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Abstract

Many problems in document image analysis can be couched in ge-
ometric terms. We outline recent advances in computational geometry
that contribute to many aspects of the document analysis process and we
provide pointers to a selection of the computational geometry literature
where the most relevant results can be found.

1 Introduction

Document image analysis (DIA) is concerned with the automatic transfer by
machine of visual two-dimensional documents, most commonly consisting of
printed pages from books, magazines or newspapers. Maps and engineering
drawings constitute another class of common documents. The first class of
problems have much in common with optical character recognition (OCR) and
both with computer vision. On the other hand DIA is a special case of computer
vision and therefore its special properties give rise to special sub-problems such
as text-block isolation and textline-orientation inference. Furthermore these
special properties allow the tailoring of more general computer vision strategies
resulting in better performance. Not surprizingly computer vision has much
to offer to document analysis. For an earlier collection of surveys concerning
document analysis and OCR, the reader is referred to the July 1992 special issue
of the IEEE Proceedings. For a most useful cross-section of the evolution of DIA
during the past twenty years see the survey by George Nagy [45]. Many problems
in DIA have a geometric flavor and it is also not suprising that computational
geometry has much to contribute to DIA. A survey of computational geometric
techniques with promise for DIA was presented in 1994 in Las Vegas [60]. In this
paper we concentrate on updating the most relevant developments in this area
that have occurred since 1994. Accordingly, we assume readers have the Las
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Vegas [60] paper at their disposal and we minimize duplication of background
material here.

The publication of material on computational geometry has finally mush-
roomed during the past decade. Here we briefly outline some of the most rel-
evant sources where the newly developed tools of the trade can be obtained.
The classic computational geometry text by Preparata and Shamos has a third
edition [51]. While this book does not have the latest results, it is a useful ref-
erence for the standard basics. Since 1994 a string of new excellent books have
been published. These will certainly be very useful to practitioners of ducument
analysis research. There is the very readable introduction to the field by Joseph
O’Rourke [46] which includes downloadable C code for many of the algorithms.
For more advanced textbooks that emphasize applications see [15] and [5]. Janos
Pach has edited a collection of chapters written by several different authors on
the most esoteric new trends in computational geometry [49]. This book is quite
theoretical however and it is not clear how much impact this material will have
in the short run on the field of DIA. Another more recent collection of chapters
which should be more useful for DIA was edited by Chazelle, Goodman and
Pollack [10]. Two massive handbooks on computational geometry have also ap-
peared which are excellent reference books to have on the shelf [52] and [31]. In
recent years there has been an effort by the computational geometry community
to concentrate more on applications of computational geometry instead of pure
theory. As a result there are increasingly frequent conferences with resulting
proceedings on applied topics [41]. The original Algorithm Design Manual of
Steve Skiena with a CD included for demonstrations on many browsers also em-
phasises applications of computational geometry [55]. Finally we mention that
since 1994 there has appeared a large collection of excellent surveys in both
general and specific areas of computational geometry. For examples of general
surveys see [40], and [44]. On the other hand, a survey of the most recent re-
sults in computational geometry most relevant for solving pattern recognition
problems, which are themselves intimately related to DIA, has appeared as a
chapter in one of the handbooks [48]. Another computational geometry topic
most relevant to DIA is the range searching problem. This general problem
includes, as a special case, nearest neighbor searching, which appears in a va-
riety of document analysis problems such as nearest neighbor decision rules for
character recognition. For a recent, detailed and exhaustive survey of this field
see the survey paper by Pankaj Agarwal and Jeff Erickson [1].

2 Textline Orientation Estimation

When scanning a document for input into the computer, it is likely that the
document is not perfectly aligned at its borders. The document may in fact
be a skewed copy already. Furthermore the text may in fact have been written
in an up-down fashion rather than a left-right manner [54]. The problem of
text-line orientation consists of taking as input the connected components of
the characters in a block of text (usually the output of the image segmentation



stage) and determining the precise location of the lines of text. This information
permits, at the next stage, the acquisition of the characters in the correct order
for passing on to the character recognition program. The standard approach to
solving this problem is to convert each connected component to a representative
point such as the center of the smallest orthogonal rectangle that contains the
connected component. The block of text is thus reduced to a set of points and
it is desired to determine the subsets of almost-collinear points which will serve
as estimators of the lines of text.

