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Abstract

Many problems concerning the theory and technology of rhythm, melody, and voice-leading
are fundamentally geometric in nature. It is therefore not surprising that the field of computa-
tional geometry can contribute greatly to these problems. The interaction between computational
geometry and music yields new insights into the theories of rhythm, melody, and voice-leading,
as well as new problems for research in several areas, ranging from mathematics and computer
science to music theory, music perception, and musicology. Recent results on the geometric
and computational aspects of rhythm, melody, and voice-leading are reviewed, connections to
established areas of computer science, mathematics, statistics, computational biology, and crys-
tallography are pointed out, and new open problems are proposed.

1 Introduction

Imagine a clock which has 16 hours marked on its face instead of the usual 12. Assume that the
hour and minute hands have been broken off so that only the second-hand remains. Furthermore
assume that this clock is running fast so that the second-hand makes a full turn in about 2 seconds.
Such a clock is illustrated in Figure 1. Now start the clock ticking at “noon” (16 O’clock) and let it
keep running for ever. Finally, strike a bell at positions 16, 3, 6, 10 and 12, for a total of five strikes
per clock cycle. These times are marked with a bell in Figure 1. The resulting pattern rings out a
seductive rhythm which, in a short span of fifty years during the last half of the 20th century, has
managed to conquer our planet.

It is quite common to represent cyclic rhythms such as these, by time points on a circle. See for
example the seminal paper by Milton Babbitt [12]. The rhythm in Figure 1 is known around the
world (mostly) by the name of clave Son, and usually associated with Cuba. However, it is common
in Africa, and probably travelled from Africa to Cuba with the slaves [200]. In West Africa it is
traditionally played with an iron bell, and it is very common in Ghana where it is the timeline for the
Kpanlogo rhythm [112]. Historically however, it goes back to at least the 13th century. For example,
an Arabic book about rhythm written by the Persian scholar Safi-al-Din in 1252 depicts this accent
rhythmic pattern using a circle divided into “pie slices,” and calls it Al-saghil-al-avval [205]. In
Cuba it is played with two sticks made of hard wood also called claves [139]. More relevant to this
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Figure 1: A clock divided into sixteen equal intervals of time.

paper, there exist purely geometric properties that may help to explain the world-wide popularity
of this clave rhythm [183]. The word clave, when qualifying the rhythm rather than the instrument,
assigns to it a special status as a timeline or rhythmic ostinato that functions as a key rhythmic
mechanism for structuring the music that uses it.

The clave Son rhythm is usually notated for musicians using standard music notation which
affords many ways of expressing a rhythm. Four such examples are given in the top four lines of
Figure 2. The fourth line displays the rhythm using the smallest convenient durations of notes and
rests. Western music notation is not ideally suited to represent African rhythm [10], [60]. The fifth
and sixth lines show two popular ways of representing rhythms that avoid Western notation. The
representation on line five is called the Box Notation Method (also TUBS standing for Time Unit Box
System) popularized in the West by the musicologists Philip Harland at the University of California
in Los Angeles and James Koetting [113]. However, such box notation has been used in Korea for
hundreds of years [100]. The TUBS representation is popular among ethnomusicologists [60], and
invaluable to percussionists not familiar with Western notation. It is also convenient for experiments
in the psychology of rhythm perception, where a common variant of this method is simply to use
one symbol for the beat and another for the pause [57], as illustrated in line six. In computer science
the clave Son might be represented as the 16-bit binary sequence shown on line seven. Line eight
depicts the adjacent interval duration representation of the clave Son, where the numbers denote
the durations (in shortest convenient units) of the intervals between consecutive onsets (beginning
points in time of notes). The compactness and ease of use in text, of this numerical interval-duration
representation, are two of its obvious advantages, but its iconic value is minimal. Furthermore,
this notation does not allow for representation of rhythms that start on a silent pulse (anacrusis).
Finally, line nine illustrates the onset-coordinate vector notation. Here the x-axis represents time in
a continuous manner starting at time zero, and the numbers indicate the x-coordinates at which the
onsets occur. This representation is useful for computing dissimilarities between rhythms from the
point of view of linear assignment problems [43], [40], [41]. Note however, that an additional piece
of information is needed for some of its applications, namely, at what coordinate value the rhythm
ends. For a description of additional geometric methods used to represent rhythms in both modern
times and antiquity see [186], [173]. In this paper we will use notations 5 through 9, as well as other
geometric representations, interchangeably depending on contextual appropriateness as well as for
the sake of variety. Note that the physical lengths of the representations in the manuscript have
no bearing on the duration of the corresponding rhythms in real time. and each sounded or silent
pulse may be taken as one arbitrary unit of time. The important information is the length of the
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Figure 2: Nine common ways of representing the clave Son rhythm.

cycle (timespan) and the total number of pulses in the cycle.
Rhythms are modelled in this paper as points in one-dimensional time (either on a straight line

or cyclically on a circle). Melody, on the other hand, is often modelled in two dimensions: time and
pitch. In such a two-dimensional space melody may be considered as a rhythm (time) in which each
onset has its own y-value (pitch). However, melodies may nevertheless be analysed quite effectively
in some applications areas such as music information retrieval, by ignoring the pitch information,
and using only the time dimension. Such is the case for example in query-by-tapping systems [58],
[142]. Therefore although we will often use the language of the rhythm domain, most of the results
described here apply to the analysis of scales, chords, melodies, and voice-leading as well [28].
Melody is composed of notes from a scale, and scales may also be represented on a one-dimensional
pitch circle as is done here with rhythms. The ubiquitous diatonic scale (determined by an octave
on a standard piano) illustrated at the bottom of Figure 3, can be mapped to a circle as shown in
the top of the figure, which shows the C-major triad chord as a triangle. Such chord polygons are
also called Krenek diagrams [128], [153].

In this paper several geometric properties of musical rhythms, scales, melodies and voice-leading
are analysed from the musicological and mathematical points of view. Several connecting bridges
between music theory, musicology, discrete mathematics, statistics, computational biology, computer
science, and crystallography are illuminated. Furthermore, new open problems at the interface of
these fields are proposed. No attempt is made to provide an exhaustive survey of these vast areas.
For example, we ignore the mathematics of sound [172], tuning methods [78], and the construction
of musical instruments [167], [89]. We also ignore geometric symmetry transformations of musical
motifs in two-dimensional pitch-time space [97]. Thus we limit ourselves to results of particular
interest to the computational geometry, music information retrieval, and music theory communities.
Furthermore, the illustrative rhythmic examples are restricted to a few of the most internationally
well known rhythm timelines, with the hope that they will inspire the reader to comb the relevant
literature contained in the references, for further details in the rhythmic as well as other music
domains.
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Figure 3: A chord represented as a triangle in the pitch circle.

2 Measures of Rhythmic Evenness

Consider the following 12-pulse rhythms expressed in box-like notation: [x . x . x . x . x . x .],
[x . x . x x . x . x . x] and [x . . . x x . . x x x .]. It is intuitively clear that the first rhythm is
more even (well spaced) than the second, and the second is more even than the third. In passing we
note that the second rhythm is internationally the most well known of all the African timelines. It
is traditionally played on an iron bell, and is known on the world scene mainly by its Cuban name
Bembé [185]. It is also referred to in the literature as the “standard” pattern [106], [121], [7], [175].
Also noteworthy is the fact that this rhythm is isomorphic to the diatonic scale [149]. The onsets
correspond to the white keys on the piano octave pictured at the bottom of Figure 3. Traditional,
as well as modern, rhythm timelines have a tendency to exhibit such properties of evenness to one
degree or another. Therefore mathematical measures of evenness, together with other geometric
properties, serve as features with which rhythms may be compared, classified, and retrieved ef-
ficiently from music data bases. They also find applications in computational music theory [17],
[189], as well as the new field of mathematical ethnomusicology [30], [188], [31], where they may
help to identify, if not explain, cultural preferences of rhythms in traditional music. For example, it
is highly plausible that rhythms for dancing should be very even in order to provide “drive” or “for-
ward motion,” but they should not be perfectly even, since (without other distractions) they would
quickly become monotonous. Therefore maximally even rhythms such as [x . . . x . . . x . . .],
which provide merely an equally spaced series of pulses ad infinitum, are not interesting from the
rhythmic theoretic point of view. To make maximally even rhythms a more interesting object of
investigation we need to add some constraints to our class of rhythms. One useful constraint, for
example, is to make the number of onsets (k) and the number of pulses (n) in the cycle, relatively
prime. The class of Euclidean rhythms, generated with the Euclidean algorithm for computing the
greatest common divisor between two numbers k and n, are as even as possible (maximally even)
without being perfectly even [189], [51].
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2.1 Maximally even rhythms

