) but does
not satisfy the property that Vy € e, if ¢(y) = ¢(c) then dg(y, ¢(¢)) > da(c, ¢(c)). Since the latter property
is not satisfied, a point = € e such that ¢(z) = ¢(c¢) and dg(z, ¢(c)) < da(c, ¢(c)) must exist. However, the
very existence of x contradicts that ¢ is the geodesic center of P constrained to lie in @).

Case 3: ¢ is a point in the interior of an edge e of the GFPVD(P), and in int(()). Let V(a) and V(b) be the
two cells separated by the edge e. Since ¢ is not the midpoint of the geodesic diameter of P, by Lemma 3.21
we know that there exists a point z in e and in int(P) such that dg(z, a) < dg(c,a) and dg(z,b) < dg(c,b).
This contradicts that ¢ is GCq(P).

Case 4: ¢ is a point in the interior of an edge e, of the FPVD(S), and in the interior of an edge e, of P such
that e, and e, intersect but not properly. Same argument as Case 3.

We outline the algorithm to compute GCq(P).

Algorithm 3: Geodesic Center of P constrained to lie in @

Input: A simple polygon P = {p1,p2,...,pn}, and a simple polygon @ = {¢1,¢2,...,¢,} with @ C P.
Output: GCq(P)

1. Compute the GFPVD(P) using the algorithm of Aronov et al.[2].
2. Compute GC(P) using the algorithm of Pollack et al.[28].

Preprocess @ in O(n log n) time for point inclusion testing in O(logn) time using the algorithms of Kirkpatrick
[18] or Sarnak and Tarjan [33].

If GC(P) is contained in @ then exit with GC(P) as GCq(P).

Preprocess P for shortest path queries using the algorithm of Guibas and Hershberger [15].

Compute the set of vertices of GFPVD(P) contained in (). Let V. represent this set.

Compute the set of intersections I. = {i1,%2,...,i} of  with GFPVD(P) using the algorithm of Chan|[7].

w
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8. Partition each edge e; of () such that for every pair of points z,y € ¢;, we have that ¢(z) = ¢(y). Denote the
4t partition of e; by €;;.

9. For each e;;, compute the point on e;; closest to ¢(e;;). If this point is not an endpoint of e;;, place it in the
set F..

10. Let P. represent the vertices of ().

11. Let CAN =V.UI.UP. U E..

12. Find the set of points G = {z € CAN | dg(z, ¢(z)) = mingecan da(y, o(y))}
13. Output the set G.

Notice that we assumed that the number of vertices of () equals the number of vertices of P. Clearly, this
need not be the case, however, this assumption simplifys the complexity of notation. It is quite straightforward
to repeat the complexity analysis when P and () have different cardinalities.

Theorem 3.5 Given a polygon P = {p1,p2,...,pn} and a polygon Q = {q1,q2,...,q,} contained in P, we can
compute the geodesic center of P constrained to lie in Q) in time O(n(n+ k)) where n is the size of the inpul and
k is the number of intersections between the edges of the GFPVD(P) and Q.

Proof: The correctness of the algorithm follows from Lemmas 3.20 and 3.23.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be computed in O(nlogn) time
using the algorithm of Aronov et al.[2]. Step 2 can be computed in O(nlogn) time using the algorithm of Pollack
et al.[28]. Preprocessing for point inclusion can be done in O(nlogn) using the algorithm of Kirkpatrick [18]
or Sarnak and Tarjan [33]. Step 5 can be achieved in O(nlogn) time by using the algorithm of Guibas and
Hershberger[15]. By preprocessing the polygon for shortest path queries, in O(logn) time the geodesic distance
between two points can be recovered and in O(logn + m) time the geodesic path between two points can be
recovered where m is the length of the path. Step 6 can be done in O(nlogn) time using the point inclusion test.
Computing the intersections between GFPVD(P), which consists of straight edges and hyperbolic arcs, and @,
which consists only of straight edges, can be computed in O(nlogn+k) time where k is the number of intersections
between ) and GFPVD(P) using the algorithm of Chan [7]. Once the intersection points have been computed,
Step 8 can be achieved in O(klogn) time. In Step 9, to compute the point on e;; closest to ¢(e;;), we first compute
the geodesic path from the endpoints of e;; to ¢(e;;) in O(log n + m) time where m is the length of the two paths
using [15]. Once the two paths have been computed, finding the point geodesically closest to ¢(e;;) can be done
O(m) time in the manner described in Subsection 3.2. Note that O(m) € O(n). Step 9 is executed O(max{k,n})
times, thus the complexity is O(n(n+k)). Step 12 can be computed in O(k) time. Therefore, the total complexity
of the algorithm is O(n(n + k)) time. ]

3.5 Geodesic Center Constrained to a Polygonal Chain

With a slight modification, Algorithm 3 can compute the geodesic center of P constrained to lie on the boundary
@, GCyq(P). These modifications are outlined below.

Lemma 3.24 The geodesic center of P constrained to lie on the boundary of Q) is the midpoint m of GDIAM(S)
provided that m is the geodesic center of P and lies on the boundary of Q).

Proof: Follows from Lemma 3.17. [
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Lemma 3.25 If the geodesic center of P constrained to lie on the boundary of () is not the midpoint of GDIAM (P),
then it lies on one of the following points:

1. a vertex of the GFPVD(P) on the boundary of Q,
2. a proper intersection point of the GFPVD(P) and the boundary of @,
3. a vertex of the polygon @),

4. a point x on an edge e of Q) with the property that Vy € e, if ¢(y) = ¢(z) then dg(y, ¢(z)) > da(z, ¢(z)).