The traditional method of determing collinear sets of points in computer
vision is via the Hough transform [20]. Duda and Hart [20] first proposed
this method for scene analysis rather than document analysis and their his-
togram counts failed to take into account the underlying distribution of the data
and noise. Cohen and Toussaint [13] subsequently showed how to optimize the
Hough transform to take the window shape and noise into account. Since then
hundreds of papers have appeared that propose variations and improvements
for a variety of applications. Most of the approaches are semi-brute force in the
sense that they perform histogram counts and then detect histogram peaks in
some parameter space. However, completely different computational geometric
approaches based on progressive peeling of convex hulls have also appeared [16],
[17]. Several new more original variants of the Hough transform have recently
been proposed by Asano and Katoh [4]. While these techniques may prove use-
ful for some problems in DIA it seems doubtful that they will prove useful for
text-line orientation. Most likely they will not compete with the new computa-
tionally efficient and robust prozimity graph approach introduced by Ittner [35].
The fundamental property of text exploited by Ittner’s approach is that two ad-
jacent characters are closer together when they belong to the same line of text
than if they come from different lines of text. The exploitation of this property
is achieved by computing the minimum spanning tree of the points that rep-
resent the connected components and then estimating the average orientation
of the edges in this tree. This orientation is then the estimated orientation
of the text line. Several improvements on the computational complexity and
the resulting average running time of Ittner’s algorithm were presented in [60].
Since then there have also been improvements on the robustness of the pro-
cedure through several modifications of Ittner’s algorithm. It must be stated
that Ittner’s algorithm is extremely robust and hard to improve. However, one
weakness in the algorithm is that since the proximity graph computed on the
points is a tree (minimum spanning tree), and a tree is a connected graph, it
folows by necessity that there will be some edges between characters in different
lines of text. For example, in this PostScript document the first character of a
sentence 1s often closer to the character directly above it than to the previous
character. These spurious edges will have orientations which are completely
off the text line direction and therefore are a form of noise adversely affecting
the robustness of the procedure. The new methods address this issue by using
different proximity graphs that avoid edges between the lines of text. Pateras
and Toussaint [50] proposed a proximity graph they dubbed a bamboo-field. A
bamboo-field is obtained from the minimum spanning tree by removing all ver-



tices (and their incident edges) of degree three or higher. This leaves a collection
of essentially parallel chains (bamboo field). These chains are subsequently used
to estimate the text-line orientation. Experiments have demonstrated that this
vertex-removal operation deletes almost all spurious edges from the minimum
spanning tree. In fact each chain corresponds pretty much to one line of text.
Experiments comparing this approach to Ittner’s method showed that using
bamboo-fields improves the robustness of the technique [50]. More recently this
approach was improved even further. The bamboo-field method does not prune
all unwanted edges from the minimum spanning tree. Some edges remain, espe-
cially at the beginnings and ends of the lines of text. Furthermore, by deleting
all the edges incident to vertices of degree three or higher, some good edges are
also discarded along with the bad. Hence, in [50] there is a balance that has to
be maintained. Bose, Caron and Ghoudi [6] proposed a method to prevent the
good edges from being discarded during the pruning of the minimum spanning
tree. They discard all pairs of adjacent edges in the tree that have an internal
angle less than some critical angle. Experimentally they determined this angle
to be 170 degrees. Furthermore, extensive experimentation showed that their
technique is superior to the bamboo-field method. Their algorithm appears to
be the best all-around algorithm available to the practicioner of DIA.

3 Polygonal Approximation

In the vectorized approach to shape analysis for optical character recognition
(OCR) we obtain the polygonal boundary of the pixel-based connected compo-
nents in the image and simplify it by removing as many vertices of the polygon
as possible with as little distortion of the shape as possible. The idea is to
reduce the size of the input to more complicated algorithms that will be ap-
plied later on. Here again is an area where computational geometry has great
potential and is playing an ever increasing role. Given a polygonal planar curve
P = (p1,p2,...,pn) the polygonal approximation problem can be cast in many
different molds. One such version for example calls for determining a new curve
P' = (p},ph, ..., pl,) such that, (1) m < n, (2) the p; are a subset of the p;,
and (3) any line segment [p}, p} ;] which substitutes the chain corresponding to
[pr; ..., ps] in P is such that the distance between every py for k between r and
s and the approximating line segment [p}, p} ] is less than some prespecified
error tolerance.