In music theory much attention has been devoted to the study of intervals used in pitch scales
and chords [74], [118], [165], but relatively little work has been devoted to the analysis of time
duration intervals of rhythm. Indeed, almost all the attention given by scholars in the past 2500
years has been lavished on tuning systems, scales, chords, and harmony, leaving rhythm by the
wayside. This situation has been rapidly changing during the past twenty years, as evidenced
by the books published recently: Grosvenor Cooper and Leonard Meyer [48], Simha Arom [10],
Christopher Hasty [93], Martin Clayton [36], Kobi Hagoel [88], Justin London [123], and William
Sethares [162]. The book by David Temperley devotes several chapters to the topic of meter in
both Western and African rhythm [175]. There has also been some work on “transferring” the
analysis of pitch to rhythm [28], [149], [150], [151]. Clough and Douthett [38] introduced the notion
of maximally even sets with respect to chords represented on a circle. According to Block and
Douthett [17], Douthett and Entringer went further by constructing several mathematical measures
of the amount of evenness contained in a chord (see the discussion on p. 41 of [17]). One of their
measures simply adds all the interval arc-lengths (geodesics along the circle) determined by all pairs
of pitches in the chord. This definition may be readily transferred to durations in time, of cyclic
rhythms represented on a circle, as illustrated in Figure 1. However, this measure is too coarse to
be useful for characterizing or comparing rhythm timelines such as those studied in [183] and [185].
Admittedly, the measure does differentiate between rhythms that differ widely from each other. For
example, the two four-onset rhythms [x . . . x . . . x . . . x . . .] and [x . x . x . . x . . . . . . . .]
yield evenness values of 32 and 23, respectively with the arc-length measure, reflecting clearly that
the first rhythm is more evenly spaced than the second. However, all six of the 16-pulse clave
patterns illustrated in Figure 4, and discussed in [183], have an equal evenness value of 48, and yet
the Rumba clave is clearly more uneven than the Bossa-Nova clave (also called Bossa for short).
The counter-intuitive behaviour of the sum-of-arc-lengths measure in this example is explained
by the characterization of those configurations of points that yield a maximum value of the sum,
recently discovered by Minghui Jiang [104]. Let two antipodal points p and q on the circle be such
that neither coincides with an onset of the rhythm. These two points partition the circle into two
semi-circles. Jiang showed that the maximum value of the sum-of-arc-lengths is obtained if, and
only if, the configuration of points on the circle has the property that for every such pair of points
p and q, the number of onsets in one semi-circle differs by at most one from the number in the
other semi-circle. It turns out that all six 16-pulse clave patterns in Figure 4 satisfy this balanced
condition, and hence all realize the maximum value of the measure.

The use of interval chord-lengths (as opposed to geodesic distances), proposed by Block and
Douthett [17], yields a more discriminating measure. It is important to emphasize that in the
remainder of this paper inter-onset distances will be measured in these two different ways. In both
approaches a rhythm is represented as a set of points (the onsets) on a circle. In the first approach
the distances are geodesic, the circle is viewed as a circular lattice Cn with the distances equal to
the actual durations of time. Furthermore, the geodesic distance is the smaller of the two possible
distances between two points on a circle. In the second approach the onsets are viewed as vertices
of a convex polygon inscribed in a circle, and the distances are equal to the lengths of the edges
and internal diagonals of the polygon, i.e., Euclidean distances.

2.2 Maximizing the sum of distances

The evenness measure of Block and Douthett [17], which sums all the pairwise (straight line) chord
lengths of a set of points on the circle, brings up the question of which configurations of points
(rhythms) achieve maximum evenness. In fact, this problem was investigated by the mathematician
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Figure 4: The six 12-pulse clave/bell patterns in box notation.

Fejes Tóth [177] almost forty years earlier, without the restriction of placing the points on the
circular lattice. He showed that the sum of the pairwise distances determined by n points contained
in a circle is maximized when the points are the vertices of a regular n-gon inscribed in the circle.

The discrete version of this problem, of interest in music theory [17], is also a special case
of several problems studied in computer science and operations research. In graph theory it is a
special case of the maximum-weight clique problem [69]. In operations research it is studied under
the umbrella of obnoxious facility location theory. In particular, it is one of the dispersion problems
called the discrete p-maxian location problem [67], [68]. Because these problems are computationally
difficult, researchers have proposed approximation algorithms [92], and heuristics [68], [201], for the
general problem, and have sought efficient solutions for simpler special cases [154], [170].

Fejes Tóth [177] also showed that in three dimensions four points on the sphere maximize the
sum of their pairwise distances when they are the vertices of a regular tetrahedron. The problem
remains open for more than four points on the sphere. For more details and references concerning
the 3-dimensional problem the reader is referred to [191]. However, these excursions do not appear
to be directly related to music.

In 1959, Fejes Tóth [178] asked a more difficult question by relaxing the circle constraint in the
planar problem. He asked for the maximum sum of distances of n points in the plane under the
constraint that the diameter of the set is at most one. Pillichshammer [144] found upper bounds on
this sum but gave exact solutions only for n = 3, 4, and 5. For n = 3 the points form the vertices
of an equilateral triangle of unit side lengths. For n = 5 the points form the vertices of a regular
pentagon with unit length diagonals. For n = 4 the solution may be obtained by placing three
points on the vertices of a Reuleaux unit-diameter triangle, and the fourth point at a midpoint
of one of the Reuleaux triangle arcs. However, the four points do not lie on a circle, and hence
this construction does seem directly related to music. A Reuleaux triangle is the figure obtained
by intersecting three circular disks centered on three points, respectively, that are the vertices of a
regular triangle, such that the radius of each disk equals the distance between two of these points.
The problem remains open for more than five points in the plane. In the mathematics literature
such problems have also been investigated with the Euclidean distance replaced by the squared
Euclidean distance [143], [145], [204]. Again, however, these versions of the problem do not seem to
be directly related to music.

2.3 The linear-regression-evenness measure

As mentioned in the preceding, Douthett and Entringer explored several mathematical measures
of the amount of evenness contained in a chord, and one of their measures simply adds all the
interval arc-lengths determined by all pairs of points on the circle. The reader may verify that
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Figure 5: The linear-regression evenness measure of a rhythm.

according to this measure the Bembé rhythm [x . x . x x . x . x . x] is a maximally even set among
all seven-onset 12-pulse rhythms [185]. For a rhythm represented as a binary sequence of length
n with k onsets, the measure of Douthett and Entringer can be trivially computed in O(n + k2)
time using brute force, O(n) for reading the sequence and finding the coordinates of the onsets,
and O(k2) for summing the pairwise arc-lengths. However, Minghui Jiang has shown that the sum
of the pairwise arc-lengths may be computed in optimal O(k) time [104]. Therefore the Douthett-
Entringer measure may be computed in optimal O(n) time. Using Euclidean lengths instead of
arc-lengths, as proposed by Block and Douthett [17], of course does not change the computational
complexity of the brute force method. However, whether an O(n) time algorithm exists for this
version of the problem along the lines of Jiang’s algorithm remains an open problem. It is possible to
define a different measure of rhythmic evenness which is not only very simple and also computable
in O(n) time, but which is sensitive enough to discriminate between all six 16-pulse clave rhythms
shown in Figure 4. Such a measure is described in the following.

Michael Keith [109] proposed a measure of the idealness of a scale which measures the even-
ness of the pitch intervals present in the scale. Toussaint [184] applied Keith’s idea to mea-
sure the evenness of rhythms. Consider the following 5-note rhythm on a 16-unit timespan:
[x . . . x . . x . x . . x . . .]. This sequence is mapped onto a two-dimensional grid of size 16 by
5 as pictured in Figure 5. The x-axis represents the 16 units of time (pulses) at which the five
onsets are played and the y-axis indexes the five onsets. The rhythm is shown in solid black circles
on the 0, 4, 7, 9, and 12 time positions. The intersections of the horizontal onset-lines with the
diagonal line indicate the times at which the five onsets should be played to obtain a perfectly
even pattern. The deviations between these intersections and the actual positions of the onsets are
shown in bold line segments. The sum of these deviations serves as a measure of the un-evenness
of the rhythm. Because of its similarity to linear regression fitting of data points in statistics this
measure is termed the linear-regression-evenness of the rhythm. Viewed as a purely mathematical
curve-fitting problem, the distances from the onset points to the line may be measured in either the
horizontal, vertical, or orthogonal directions. However, the horizontal direction seems more natural
since we are measuring deviations in time. Note that in order to make meaningful comparisons
among rhythms that contain a different number of onsets, or a different time scale, this measure of
evenness would have to be normalized by dividing the score by the number of onsets, and by scaling
the time span, respectively. In addition, unlike the measure that sums the Euclidean chord lengths,
this measure is not rotationally invariant. This is either a drawback or a useful feature, depending
on its application. If we are interested in discriminating between patterns under all possible rota-
tions, it is clearly a flaw. However, if the patterns to be compared are rhythms fixed in time, then
it is an important feature, lest the downbeats be confused with upbeats, for example.