Proof: Similar case analysis as the proof of Lemma 3.23. ]

Lemma 3.24 and Lemma 3.25 completely characterize the location of GCsq(P). The modifications to Algorithm
3 for computing these points are straightforward. Therefore, we conclude with the following.

Theorem 3.6 Given a polygon P = {p1,p2,...,pn} and a polygon Q = {q1,q2,...,q,} contained in P, we can
compute the geodesic center of P constrained to lie on the boundary of Q in time O(n(n + k)) where n is the size
of the input and k is the number of intersections between the edges of the GFPVD(P) and Q.

4 Constrained Link Center

In this section, we consider the second property attributed to a good pin gate location. Recall that the second
property states that the maximum number of turns that the liquid takes on its path from the pin gate to any
point in the object should be small. The link metric provides a geometric interpretation of this property. The link
metric measures the number of turns or bends in a path between two points. We need a few definitions about link
paths before continuing.

The link distance between two points z and y inside a polygon P, denoted dr(z,y), is the minimum number
of edges in any polygonal path connecting z and y without intersecting the boundary of P. A path 7p(z,y)
between z and y is a minimum link path provided that the number of edges in 77 (z,y) is equal to di(z,y). The
k-neighborhood or k-disk about a point « € P is defined as Ny(z) = {y € P | di(z,y) < k}, and the covering radius
c(z) of z is the smallest k such that P C Ny(z). The link radius is defined by r7(P) = mingep c(z) and the link
center of P is defined by LC(P) = {z € P | ¢(z) = rr(P)}. In essence, the link center is the set of points in P
whose maximum link distance to any point in P is minimized, precisely the set of potential pin gates satisfying
the second property of a suitable pin gate.

We review the problem of computing the link center of a simple n vertex polygon P. The problem of computing
the link center was first addressed by Lenhart et al.[22] who provided a simple O(n?) time algorithm to compute
LC(P). Note that the link center of P is not necessarily a point as is the case with the geodesic center of P, but
the link center may in fact be a geodesically convex region contained in P. Later Djidjev et al.[10] reduced the
time complexity of computing LC(P) to O(nlogn). Therefore, to compute the link center of a simple polygon,
either of these two algorithms may be used.

The problem of computing the link center constrained to the boundary of a polygon P, denoted as LC(9P),
has not been addressed. In this section, we provide a simple algorithm to compute the set LC*(9dP) which is a
subset of LC(OP). In some cases LC*(JP) is in fact be equivalent to LC(9P).

4.1 Link Center Constrained to the Boundary

In this section, we provide a simple algorithm for computing LC*(9P), which is a subset of LC(9P). The following
very simple observations form the basis of the algorithm.

Observation 4.1 If LC(P)NOP is non-emply, then LC(OP) = LC(P)NJP.

Observation 4.2 If a point z ¢ LC(P) is visible from a point x € LC(P), then ¢(z) is one greater than c(z).
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Two points z,y in polygon P are said to be visible provided that the line segment [z,y] is in P. Given a set
of points X in polygon P, the strong visibility set of X in Pis {z € P |V z € X,[zz] € P} and the weak visibility
setof X in Pis{z€ P |3z € X,[zz] € P}. If X happens to be a simple polygon inside P, Ghosh [14] has shown
that the weak visibility set of X in P is also a simple polygon, referred to as the weak visibility polygon of P from
X and denoted by WVP(X, P). We now outline the algorithm.

Algorithm 4: Compute LC*(0P)
1. Compute LC(P).
. Let LCy = LC(P)NOP. If LCy is non-empty, exit with LC.

2
3. Compute the weak visibility polygon of P from LC(P).
4. Let LCy = WVP(LC(P), P) N dP. Exit with LC,.

If LCy is non-empty, then LC(9P) is equal to LCy. If on the other hand, LC is empty, then the set LCy
must be a subset of LC(9P) since the link center of the polygon is contained strictly in the interior of P and the
covering radius of every point in L is one greater than the covering radius of a point in the link center. The
complexity of the algorithm is dominated by Step 1 which can be computed in O(nlogn) time using the algorithm
of [10]. A simple modification to the algorithm in [10] is needed to compute the intersection of LC(P) with the
boundary of P in the same time complexity. Step 3 can be performed in O(n) time using the algorithm of [14].
The parts of WVP(LC(P), P) that are part of the boundary of P can be identified during the computation of the
weak visibility polygon. Therefore, we conclude with the following theorem.

Theorem 4.1 LC*(JP) can be computed in O(nlogn) time.

5 Discussion

Of the solutions presented in this paper, computing the Euclidean center, with or without constraints, as well as
the link center, with or without constraints, are both conceptually and computationally simpler than computing
the geodesic center. However, the Euclidean center may not always be a good candidate for the location of a pin
gate as pointed out in Section 3. The link center considered alone may also not be a suitable candidate since liquid
inside a mold does not necessarily travel along a link path. Combining these two constraints may provide a better
approximation (e.g. computing the Euclidean center constrained to lie in the link center).

The geodesic center, although computationally more expensive, seems to be a better measure in terms of the
distance the liquid travels inside a mold. A combination of the link and geodesic centers may reap the benefits
of both properties of an ideal pin gate location being satisfied. For example, computing the geodesic center
constrained to lie in the link center may provide a better solution than considering the geodesic center by itself.
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