One of the oldest algorithms used for solving this problem is the Douglas-
Peucker-Ramer algorithm also known as iterated-endpoints-fit [20]. This method
is a greedy algorithm that starts by approximating the entire polygonal chain by
one line segment connecting p; to p,. Then it finds the vertex p; that is furthest
from the segment [p1, p,] and if the distance is greater than the error tolerance
the segment is divided into two segments [p1, p;] and [p;, pn]. The procedure
then recurses on the two resulting subchains. This algorithm is simple but has a
worst-case complexity of O(n?) time and may not yield optimal approximations.
However, the computational complexity can be improved using computational



geometric techniques to O(nlogn) time [32].

In 1985 Iri and Imai [33] proposed an elegant algorithm that finds the approx-
imation that minimizes m subject to the two other constraints. Their approach
is very general and elegant and can be applied in a wide variety of contexts.
Their paper is still the best place to start for an introduction to this problem
and its tutorial value is as relevant today as it was in 1985. The power of the
technique lies in computing a weighted graph on the vertices of the polygon and
then finding the maximum weighted path in this graph. The weight of an edge
is the number of vertices of P that the edge skips. Thus the maximum-weight
path contains the fewest vertices possible under the constraints. The different
methods of approximation determine the way in which the graph is computed
while the rest remains the same. It is an elegant and convenient method for ob-
taining constrained optimal approximations. These may be either to minimize
the number of vertices in the approximation while respecting a prespecified er-
ror tolerance, or to minimize the approximation error with a prespecified upper
bound on the number of vertices to be used in the approximation. For more
recent results that use this general graph-theoretical framework with these and
other approximation criteria see Eu and Toussaint [24] and Chan and Chin [8].
In particular, Chan and Chin [8] have improved the complexities of the algo-
rithms of Iri and Imai. They reduce the complexity of the minimum-segment
approximation algorithm for an input polygon of n vertices from O(n?logn) to
O(n?) time. They also reduce the complexity of the minimum error approxima-
tion algorithm from O(n?log® n) to O(n”logn) time.

4 Shape Analysis

4.1 The medial axis

The two fundamental problems in OCR are feature extraction (shape analysis)
and classification (decision rules). One of the most general and well studied
techniques of shape analysis is via the medial axis (or skeleton) of a shape.
Skeletonization and/or thinning algorithms have a long history [20]. There are
two fundamental approaches: pixel-based methods and vectorized approaches.
For the latter, where shapes are represented as polygons, computational geom-
etry has great potential. The first O(nlogn) time algorithm for computing the
medial axis of a simple polygon with n vertices is due to D. T. Lee [39] in 1982.
Since then it was a long-standing open problem whether this complexity could
be improved. It was finally shown in 1995 that the problem could be solved
in O(n) time [11]. For practical applications like OCR in DIA, however, it is
not yet clear how useful these results will be. More recently a very simple algo-
rithm due to Evans, Middleditch and Miles [25] has been proposed which may
be preferable in practice. Although the complexity of this algorithm is O(n?)
it uses simple data structures and is also robust under certain degeneracies.
Clearly in a field like DIA degeneracies cannot be ignored. In the early days
of computational geometry many assumptions of general position were made



to simplify the design of the algorithms. This area is now receiving consider-
able attention in the computational geometry community. However, we defer
discussion of this topic to a later section.

4.2 Proximity graphs

In some contexts such as the textline inference problem in DIA described earlier
the input consists of a set of disconnected distinct dots (points). There the use
of proximity graphs such as bamboo-fields proved to be a very powerful tool
for solving the problem of line detection. However, proximity graphs are very
powerful tools for shape analysis in OCR and pattern recognition in general.
Let S = {z1, 2, ...,2,} be a finite set of points in the plane. The problem of
extracting the perceptual structure from S is a long standing problem and there
are several versions of it depending on whether one is interested in the “inner”
structure (skeleton) or the “outer” structure (shape hull). Early approaches to
this problem employed ad hoc heuristics. The first attempt to put such heuristics
on a firm geometrical foundation was what I called the Gabriel hullin 1980 [58].
The Gabriel hull of S is the boundary of the outer face of the Gabriel graph
of S [36]. Since then there have been a score of improvements of this idea.
A proximity graph on a set of points is a graph obtained by connecting two
points in the set by an edge if the two points are close, in some sense, to each
other. The minimum spanning tree (MST), the relative neighborhood graph
(RNG), the Gabriel graph, and the $-skeletons are proximity graphs that have
been well investigated in this context [36]. Recently there has appeared a new
proximity graph called the crust with some very interesting properties for shape
analysis that should make it useful for application in practice [2], [26]. For the
most recent update of the most recent advances in this area see the column by
O’Rourke [47].