If we want to make the linear-regression evenness measure, invariant under rotations of cyclic
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rhythms, then the horizontal direction is more natural for measuring the deviations because it cor-
responds to arc length on the time circle. Thus, the linear-regression evenness measure is equivalent
to the sum of the arc-lengths on a circle, between the rhythm’s k onset points and the k vertices
of a regular polygon inscribed in the circle with one vertex anchored at zero. It may be readily
verified that the six clave rhythms discussed in the preceding have the following values of linear-
regression-evenness: Bossa Nova = 1.2, Son = 1.8, Rumba = 2.0, Gahu = 2.2, Shiko = 2.4 and
Soukous = 2.8. The linear-regression-evenness measure may be computed trivially in O(n) time,
since k is usually very close to n/2, i.e., O(n) [149], [150], [151]. The reader may wonder what the
fuss over computational complexity is when k = 5 and n = 16, as in these clave patterns. However,
when analyzing the evenness of the distributions of markers in DNA sequences, both k and n are
in the thousands [111]. How useful this feature will be in applications is an open problem.

When we are interested in a cyclic rhythm regardless of its starting point then it is common
to call it a rhythmic-necklace [187], [189], [191], [192], [8], [146], [22]. In music theory a necklace is
called a transpositional set class [169], whereas an instance of a necklace (or just a rhythm) is called
a set.

There exists a variety of methods, other than the two discussed in the preceding, for measuring
evenness. For a comparison of these and other methods see [51] and [6].

3 Duration Interval Spectra of Rhythms

Rather than focusing on the sum of all the inter-onset duration intervals of a rhythm, or on the sum
of all the inter-onset chord lengths when rhythms are represented as points on the circular lattice,
as was done in the preceding section, here we examine the shape of the spectrum of the frequencies
with which all the inter-onset durations occur. Again we assume rhythms are represented as points
on a circle as in Figure 1. In music theory this spectrum is called the interval vector (or full-interval
vector) [128]. For example, the interval vector for the clave Son pattern of Figure 1 is given by
[0,1,2,2,0,3,2,0]. It is an 8-dimensional vector because there are eight different possible duration
intervals (geodesics on the circle) between pairs of onsets defined on a 16-unit circular lattice. For
the clave Son there are 5 onsets (10 pairs of onsets), and therefore the sum of all the vector elements
is equal to ten. A more compelling and useful visualization of an interval vector is as a histogram.
Figure 6 shows the histograms of the full-interval sets of all six 16-pulse clave/bell patterns pictured
in Figure 4.

Examination of the six histograms leads to questions of interest in a variety of fields of enquiry:
musicology, geometry, combinatorics, crystallography, and number theory. For example, David
Locke [122] has given musicological explanations for the characterization of the Gahu bell pattern
(shown at the bottom of Figure 4) as “rhythmically potent,” exhibiting a “tricky” quality, creating
a “spiralling effect,” causing “ambiguity of phrasing” leading to “aural illusions.” Comparing the
full-interval histogram of the Gahu pattern with the five other histograms in Figure 6 leads to the
observation that the Gahu is the only pattern that has a histogram with a maximum height of 2,
and consisting of a single connected component of occupied histogram cells. The only other rhythm
with a single connected component is the Rumba, but it has 3 intervals of length 7. The only other
rhythm with maximum height 2 is the Soukous, but it has two connected components because there
is no interval of length 2. Only Soukous and Gahu use seven out of the eight possible interval
durations.

The preceding observations suggest that perhaps other rhythms with uniform (flat) histograms,
and few, if any, gaps may be interesting from the musicological point of view as well. Does the
histogram shape of the Gahu rhythm play a significant role in the rhythm’s special musicological
properties? If so, this geometric property could provide a heuristic for the discovery and automatic
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Figure 6: The full-interval histograms of the 16-pulse clave/bell patterns.

generation of other “good” rhythms. Such a tool could be used for music composition by computer.
With this in mind one may wonder if rhythms exist with the most extreme values possible for these
properties. Let us denote the family of all rhythms consisting of k onsets in a time span cycle of n
units by R[k, n]. In other words R[k, n] consists of all n-bit cyclic binary sequences with k one’s.
Thus all the 16-pulse clave/bell patterns in Figure 4 belong to R[5, 16].

The first natural question that arises is whether there exist any rhythms whose inter-onset
intervals have perfectly flat histograms of height one with no gaps. This is clearly not possible
with R[5, 16]. Since there are only 8 possible different interval lengths and 10 distance pairs, there
must exist at least one histogram cell with height greater than one. The second natural question is
whether there exists an R[5, 16] rhythm that uses all eight intervals. The answer is yes; one such
pattern is [x x . . . x . x . . . . . x . .] with interval vector given by [1,1,1,2,1,2,1,1]. However, the
rhythm [x x . . x . x . . . . .] belonging to the family R[4, 12] depicted in Figure 7 (a) does have
a perfectly flat histogram: every one of the inter-onset intervals occurs exactly once; its interval
vector is [1,1,1,1,1,1]. Such sets are also called Golomb rulers when the points are considered on a
line rather than a circle [148], and have applications to the placement of antenas in radio-astronomy.

For a rhythm to have “drive” it should not contain silent intervals that are too long, such
as the silent interval of length six in Figure 7 (a). A word is in order concerning our polygonal
representation of rhythms here. Although the k-onset rhythms and the n-pulse time-spans are
depicted as k-vertex and n-vertex polygons, respectively, the vertices of these polygons lie on a
circle, and the numbers associated with each edge and diagonal of the polygons denote geodesic
distances on the underlying circle, that represent the durations in time.

One may wonder if there are other rhythms in R[4, 12] with interval vectors equal to [1,1,1,1,1,1],
and if they exist, are there any with shorter silent gaps. It turns out that the answer to this question
is also yes. The rhythm [x x . x . . . x . . . .] pictured in Figure 7 (b) satisfies all these properties;
its longest silent gap is five units. In music theory these concepts have been studied in the context of
pitch, where the chords are represented on a circle, as in Figure 3. The four-note chords in Figure 7
are known as the all-interval tetrachords. In general, the chords that have the same interval vectors,
such as the polygons in Figure 7, are often called Z-related chords [165], [45], [46], [47].

A cyclic sequence such as [x x . . x . x . . . . .] is an instance of a necklace with “beads” of
two colors [109]; it is also an instance of a bracelet. Two necklaces are considered the same if one
can be rotated so that the colors of its beads correspond, one-to-one, with the colors of the other.
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Figure 7: Two all-interval flat-histogram rhythms of height one.

Two bracelets are considered the same if one can be rotated or turned over (mirror image) so that
the colors of their beads are brought into one-to-one correspondence. The rhythms in Figure 7
clearly maintain the same interval vector (histogram) if they are rotated, although this rotation
may yield rhythms that sound quite different. Therefore it is useful to distinguish between rhythm-
necklaces, and just plain rhythms (necklace instances in a fixed rotational position with respect to
the underlying beat). The number of onsets in a rhythm is called the density in combinatorics,
and efficient algorithms exist for generating necklaces with fixed density [160]. In music theory a
bracelet is called a TnI set class [169].

3.1 Rhythms with specified duration multiplicities

In 1986 Paul Erdős [64],[65] asked whether one could find n points in the plane (no three on a line
and no four on a circle) so that for every i, i = 1, ..., n − 1 there is a distinct distance determined
by these points that occurs exactly i times. Solutions have been found for 2 ≤ n ≤ 8. Palásti [140]
considered a variant of this problem with further restrictions: no three form a regular triangle,
and no one is equidistant from three others. In 1990 Paul Erdős and János Pach [66] proposed
variants of this problem with restrictions on the diameter of the set. For additional variants and
open problems the reader is referred to the recent book by Brass, Moser, and Pach [20].

A musical scale whose pitch intervals are determined by points drawn on a circle, and that
has a restricted version of the property specified by Erdős is known in music theory as a deep
scale [105]. In a deep scale there are no zero entries in the histogram of intervals. We will transfer
this terminology from the pitch domain to the time domain and refer to rhythms with this property
as deep rhythms.

Deep scales have been studied as early as 1966 by Terry Winograd [203], and 1967 by Carlton
Gamer [76], [77]. Their definition of deep is too restrictive for rhythms. A more useful generalization
allows entries with multiplicity zero. To differentiate between the two definitions we call a musical
scale or rhythm Winograd-deep if every possible distance from 1 to ⌊n/2⌋ has a unique multiplicity,
where n is the total number of elements or pulses in the cycle. On the other hand, we define an
Erdős-deep rhythm (or scale) to be a rhythm with the property that, among the histogram entries
with non-zero multiplicity, for every i = 1, 2, ..., k−1, there is a nonzero distance determined by the
onset-points on the circle that occurs exactly i times. Demaine et al., [50] characterized Erdős-deep
rhythms, and showed that every Erdős-deep rhythm has a shelling. An Erdős-deep rhythm has a
shelling if there exists a sequence of all its onsets such that the onsets may be deleted one at a time,
so that after each deletion the resulting rhythm remains Erdős-deep. The most famous example of a
Winograd-deep scale is the ubiquitous Western diatonic scale. Also, the Bembé rhythm mentioned
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Figure 9: The bass and clap patterns of Dave Brubeck’s Unsquare Dance are a complementary pair
of deep rhythms.

in the preceding is of course also a Winograd-deep rhythm since it is isomorphic to the diatonic
scale. The most famous 5-onset African rhythm timeline, the Fume-Fume [112], is an Erdős-deep
rhythm. It is pictured in Figure 8 along with its inter-onset interval histogram. The reader may
easily verify that deleting the third onset (at position 4) results in another Erdős-deep rhythm.

As a final example consider Figure 9 which illustrates the timeline pattern of Dave Brubeck’s
Unsquare Dance. It consists of two parts: the bass on the left, and the hand-clapping pattern on
the right. Both parts are deep rhythms: the bass part is Erdős-deep whereas the clapping pattern
is Winograd-deep. Furthermore, they are complementary, i.e., their union tiles the circular lattice
C7, and their intersection is empty. The bass pattern given by [x . x . x . .] is the meter of this
piece and, although hardly ever used in pop music, it is common in eastern Europe and the Middle
East. It is a rhythm found in Greece, Turkestan, Bulgaria, and Northern Sudan [11]. It is the
Dáwer turan rhythmic pattern of Turkey [88]. It is the Ruchenitza rhythm used in a Bulgarian
folk-dance [149], as well as the rhythm of the Macedonian dance Eleno Mome [163]. It is also the
rhythmic pattern of Pink Floyd’s Money [109]. When started on the second onset as in [x . x . . x .]
it is a Serbian rhythm [11]. When started on the third onset as in [x . . x . x .] it is a rhythmic
pattern found in Greece and Turkey [11]. In Yemen it goes under the name of Daasa al zreir [88].
It is also the rhythm of the Macedonian dance Tropnalo Oro [163], the rhythm for the Bulgarian
Makedonsko Horo dance [199], as well as the meter and clapping pattern of the t̄ıvrā tāl of North
Indian music [36].

The question posed by Erdős is closely related to the general problem of reconstructing sets from
interpoint distances: given a distance multiset, construct all point sets that realize the distance
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multiset. This problem has a long history in crystallography [115], and more recently in DNA
sequencing [164]. Two non-congruent sets of points, such as the two different necklaces of Figures 7,
are called homometric if the multisets of their pairwise distances are the same [158]. For an extensive
survey and bibliography of this problem see [115]. The special cases relevant to the theory of
rhythm, when points lie on a line or circle, have received some attention, and are called the turnpike
problem and the beltway problem, respectively [115]. The term homometric was introduced by the
crystallographer Lindo Patterson [127].

Some existing results on homometric sets on the circular lattice are most relevant to the theory
of rhythm (and music theory in general). For example many drumming patterns have two sounds
(such as the high and low congas) that are complementary. Similar patterns occur with double
bell rhythms such as the a-go-go bells used in Brazilian music and the gankogui bell used in West
African music, as well as the paradiddle rhythms used in snare drum technique [159]. It is known
that every n-point subset of the regular 2n-gon is homometric to its complement [115]. Musicians
call this the Babbit Hexachord Theorem, or just Hexachord Theorem for short. More generally, the
hexachord theorem states that two non-congruent complementary sets with k = n/2 (and n even)
are homometric [165]. The earliest proof of this theorem in the music literature appears to be due
to Milton Babbitt and David Lewin [13], [116], [117], [118]. It used heavy machinery from topology.
Later Lewin obtained new proofs using group theory. Emmanuel Amiot [6] discusses some of the
history regarding Lewin’s proof, and shows a proof using the Discrete Fourier Transform. In 1974
Eric Regener [155] found an elementary simple proof of a more general version of this theorem.
Music theorists have been unaware that this theorem was known to crystallographers about thirty
years earlier [141]. It seems to have been proved by Lindo Patterson [141] around 1940 but it
appears that he did not publish a proof. In the crystallography literature the theorem is called
Patterson’s second theorem [24]. The first published proof in the crystallography literature is due
to Buerger [23]; it is based on image algebra, and is non-intuitive. A much simpler, more general, and
elegant elementary proof by induction was later found by Iglesias [101]. Another simple elementary
proof was published by Steven Blau in 1999 [16]. Marjorie Senechal recently found what may be the
simplest proof of this theorem [161]. An expository survey of elementary proofs of the generalized
hexachord theorem is under preparation [193].

The hexachord theorem leads immediately to a simple method for the generation of two-tone
complementary rhythms in which each of the two parts is homometric to the other. One example
is illustrated in Figure 10. It is also known that two rhythms are homometric if, and only if, their
complements are [32]. This concept provides another, as yet unexplored, tool for music composition
by computer.
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3.2 Rhythms with specified numbers of distinct durations

The histograms of the rhythms illustrated in Figure 6 reveal another important parameter of
rhythms: the number of distinct inter-onset durations contained in a rhythm. Clearly, the larger
the number of distinct durations, the flatter the histogram will tend to be, other things being equal.
If the distances in the multiset are spread out over the histogram bins, the heights of the histogram
towers will tend to decrease. Indeed, for the six 16-pulse clave patterns of Figure 6, the lowest
number of distinct durations is four, realized by the Shiko and the Bossa-Nova, both of which are
almost regular, as can be seen more clearly in Figure 11.

When studying the number of distinct durations in a rhythm, the disparity between the geodesic
distance between two points on a circle, and the chord length between the corresponding two points
vanishes, since two chords have the same length if and only if their corresponding geodesic distances
along the circle are equal. Therefore all the results in the mathematics literature that are concerned
with distinct distances between vertices of convex polygons speak directly to the inter-onset duration
analysis of rhythms, chords. and scales [135], [4], [5], [70], [71], [72].

Consider for example vconv(k), the minimum number of distinct distances among k points in
convex position in the plane. In 1946, Paul Erdős [62] conjectured that for k ≥ 3, vconv(k) = ⌊k/2⌋.
In 1952, Leo Moser [135] showed that vconv(k) ≥ ⌊(k + 2)/3⌋. Since then Altman [4], [5] solved the
problem by showing that vconv(k) = ⌊k/2⌋, with equality if and only if the implied polygon is regular.
Regular polygons are maximally even, as shown by Fejes Tóth [177]. Therefore, a low value of the
number of distinct durations in a rhythm may be considered as a possible indicator of its evenness,
at least for suitably large values of k. For low values of k counterintuitive examples exist. For
instance, for k = 3 and n = 12 the rhythms A= [x x x . . . . . . . . .] and B=[x . . . x . . x . . . .],
have two and three distinct durations, respectively, and yet B appears to be the more even of the
two. It is an open problem to determine the relationship between the evenness of a rhythm and the
number of distinct durations it contains, as a function of the relative cardinalities of k and n.

In 1995, Peter Fishburn [70] identified all convex k-gons for even k that have exactly the minimum
of k/2 intervertex distances. Also, for k = {3, 5, 7} he identified all convex k-gons that have
exactly (k+ 1)/2 intervertex distances, one more than the minimum. Fishburn’s results identify an
interesting family of extreme polygons. It turns out that for small values of k each of his polygons
in this family corresponds to a rhythm timeline used in traditional world music for some value of
n. Some notable examples in this family are listed in the following, where each polygon (rhythm) is
identified with three notations: Fishburn’s notation, box-notation, and interval vector, respectively.
In Fishburn’s notation the polygon Rn − m denotes, in our context, a rhythm with n pulses and
(n−m) = k onsets.

1. R5 − 1 = [x x x x .] = (1112) is the rhythmic pattern of the Mirena rhythm of Greece [88].
When started on the fourth onset, as in [x . x x x] it is the Tik rhythm of Greece [88].

2. R6 −1 = [x x x x x .] = (11112) yields the York-Samai pattern, a popular Arab rhythm [166].
It is also a handclapping rhythm used in the Al Medēmi songs of Oman [61].