In 1988 I proposed a graph I called the sphere-of-influence graph intended
to capture the low-level perceptual structure of visual scenes consisting of dot-
patterns (point-sets) [59]. Avis and Horton [36] showed in 1985 that the number
of edges in the sphere-of-influence graph was bounded above by 29n. The best
upper bound until recently remained fixed at 17.5n. Finally in 1999 Michael
Soss [57] brought this bound down to 15n. David Avis has conjectured that the
correct upper bound is 9n and has found examples that require 9n edges, so the
problem is still open, although this bound is of pure theoretical interest. The
fact that the sphere-of-influence graph contains at most a linear number of edges
suffices for its efficient computation. Furthermore, from the shape measurement
point of view, the graph suffers from almost none of the drawbacks of previous
methods and for a dot pattern consisting of n dots can be computed efficiently
in O(nlogn) time. Soss has also given results on the number of edges for metrics
other than Euclidean [56]. Finally, Dwyer [21] has some results on the expected
number of edges in the sphere-of-influence graph.



4.3 The line-sweep technique

One of the most useful paradigms for efficient algorithm design to emerge from
research in computational geometry is the line sweep technique [51]. In this
method of processing geometric data, a line (typically vertical) is swept across
the plane (typically from left to right) through a presorted set of vertical slabs
determined by relevant “events”. In the case of polygons these events are the
polygons’ vertices. Efficiency is usually obtained by maintaining a balanced tree
at the position of the line. As the line sweeps through the events, these are in-
serted and deleted as appropriate from the balanced tree. The first application
of this paradigm to shape analysis through thinning is due to Chang, Lu and
Pavlidis [9]. The success of their approach will no doubt result in greater appli-
cation of this elegant computational geometric technique to other problems in

DIA.

4.4 Implicit representation of polygons

One class of documents quite different from text consists of maps. Such doc-
uments are the sine qua non in geographic imformation systems (GIS) for ex-
ample. In many applications dealing with spatial data, whether they be map
processing in GIS or shape analysis in DIA| linear constraints are considered
to be a good representation of geometric objects because it is practically viable
in terms of storage and efficiency of operations. In this representation, queries
on geometric objects are expressed as operations on linear inequalities. Simple
and fast algorithms for many fundamental operations on spatial data have been
recently developed and can be found in [27] and [28]. In this model, the input
is a convex polygon given as a set of linear constraints, i.e., by the intersection
of a possibly redundant set of halfplanes. Given a set H = {Hy,...,H,} of
halfplanes, a variety of computation and optimization problems exists for the
convex polygon P(H) = NP, H;. Two such examples are: computing the two
supporting lines of P(H) from an external point, and computing the minimum
distance to the polygon from an external point. There also exist problems for
which the input consists of two convex polygons. Some examples of these are:
finding the two separating tangents of two disjoint polygons, as well as their
two common external tangents, and computing the minimum distance between
two disjoint polygons.

Obviously, one approach to solving these problems is to “construct” the
polygon; that is, obtain the ordered list of the vertices of the polygon by in-
tersecting the halfplanes that define it, and then use existing algorithms for
“ordered” polygons to solve the problems. However, computing halfplane inter-
sections implies that such a procedure will always be Q(nlogn) [51]. The more
interesting question which [27] and [28] address is to determine which problems
can be solved in optimal ©(n) time, and which have an inherent complexity
Q(nlogn). They show, for example, that computing the two supporting lines
from an external point, or computing the minimum distance between two poly-
gons takes linear time, whereas computing a diametral pair of points, or the



minimum enclosing circle of P(H) are Q(nlogn).

The linear time algorithms in [27] and [28] are based on a prune-and-search
strategy. Each of these algorithms applies an oracle (the search step) that allows
it to discard a constant fraction of the halfplanes H; in linear time (the prune
step). Recursively applying the prune-and-search strategy leads to a linear-time
algorithm due to the properties of the geometric series. In order to guarantee
that a constant fraction of the input halfplanes is eliminated at each step, it is
usually necessary to compute a median value, which can be obtained in linear
time [51]. The linear time search procedure is specific to each problem, whereas
the prune step is always the same. Identifying linear time search procedures for
various fundamental geometric problems is the main task of the design process
for this class of problems. When such a search procedure cannot be found,
Q(nlogn) lower bounds usually result.