3. R7−2 = [x . x x . x x] = (21211) is the Nawakhat pattern, another popular Arab rhythm [166].
In Nubia it is called the Al Noht rhythm [88].

4. R7 − 1 = [x x x x x x .] = (111112) is the rhythmic pattern of the Póntakos rhythm of Greece
when started on the sixth (last) onset [88].

5. R8 − 1 = [x x x x x x x .] = (1111112), when started on the seventh (last) onset, is a typical
rhythm played on the Bendir (frame drum), and used in the accompaniment of songs of the
Tuareg people of Libya [166].
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Figure 11: The number of distinct inter-onset durations for each onset is marked at each interior
angle of the rhythm polygon. The diagonals are not drawn for the purpose of clarity.

6. R9 − 2 = [x . x x x . x x x] = (2112111) is the Bazaragana rhythmic pattern of Greece [88].

Also of interest in rhythm analysis is the importance of each onset to the overall rhythm. In
particular, for a given onset, what influence does the number of its distinct inter-onset durations
to all other onsets have on the salience of that onset? Figure 11 depicts the number of distinct
inter-onset durations for each onset, for the six clave timelines.

This feature of convex polygons has also received attention from mathematicians. In 1975, Paul
Erdős [63] conjectured that every set S of n points in convex position in the plane has one of its
points p such that ddS(p), the number of distinct distances from p, is at least ⌊n/2⌋. For n = 5 the
conjecture yields a value of 2. From Figure 11 we see that only the Shiko, the Son, and Bossa-Nova,
which have an axis of symmetry passing through one of its onsets, match Erdős’ conjectured lower
bound of 2.

Another interesting feature of rhythms is DD(S), the sum of the ddS(p) over all vertices of the
polygon, indicated in Figure 11 by the number in the circle on the lower left corner of each rhythm
pictured. This quantity has also been studied by mathematicians [70], [71], [72]. An onset that has
many distinct distances to the other onsets in a rhythm may be considered rich and complex in
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Figure 12: The three necklace patterns of the seven-onset 12-pulse bell rhythms.

some sense. Therefore a rhythm with a large value of DD(S) has an overall richness, at least from
the mathematical point of view. The Rumba is considered to be quite special from the musicological
and geometric points of view [183]. Its polygon has no right-angle vertices, no axes of symmetry,
and no two equal adjacent inter-onset durations. It is interesting to note here that its DD(S)
value is 19, the highest value in Figure 11, thus providing additional mathematical evidence of
the rhythm’s uniqueness. It would be interesting to determine if this mathematical uniqueness has
musicological or psychological explanatory relevance. From the mathematical point of view it would
be interesting to determine what are the relationships, if any, between the DD(S) value of a rhythm
and its evenness.

As a second example consider the African Sub-Saharan bell patterns that contain seven onsets
in a time span of twelve units [185]. One feature that these patterns have in common is that the
adjacent inter-onset duration intervals come in only two sizes: one and two. Under this restriction
there are only 21 possible rhythms that begin on an onset. Of these 21 only 11 are used in the
traditional music of this part of Africa. In addition, there are only three possible rhythm necklaces.
These three necklaces are shown in Figure 12. In different parts of Africa different names are used
for the 11 rhythms depending on which necklace is used and on which onset the rhythm is started.
The necklace of Figure 12 (a) yields only one documented rhythm, and it starts on position 11.
The necklace of Figure 12 (b) gives rise to three documented rhythms which start on positions 2, 4,
and 8. On the other hand, the necklace of Figure 12 (c) determines seven rhythms: it is started on
all seven of its onsets. There is clearly a preference relation here: (b) is preferred over (a), and (c)
is much prefered over the other two. An analysis of these three necklace patterns from the point
of view of the number of distinct durations suggests an open problem. The values of the function
DD(S) for the three necklaces in Figure 12 (a), (b), and (c), shown in the circles in the center of
each polygon, are, respectively, 27, 31, and 33, suggesting that a high value of DD(S) is desirable.
Does this mathematical property have musical or psychological explanatory value? This suggests
that a pattern with a high value of DD(S) has rhythmic salience. The most preferred necklace of
Figure 12 (c) has the additional interesting feature that it is the only one that has an onset p (in
fact two of them diametrically apart) with a ddS(p) value of six. These two onsets, at positions 3
and 9, each have distinct durations to all other onsets.
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4 Measuring the Similarity of Rhythms

At the heart of any algorithm for comparing, recognizing or classifying rhythms, lies a measure
of the similarity between a pair of rhythms. The type of similarity measure chosen is in part
predetermined by the manner in which the rhythm is represented. Furthermore, the design of a
measure of similarity is guided by at least two fundamental ideas: what should be measured, and
how should it be measured. The preceding sections discuss a variety of geometric features for
representing rhythms. Additional geometric features may be found in [180], [192], [83], and [171].
Other important features of rhythm that may be used to compare rhythms include the amount of
syncopation present in the rhythm [84]. Features traditionally used for measuring the similarity of
musical chords and scales [152] may also be used for rhythm. In addition researchers in information
retrieval have used a barrage of statistical features based on information theory [129], and on the
inter-onset interval histograms [85]. Using d such features, a rhythm maps to a point in a d-
dimensional feature space. In this setting the similarity between two rhythms may be calculated
using any distance measure between their corresponding points in feature space. Then the entire
arsenal of instance-based learning and data-mining tools may be brought to bear on the problems
of rhythm analysis, classification, and retrieval from data bases [190].

A different approach views rhythms as sequences of symbols. There exists a wide variety of
methods for measuring the similarity of two rhythms directly from such strings of symbols [184].
Indeed the resulting approximate pattern matching problem is a classical problem in pattern recog-
nition and computer science in general [56]. Traditionally the similarity between two pattern strings
is measured by a simple template matching operation, such as the Hamming distance, or (more re-
cently) different variants of the edit distance. The Hamming distance between two equal-length
strings of symbols is defined as the number of places in the strings where the corresponding symbols
differ. Early versions of the edit distance used three operations: deletion, insertion, and replace-
ment. Mongeau and Sankoff [130] extended the edit distance by adding the operations: consolidation
and fragmentation in their study. In consolidation multiple notes are combined to form a single
note. In fragmentation one note is segmented into multiple notes. A similar approach has been
taken in computational phonology where these operations are called compression and expansion, re-
spectively [114]. Hu and Dannenberg [98] showed experimentally that adding these two operations
improves the quality of retrieval from sung queries. More recently similarity has been measured
with more powerful and complex functions such as the earth mover’s distance [29], [197], [202],
the proportional transportation distance [79], weighted geometric matching functions [2], [125], the
swap-distance [186], the directed swap-distance [54], [43], and the many-to-many minimum-cost
matching distance [44], [41].

4.1 The swap-distance

The Hamming distance between two n-bit binary sequences is attractive from the algorithmic point
of view because it may be trivially computed in O(n) time. However, this distance is not appropriate
for measuring rhythm dissimilarity, when used with a binary-string representation of rhythms,
because it does not measure how far the mismatch between the two corresponding note onsets
occurs. Furthermore, if a note onset is displaced a large distance, the resulting modified rhythm
will in general sound considerably different from the original, and the Hamming distance may not
be sensitive to such changes. To combat this inherent weakness of the Hamming distance, variants
and generalizations have been proposed over the years. One early generalization is the edit distance
which allows for insertions and deletions of onsets. Discussions of the application of the edit-distance
to the measurement of similarity in music can be found in Mongeau and Sankoff [130] and Orpen
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and Huron [138]. A noteworthy more recent generalization is the fuzzy Hamming distance [19]
which allows shifting of onsets as well as insertions and deletions. Using dynamic programming
these distances may be computed in O(n2) time in the worst case. Bookstein et al. [19] gave an
algorithm for computing the fuzzy Hamming distance in O(n+ k1k2) time, where n is the number
of pulses in the rhythms, and k1 and k2 are the numbers of onsets in each rhythm. Minghui Jiang
improved this complexity to O(n) [103].

The problem of comparing two binary strings of the same length with the same number of one’s
suggests an extremely simple edit operation called a swap. A swap is an interchange of a one and
a zero that are adjacent to each other in the binary string. Interchanging the position of elements
in strings of numbers is a fundamental operation in many sorting algorithms [49]. However, in the
sorting literature a swap may interchange non-adjacent elements, and is also called a transposition.
The transposition-distance (also called Cayley distance) between two sequences is the minimum
number of transpositions needed to convert one sequence to the other. When the elements are
required to be adjacent, the swap has been called a mini-swap or primitive-swap [15], as well as
adjacent-swap [132]. In computational biology a related operation called a short-swap is also of
interest, in which two elements are switched if they have at most one element betwen them. The
short-swap distance is the minimum number of short-swaps required to convert one sequence to
another. Heath and Vergara [94] give an algorithm that computes an approximation of the short-
swap distance in O(n2) time that is within twice the optimal value. Here we use the term swap
to mean the interchange of two adjacent elements. The swap-distance between two rhythms is the
minimum number of swaps required to convert one rhythm to the other. The swap-distance may
be viewed as a simplified version of the generalized Hamming distance [19], where only the shift
operation is used, and the cost of the shift is equal to its length. It has also been used in non-
parametric statistics to compare two sequences in the context of rank-correlation, and corresponds
to Kendall’s τ [110], [131]. When one sequence is a perfectly ordered sequence it can be used as a
measure of disarray, as done by Diaconis and Graham [53], who determine several relations between
the swap-distance and other metrics on the set of permutations of sequences.

The swap distance is more appropriate than the Hamming distance in the context of rhythm
similarity [183], [185]. It is also a special case of the more general earth mover’s distance (also
called transportation distance) used by Typke et al. [197] to measure melodic similarity. Given
two sets of points called supply points and demand points, each assigned a weight of material, the
earth mover’s distance measures the minimum amount of work (weight times distance) required to
transport material from the supply points to the demand points. No supply point can supply more
weight than it has and no demand point receives more weight than it needs. Typke et al. [197] solve
this problem using linear programming, a relatively costly computational method. In particular
the simplex algorithm could take an exponential number of steps, and the polynomial complexity
interior-point methods are not as fast as the methods described in the following. The swap-distance
is a one dimensional version of the earth mover’s distance with all weights equal to one. Furthermore,
in the case where both binary sequences have the same number of one’s (onsets), there is a one-to-one
correspondence between the indices of the ordered onsets of the sequences [108].

The swap-distance may of course be computed by actually performing the swaps, but this is
inefficient. If X has one’s in the first n/2 positions and zero’s elsewhere, and if Y has one’s in
the last n/2 positions and zero’s elsewhere, then a quadratic number of swaps would be required.
On the other hand, if we compare distances instead, a much more efficient algorithm results. First
scan the binary sequence and store a vector of the x-coordinates at which the k onsets occur (the
onset-coordinate vector). Then the swap-distance between the two onset-coordinate vectors U and
V with k onsets may be computed with the following formula:
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dSWAP (U, V ) =
k∑

i=1

|ui − vi|, (1)

which is the L1 norm of the vector U − V . This approach has also been applied to measure chord
similarity in the context of voice-leading [194], [195], [196]. The set of k distances |ui− vi| are called
the displacement multiset in the theory of voice-leading [195], [90]. Note that the swap-distance
implies a one-to-one mapping (or perfect matching [80]) between the onsets of U and those of V .
Tymoczko [196] calls this a bijective mapping. Computing U and V from X and Y is done trivially
in O(n) time with a simple scan. Therefore O(n) time suffices to compute dSWAP (U, V ), resulting
in a large gain over using linear or dynamic programming. For a survey of metrics on permutations
see [52].

Whenever it is desired to measure the distance between two objects one invariably must make
a choice about what metric to use: the L1, L2, L∞, some other norm such as the Lp norm (p-
Minkowski metric), or any of scores of other possibilities [147]. The answer invariably depends
on the application: is computational complexity important, do we want good performance out of
a machine [179], do we want mathematical tractability, or do we want to faithfully model human
perception? The swap-distance, measures the distance (duration) between onsets, and so it naturally
leads to the L1 norm. One could of course use the L2 norm, which would assign more weight to
longer durations. The L1 norm (taxi-cab metric) is popular as a measure of voice-leading distance
[39], [119], [156], [168]. Michael Keith [109] argues that it is a more musically important metric for
comparing scales because it is a good measure of their perceptual closeness, especially when the
distances are small. On the other hand, Clifton Callender [26] uses the L2 norm in his research
because it is more tractable from the algebraic point of view.

4.2 The directed swap-distance

The swap-distance between two rhythms makes sense only if both rhythms have the same number k
of onsets. In a more general setting, the two rhythms have different values of k, and the algorithm
described in the preceding is not well defined. In order to capture the attributes of the swap-
distance for rhythms with unequal numbers of onsets we may use the directed swap-distance, first
applied successfully to the phylogenetic analysis of flamenco metric rhythms [54], [55], and more
recently to the analysis of Steve Reich’s Clapping Music and the Yoruba bell timeline [42]. The
directed swap-distance is defined as the minimum number of swaps required to move every element
of S to the index (position) of an element of T , with the restriction that every element of T must
have at least one element of S moved to its index. This mathematical measure of similarity is
intuitively satisfying, is used in bioinformatics to compare molecular sequences, and when it was
recently applied to the phylogenetic analysis of flamenco metric rhythms, it confirmed several beliefs
that musicologists have about the evolution of flamenco music [54], [55]. Furthermore, experiments
with human subjects on the same metric rhythms yielded dissimilarity matrices and phylogenetic
trees with the same structure, thus confirming that the directed swap-distance can model human
judgements of rhythm dissimilarity [1].

The directed swap-distance may be viewed as a linear assignment problem [108], where the cost
of an assignment between an element i of S and an element j of T is the distance between i and
j. Furthermore, we may consider the more general input consisting of two sets of unsorted real
numbers on the real line rather than binary sequences. Here the real numbers play the role of the
indices of the one’s in the binary sequence (except that in a binary sequence the one’s are already
sorted). In this setting, if both sets have equal cardinalities, the simple algorithm described in the
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Figure 13: (a) A surjection between sets S = {0, 2, 7, 12} and T = {1, 4, 11}. (b) A minimal
surjection between S and T .

preceding for binary sequences may still be used after sorting the real numbers, thus yielding an
O(n log n) time algorithm.

An alternate way of viewing the directed swap-distance is as a surjection, ψ, between two sets
of elements S (the source) and T (the target) on the interval (0,X) where |S| ≥ |T |. This mapping
is bound by the constraint that each element of T must have at least one element of S mapped to
it. More formally the directed swap-distance may be expressed as a surjection as follows:

min
ψ

∑

s∈S

|s− ψ(s)|. (2)

Any surjection that satisfies the preceding equation is a minimal surjection. Figure 13 depicts two
different surjections between two sets of points on the line, one of which is minimal. Note that all
the points actually have zero y-coordinates; they are shown in this way merely for the purpose of
clarity.

In 1979 the philosopher Graham Oddie proposed using surjections to measure the distance
between two theories expressed in a logical language [136]. In 1997 Eiter and Mannila extended this
idea by expressing theories as models, and thus as points in a metric space [59]. This gave them a
new distance measure in a metric space which they called the surjection distance. The surjection
distance between two sets S and T is defined as follows:

min
ψ

∑

s∈S

δ(s, ψ(s)), (3)

where δ is a distance metric on the space, and ψ is a surjection between S and T . They also proposed
an algorithm for computing the surjection distance in O(n3) time, where n = |S|, by reducing the
problem to finding a minimum-cost perfect matching in an appropriate graph [80].

In 2003, Ben-Dor et al. [14], in the context of the shotgun sequencing problem in computational
biology, introduced an assignment problem similar to the directed swap-problem where the points
are real numbers on the line rather than one’s in a binary string: the restriction scaffold assignment
problem. They also presented an O(n log n) algorithm to compute this assignment problem. Their
result relies heavily on a result of Karp and Li [108] which provides a linear time algorithm (after
sorting) for computing the one-to-one assignment problem in the special case where all the points
lie on a line. Of course, in the one-to-one assignment problem between S and T some elements
of S remain unassigned. Colannino and Toussaint [43] give a counter-example to the algorithm of
Ben-Dor et al., [14], and show that the problem may be solved in O(n2) time, an improvement over
the previous best algorithm with running time O(n3) [59]. Colannino et al., [40] further improved
this complexity to O(n log n) for real points on the line, and to O(n) for rhythms expressed as binary
sequences.
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4.3 The many-to-many matching distance

Although the directed swap-distance between two rhythms (or equivalently, the minimal surjective
voice-leading between two chords, in Tymoczko’s terminology [194], [195], [27]) gave good results in
the case of flamenco metric rhythms [54], [55], this measure suffers from some drawbacks, in general.
For example, given two rhythms such as A=[x . x . . . . . . . x .] and B=[. x . . . . . . . x . x], the
directed swap-distance is realized by assigning the first, second, and third onsets of A to the first,
second, and third onsets, respectively, of B, to give a distance of 9. On the other hand, a more
satisfying assignment would assign the first and second onsets of A to the first onset of B, and the
second and third onsets of B to the third onset of A for a total distance of 4. In other words onsets
should be able to split or merge in both directions. There are several ways in which the directed
swap-distance may be generalized so as to handle these fusion and fission operations. One approach
is to compute minimum-cost many-to-many matchings between the two sets of real numbers that
represent the time points of the two rhythms in question, as was done in [41]. For example, if we let
S and T denote the two sets of points with total cardinality n, the minimum-cost many-to-many
matching problem matches each point in S to at least one point in T and each point in T to at
least one point in S, such that sum of the matching costs is minimized, where both S and T lie on
the line, and the cost of matching s ∈ S to t ∈ T is equal to the distance (or L1 norm) between s
and t. In this context, [41] provides an algorithm that determines a minimum-cost many-to-many
matching in O(n log n) time, improving the previous best time complexity of O(n2) for the same
problem [44]. In music theory this minimum-cost many-to-many matching is called the minimum
voice-leading for arbitrary chords, when the points lie on a circle and the minimum over all rotations
is desired. Tymoczko [195] gives a dynamic programming algorithm for computing a solution in
O(n3) time for two chords of n notes.