5 Decision Rules

In the non-parametric classification problem [20], [18] we have available a set
of n feature (shape measurement) vectors taken from a collected data set of n
objects (patterns) denoted by {X,Q} = {(X1,¢1), (X2,92), ..., (Xn, ¢n)}, where
X; and ¢; denote, respectively, the feature vector on the i¢th object and the
class label of that object. One of the most attractive decision procedures
is the nearest-neighbor rule (NN-rule) [14], [19]. Let Y be a character (fea-
ture vector) to be classified and let X;be the feature vector in {X,Q} =
{(X1,01),(X2,42), .., (Xn, qn)} closest to Y. The nearest neighbor decision rule
classifies the unknown object Y into class ¢. In the past many DIA practi-
cioners have resisted using the NN-rule on the grounds of the mistaken assump-
tions that (1) all the data X, must be stored in order to implement such a
rule and (2) to determine the nearest neighbor of a character to be classified,
distances must be computed between the unknown vector ¥ and all members
of {X,Q} ={(X1,¢1),(X2,42), ..., (Xn,qn)}. As we shall see below, computa-
tional geometric progress in the 1980°s and 1990’s along with faster and cheaper
hardware has made the NN-rule a practical reality for DIA in the 21st Century.

5.1 Editing training data

In 1979 a method was discovered [62] to edit (delete) “redundant” members of
{X, @} in order to obtain a subset of {X, @} that implements ezactly the same
decision boundary as would be obtained using all of {X, @}. This approach was
later generalized in [61].

Such methods depend on the computation of Voronoi diagrams and other
proximity graphs that are subgraphs of the Delaunay triangulation, such as
the Gabriel graph [61]. For example, with Voronoi editing every point (feature
vector) that has all its Voronoi neighbors labelled the same way (object class),
is discarded from the set. Voronoi editing does not change the error rate of
the resulting decision rule because the nearest nighbor decision boundary with



the reduced set is identical to that obtained by using the entire set. While
this approach to editing sometimes does not discard a large fraction of the
training data (say 90 percent), that information in itself is extremely important
to the OCR designer because the fraction of the data discarded is a measure
of the resulting reliability of the decision rule. If few vectors are discarded it
means that the feature space is relatively empty and more training data are
urgently needed to be able to obtain reliable and robust estimates of the future
performance of the rule.

The classical approaches to k-NN decision rules obtain the k nearest neigh-
bors of Y based purely on distance information without regard to how these
neighbors are distributed around Y. Recently new definitions of neighborhoods
have been proposed and new k-NN decision rules based on proximity graphs [36]
have been investigated [53].

5.2 Searching nearest neighbors

Another potential problem in the implementation of nearest-neighbor decision
rules, whether editing has or has not been performed on the training set, con-
cerns the efficient search for the nearest neighbor of an unknown vector in order
to classify it. Various methods exist for computing a nearest neighbor without
computing distances to all the candidates [1]. In fact, the region point-location
techniques find the nearest neighbor without computing any distances at all.
The most promising algorithms for this problem, difficult when the dimension
is high, use either bucketing techniques or k-d trees. Many algorithms have a
complexity that depends exponentially on the dimension d and so for dimen-
sions higher than about 8 they become prohibitive in practice. Thus for OCR
applications where a feature vector has 80 moment features the situation is
hopeless. On the other hand an 80-dimensional feature space is preposterous
given the emptiness of the space. So perhaps the approach should be to find say
5 good features for the problem. Indeed, in a new approach that uses a genetic
algorithm, editing the training data and reducing the number of features used
is carried out simultaneously [38].

One of the fastest nearest neighbor search algorithms is due to Meiser [42]
and runs in time O(d®logn), where d is the dimension. More recent algorithms
which achieve efficiency at the expense of knowing the distribution of query
points in advance have been found by Clarkson [12]. One approach to prac-
tical applications is of course to sacrifice finding the ezact nearest neighbor.
If we are satisfied with finding approximate nearest neighbors then more effi-
cient algorithms are available [3], [34], [37]. For apllication results of some new
efficient nearest neighbor searching algorithms in handwritten character recog-
nition see [43]. For additional references to the latest results concerning nearest
neighbor search in arbitrary dimensions and for pointers to many other key
recent results the reader is referred to [1].