It is worth pointing out that the continuous version of this mapping has many applications in mu-
sic, such as the evaluation of beat-trackers and metrical models [176], continuous voice-leading [26],
as well as score-performance matching [95].

5 Adding Pitch to Rhythm

Just as rhythm may be represented as a one-dimensional onset function of time, melody may be
considered as a two-dimensional onset function of time and pitch, where each onset is given a pitch
value. A melody may then be represented as a Manhattan skyline [91] (also called the piano-roll
representation [175]). In fact, the well-known composer Heitor Villa-Lobos composed pieces based
on the New York City skyline, as well as the upper envelope contour of the mountains surrounding
the city of Rio de Janeiro [91].

5.1 Measuring melodic similarity

A good introduction to the various approaches used for measuring melodic similarity may be found
in reference [96]. Here we restrict ourselves to recent geometric approaches. ÓMaid́ın [137] proposed
a geometric measure of the distance between two melodies modelled as x-monotonic pitch-duration
rectilinear functions of time as depicted in Fig. 14. This is equivalent to representing notes as line
segments in a pitch-time space when a note does not end before another begins [198]. ÓMaid́ın mea-
sures the distance between the two melodies by the area between the two resulting polygonal chains
(shown shaded in Fig. 14). If the area under each melody contour is equal to one, the functions
can be viewed as probability distributions, and in this case ÓMaid́ın’s measure is identical to the
classical Kolmogorov variational distance used to measure the difference between two probability
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Figure 14: Two melodies as rectilinear pitch-duration functions of time.

distributions [182]. Polansky [147], who provides an exhaustive survey of metrics for music appli-
cations, calls this the magnitude metric. Note that if it is desired to measure the joint similarity of
a group of melodies, a natural generalization of ÓMaid́ın’s measure is Matusita’s measure of affin-
ity [181]. If the number of vertices (vertical and horizontal segments) of the two polygonal chains
is n then it is trivial to compute ÓMaid́ın’s distance in O(n) time using a line-sweep algorithm.

In a more general setting, such as music information retrieval systems, we are given a short
query segment of music, denoted by the polygonal chain Q = (q1, q2, ..., qm), and a longer stored
segment S = (s1, s2, ..., sn), where m < n. Furthermore, the query segment may be presented in a
different key (transposed in the vertical direction) and in a different tempo (scaled linearly in the
horizontal direction). Note that the number of keys (horizontal levels) is a small finite constant.
Time is also quantized into fixed intervals (such as eighth or sixteenth notes). In this context it
is desired to compute the minimum area between the two contours under vertical translations and
horizontal scaling of the query. Francu and Nevill-Manning [75] claim that this distance measure
can be computed in O(mn) time but they do not describe their algorithm in detail. In the more
general setting where the two melodies are represented by two monotonic orthogonal chains with
m and n vertices, and it is desired to compute the minimum area between the two curves, under
vertical and horizontal translations, the problem comes up in a computer vision problem of matching
polygonal shapes. Arkin et al. [9] show that this minimum area function is a metric, and that it can
be computed in O(n3) time. Aloupis et al. [2], [3] improved this complexity to O(nm log(n +m))
time.

5.2 Measuring chord similarity

There is a large literature in music theory that deals with the problem of measuring the similarity
of chords [116], [174], [133], [124], [152], [102], [157]. Eric Isaacson [102] provides an in-depth
discussion of many of these measures. The more traditional measures tend to assess, in one way or
another, the number of pitches that the two chords have in common [155], [152]. Some measures
assess the similarity of the adjacency interval vectors, such as Roeder [156], Chrisman [33], [34], and
Regener [155]. Many measures are based on comparing the interval vectors (histograms) of the two
chords. For example, Teitelbaum [174] computes the Euclidean distance between the two interval
vectors, whereas Lord [124] and Rahn [152] calculate the city-block distance (also Manhattan metric
or L1 norm). However, comparing two chords (or two rhythms for that matter) by measuring the
similarity between their interval vectors, disregards the fact that the two patterns may be quite
different structurally, as the examples in Figures 7 and 10 illustrate. Indeed, psychological studies
have shown that chords with four or more notes may sound quite differently from each other, even
though they may have exactly the same interval vector [107]. In addition to the psychological aspects
of intervallic perception, the physical (acoustic) aspects also play a role [18]. Furthermore, the
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Figure 15: A voice-leading from a source chord S (outer circle) to a target chord T (inner circle).

preceding measures must be distinguished from the composer-oriented cognitive models of musical
distance [27].

The approaches taken recently to measure rhythm-dissimilarity, discussed in the preceding sec-
tion, based on the concept of an assignment, such as the swap-distance [183], [185], the directed-
swap-distance [54], [55], [43], and the many-to-many matching distance [44], [41] may turn out to be
quite useful for measuring chord similarity as well. Indeed such an approach has been suggested by
Dmitri Tymoczko [194], [195], [196]. Determining how well these distance measures model human
perception in both the time and pitch domains is a project under investigation [1].

5.3 Voice-leading

Consider two chords (or rhythms) such as S=[x . x . x . . x . x . .] and T=[x . . x . . x . x . x .],
pictured in Figure 15, where S, the source chord is contained in the outer circle, and T , the target
chord in the inner circle. In coordinate vector representation the chords are given by S=(0,2,4,7,10)
and T=(0,3,6,8,10). A voice-leading from S to T is a function V (S, T ) which maps each element of
S to an element of T [119]. For example, in Figure 15, S0 maps to T0, S2 maps to T3, S4 maps to
T6, S7 maps to T8, and S10 maps to T10, as indicated by the arrows. Each element in these chords
constitutes a voice; it has it’s own characteristic sound. Voice-leading functions V (S, T ) provide
sets of rules that constrain the mapping in musically relevant ways. Lewin [119] discusses four
types of voice-leading rules closely related to the methods of measuring rhythm similarity discussed
in the preceding. In maximally close voice-leading each voice in S is mapped to its nearest voice
in T . In downshift voice-leading each voice in S is mapped to its nearest counter-clockwise voice
in T . In upshift voice-leading each voice in S is mapped to its nearest clockwise voice in T . The
voice-leading shown in Figure 15 is an instance of an upshift voice-leading. These voice-leadings are
similar in spirit to the algorithms for binarization and ternarization of rhythms [81], [82]. Finally,
in a maximally uniform voice-leading S differs as little as possible from any transposition of T . This
concept is analogous to the necklace swap-distance, i.e., the swap-distance between two rhythms,
minimized over all possible rotation alignments between the two rhythms [187], [191], [8], [22], [37].

One important property of effective voice-leadings is the no crossing principle [99], [90], in which
one “edge” of V (S, T ) should not properly cross another. For example, mapping S0 to T3 and S2

to T0 would produce such a crossing. Music theorists exploring voice-leading proceed from such

22



general principles of voice-leading to arrive at salient definitions of distances between chords. On
the other hand, in [44], [43], and [40] distance measures are defined intuitively, their mathematical
properties investigated, and then they are tested pychologically. For example, it is shown in [44],
[43], and [40], that the swap-distance, directed swap-distance, and the minimum-cost many-to-many
matchings between two rhythms (scales, chords, or voice-leadings) yield no crossings.

One of the main desired effects of voice-leading rules is to make sure that different melodies (or
rhythms) are heard separately while they are being played simultaneously. This property is called
streaming by Bregman [21], who has characterized streaming as a competition between possible
alternative cognitive organizations. Streaming is not simply a matter of relative proximity of two
successive pitches in order to form a stream. The pitches must be closer than other possible
pitch-time traces. David Huron provides a detailed discussion of voice-leading rules [99]. Robert
Morris [134] gives a taxonomy of voice-leading types and a list of nine condition sets. For additional
key papers on voice-leading the reader is referred to [119], [134], [168], [194], [195], [196].

6 Conclusion and Open Problems

In this section we list additional open problems that complement those scattered throughout the
preceding sections. Let us assume that we are given a circular lattice with n points (evenly spaced),
and we would like to create a rhythm consisting of k onsets by choosing k of these n lattice points.
For example, perhaps n = 16 and k = 5 as in Figure 1. Furthermore we would like to select the
k onsets that maximize the sum of the lengths of all pairwise chords (according to some measure)
between these onsets. Evaluating all n-choose-k subsets may in general be too costly. However,
interesting rhythms often have additional musicological constraints that may be couched in a geo-
metric setting [10], [30], [185], [188], [192]. These properties may permit simpler solutions than brute
force methods. The special case of maximizing the sum of the pairwise distances suggests a general
approximation method with the following snap heuristic: construct a regular k-gon inscribed in the
circle, and then move its vertices to their nearest points on the n-lattice. For definiteness, if a vertex
of the regular polygon is equidistant to two points of the n-lattice, move it to the nearest point in
a clockwise direction. One would expect such a rhythm to have a high evenness value under most
reasonable definitions of evenness. Indeed, for this case it is known that this snap heuristic yields
maximally even rhythms [51], [38], [17]. How close to optimal is this procedure according to other
known measures of evenness? Also of interest is computing the sum of all the pairwise distances
efficiently. Minghui Jiang [104] showed that the snap heuristic finds the optimal solution when the
measure is the sum of the pairwise arc-lengths, and gives an O(k) time algorithm for computing the
resulting sum, when the k points are given in sorted order by polar coordinates.

The two sequences shown in Figure 7 are the only possible rhythm bracelets with flat histograms,
for any values of k greater than three [152]. Therefore in order to be able to generate additional
rhythms the above constraints need to be relaxed. We may proceed in several directions. For
example, it is desirable for timelines that can be played fast, and that “roll along” (such as the
Gahu already discussed), that the rhythm contain silent gaps that are neither too short nor too
long. Therefore it would be desirable to be able to efficiently generate rhythms that either contain
completely prescribed histogram shapes (interval vectors), or have geometric constraints on their
shapes, and to find good approximations when such rhythms do not exist. One may also ask for
rhythms with prescribed distinct-distance vectors. This area of research is almost unexplored. A
notable exception is the work of Nicholas Collins [47] who explores the effects of the existence of
high histogram columns (distances in the interval vector with high multiplicities) on the uniqueness
of the rhythms that have a given interval vector.

The preceding discussion on the swap-distance was restricted to comparing two linear strings.
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However, many rhythms (the timelines in particular) are cyclic, and there are applications in (music
information retrieval) in which it is desired to compute the best alignment of two cyclic rhythms
over all possible rotations. In other words, it is of interest to compute the distance (according
to some appropriate measure that depends on the application) between two rhythms, minimized
over all possible rotations of one with respect to the other. The same problem is of interest in
voice-leading [196]. Some work has been done with cyclic string matching for several definitions of
string similarity [86], [120], [126], [35]. Consider two binary sequences of length n and density k
(k ones and (n − k) zeros). It is desired to compute the minimum swap-distance between the two
strings under all possible alignments. I call this distance the cyclic swap-distance or also the necklace
swap-distance, since it is the swap-distance between two necklaces. From the preceding discussion
it follows that the cyclic swap-distance may be computed in O(n2) time by using the linear-time
algorithm in each of the n possible alignment positions of the two rhythms. Note that swaps may be
performed in whatever direction (clockwise or counter-clockwise) yields the fewest swaps. In 2002
I asked whether the cyclic swap-distance may be computed in o(n2) time? In contrast, if the swap-
distance is replaced with the Hamming distance, then the cyclic (or necklace) Hamming distance
may be computed in O(n log n) time with the Fast Fourier Transform [73], [87]. Since I posed this
problem, Jeff Erickson pointed out that the necklace swap-distance problem can be transformed
into a problem known as the minimum-convolution problem. The obvious minimum-convolution
algorithm runs in O(n2) time. A similar algorithm solves the analogous maximum-convolution
problem. Bussieck et al. [25] describe an algorithm that runs in O(n log n) expected time if the
input arrays are randomly permuted, but still runs in O(n2) time in the worst case. Ardila et al. [8]
show that the cyclic swap-distance may be computed in O(n + k2) time where k is the number of
one’s in the sequence. Of course in the case of rhythms, k = O(n) and thus this complexity is still
O(n2). See also the work by Clifford and Iliopoulos [37]. Bussieck et al. [25] also asked whether
o(n2) time was possible. This question was finally answered affirmatively by Timothy Chan. The
necklace swap-distance problem asks for the optimal rotation of two given necklaces of n beads
at arbitrary positions to best align the beads in the sense that the resulting number of swaps is
minimized. This in effect asks for the optimal rotation (necklace alignment) that minimizes the L1

norm between the positions of the beads. In a more general setting we can ask the same question
for any Lp norm. Bremner et al., [22] obtain solutions for p = 1, 2,∞. In particular they show
that in the standard real RAM model of computation the L1 necklace alignment may be solved in
time O(n2(lg lg n)2/ lg n), the L2 necklace alignment may be solved in time O(n lg n), and the L∞

necklace alignment may be solved in time O(n2/ lg n).
The work of ÓMaid́ın [137] and Francu and Nevill-Manning [75] suggests several interesting

open problems. In the acoustic signal domain the key of the melody loses significance and hence the
vertical transposition is continuous rather than discrete. The same can be said for the time axis.
What is the complexity of computing the minimum area between a query Q = (q1, q2, ..., qm) and a
longer stored segment S = (s1, s2, ..., sn) under these more general conditions?

A simpler variant of the melody similarity problem concerns acoustic rhythmic melodies, i.e.,
cyclic rhythms with notes that have pitch as a continuous variable. Here we assume two rhythmic
melodies of the same length are to be compared. Since the melodies are cyclic rhythms they can be
represented as closed curves on the surface of a cylinder. What is the complexity of computing the
minimum area between the two rectilinear polygonal chains under rotations around the cylinder and
translations along the length of the cylinder? Aloupis et al. [2] present an O(n) time algorithm to
compute this measure if rotations are not allowed, and an O(n2 log n) time algorithm for unrestricted
motions (rotations around the cylinder and translations along the length of the cylinder). It turns
out that this problem is identical to a computer vision problem of matching polygonal shapes, for
which Arkin et al. [9] give an O(n3) time algorithm. Can the O(n2 log n) time be improved?
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In the preceding sections several tools were pointed out that can be used for computer com-
position. We close the paper by mentioning one additional tool for automatically selecting good
rhythm timelines. In [189] it is shown that the Euclidean algorithm for finding the greatest common
divisor of two numbers can be used to generate interesting rhythm timelines when the two numbers
that serve as input to the Euclidean algorithm are the number of onsets (k) and the time-span (n),
respectively, of the desired rhythm. The resulting rhythms are particularly attractive when k and
n are relatively prime [171], [51]. Indeed, this algorithm generates a large fraction of all timelines
used in world music, with the notable exception of Indian talas [36].
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[72] Peter C. Fishburn. On an Erdős problem for distinct distances in convex polygons. Geombi-
natorics, 10:17–23, 2000.

[73] Michael J. Fisher and Mchael S. Patterson. String matching and other products. In Richard M.
Karp, editor, Complexity of Computation, volume 7, pages 113–125. SIAM-AMS, 1974.

[74] Allen Forte. The Structure of Atonal Music. Yale Univ. Press, New Haven, 1973.

[75] Cristian Francu and Craig G. Nevill-Manning. Distance metrics and indexing strategies for
a digital library of popular music. In Proceedings of the IEEE International Conference on
Multimedia and EXPO (II), 2000.

[76] Carlton Gamer. Deep scales and difference sets in equal-tempered systems. In Proceedings
of the Second Annual Conference of the American Society of University Composers, pages
113–122, 1967.

29



[77] Carlton Gamer. Some combinational resources of equal-tempered systems. Journal of Music
Theory, 11:32–59, 1967.

[78] Trudi H. Garland and Charity V. Kahn. Math and Music: Harmonious Connections. Dale
Seymour Publications, Parsippany, New Jersey, 1995.

[79] Panos Giannopoulos and Remco C. Veltkamp. A pseudo-metric for weighted point sets. In
A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Proceedings of the 7th European
Conference on Computer Vision, pages 715–730. Springer-Verlag, Copenhagen, 2000.

[80] Alan Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cambridge, England,
1985.
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