5.3 Estimation of misclassification

A crucial problem in OCR and pattern recognition in general is the estimation
of the performance of a decision rule [18]. Many geometric problems occur
here also, where compuational geometry offers elegant and efficient solutions.
For example, a good method of estimating the performance of the NN-rule
is to delete each member of {X, @} = {(X1,q1), (X2,42), ..., (Xn, qn)} in turn
and classify it with the remaining set. Geometrically this problem reduces to
computing for a given set of points in d-space the nearest neighbor of each (the
all-nearest-neighbors-problem). Vaidya [63] gives an O(nlogn) time algorithm
to solve this problem.

6 Handling Degeneracies

When application to practice is not their main destiny, algorithms in compu-
tational geometry are usually designed for the real RAM (random access ma-
chine) assuming that the input is in general position. More specifically, the
general position assumption implies that the input to an algorithm for solving
a specific problem is free of certain degeneracies. Yap [64] has distinguished
between intrinsic or problem-induced and extrinsic or algorithm-induced degen-
eracies. For example, in computing the convex hull of a set of points in the
plane, where “left” turns and “right” turns are fundamental primitives, three
collinear points constitute a problem-induced degeneracy. On the other hand,
for certain vertical line-sweep algorithms such as that used for shape thinning [9],
two points with the same z-coordinate constitute an algorithm-induced degener-
acy. Computational geometers make these assumptions because doing so makes
it not only much easier to design algorithms but often yields algorithms with
reduced worst-case complexities. On the other hand, to the implementers of ge-
ometric algorithms such as DIA practicioners these assumptions are frustrating.
Programmers would like the algorithms to work for any input that they may
encounter in practice, regardless of the degeneracies that such an input may
contain.

Due to the practical importance of having algorithms work correctly for
degenerate input, there has recently been a flurry of activity on this problem in
the computational geometry literature. In one method to remove degeneracies
for solving a problem, the approach is to compute some approzimation to the
exact solution of the problem when a degenerate input is encountered. The
other well known class of methods for handling degeneracies is via perturbation.
Here the input is perturbed in some way by an infinitesimal amount so that
the degeneracies are no longer present in the perturbed input. For a review of
perturbation schemes, see Emiris and Canny [22], Yap [64], and Emiris, Canny
and Seidel [23].

The above methods give the implementer two rather unsatisfactory choices:
find an approzimate solution to the original problem given, or find an ezact solu-
tion to an approzimation of the original problem. Sometimes it may be possible



to convert the approximate solution obtained from perturbation methods to the
exact solution by using some kind of post-processing step but this step may be
complicated [7].

One may wonder if one can have one’s cake and eat it too. Can we find
the ezact solution for the original problem with simple algorithms that handle
degeneracies? The answer depends on the type of cake we want to eat. Gomez
et. al.; [30, 29] address an issue concerning the assumption of non-degeneracies
which has received very little attention in the past. Often a typical computa-
tional geometry paper will make a non-degeneracy assumption that can in fact
be removed (without perturbing the input) by a global rigid transformation of
the input (such as a rotation, for example). Once the solution is obtained on the
transformed non-degenerate input, the solution can be transformed back triv-
ially (by an inverse rotation) to yield the solution to the original problem. In
these situations, by applying suitable pre- and post- processing steps, the ezact
solution to the original problem is obtained using an algorithm that assumes a
non-degenerate input, even when that input is in fact degenerate. This approach
not only handles algorithm-induced degeneracies via orthogonal projections but
some problem-induced degeneracies as well with the aid of perspective projec-
tions [29].

Gomez et al. [30] consider several non-degeneracy assumptions that are typ-
ically made in the literature, propose efficient algorithms for performing the
pre- and post-processing steps (suitable rotations) that remove these degenera-
cies, analyze their complexity in the real RAM model of computation and, for
some of these problems, give lower bounds on their worst-case complexity. The
assumptions considered in [30] include:

1. no two points in the plane have the same x and y-coordinates,

2. no two points in space lie on a vertical line (regular orthogonal projection),
3. no two points in space have the same z, y and z-coordinates,

4. no three points in space lie on a vertical plane,

5. no two line segments lie on a vertical plane.

Incorporating the algorithms in [30] and [29] with those in the literature that
make these non-degeneracy assumptions allows those algorithms to work even
when the degeneracies are present, albeit at the cost of the increased complexity
of computing the required rotations and the position of the center of projection
in the case of perspective projections.
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