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6.  Other Properties of Arrangements

The above results imply that we can expect similar gains in the complexity of algorithms for
computing other morphological or geometric structures that are inherently dependent on convex
hulls. For example, define the minimal enclosing rectangle of an arrangement, denoted by
MER(A), as the rectangle of smallest area that encloses I. Straight forward application of the algo-

rithm given in Toussaint [To83] to all the points in I leads to an O((n2 log n) time algorithm. How-
ever, since the minimal enclosing rectangle of a set is equivalent to the minimal enclosing rectangle
of the convex hull of the set it follows from the above results that MER(A) can be computed in O(n
log n) time and O(n) space. For a second example define the maximum distance between two ar-
rangements A1(L) and A2(L), denoted by dmax(A1, A2), as the maximum distance determined by

an element of the set of intersection points of A1(L) and an element of the set of intersection points
of A2(L). Straight forward application of the algorithms given in Bhattacharya & Toussaint [BT83]

and Toussaint & McAlear [TM82] to all the points in I leads to algorithms that run in O(n2 log n)
time. However, since the maximum distance between two sets is equivalent to the maximum dis-
tance determined by a pair of points such that one is on the convex hull of one set and the other is
on the convex hull of the other set, it follows from the above results that dmax(A1, A2) can be com-

puted in O(n log n) time and O(n) space.
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simple polygon we can combine Keil’s envelope algorithm with the O(n log n) time algorithms in
[Su87] and [PSR89] to obtain O(n log n) time algorithms for both of these problems as well. On
the other hand,E(A) is not an arbitrary simple polygon and it is an open problem to determine if
its structure will yield linear-time algorithms ifE(A) is given.

5.  The Girth of an Arrangement

There are several ways in which one might measure thegirth of an arrangement of lines. One
obvious possibility is to use the shortest line segment that intersects every line ofL (such a line
segment is called a shortesttransversal). Another is the smallestdisc that intersects every line in
L. Bhattacharya and Toussaint [BT90] were the first to explore this problem for the case of line
segment transversals. In [BT90] they present an O(n log2 n) time and O(n) space algorithm for
computing the shortest transversal of a set of n given lines or line segments in the plane.In the case
of line segments that do not intersect the algorithm can be trimmed to run in O(n log n) time. Fur-
thermore, in conjunction with convex hull and linear programming components the algorithm will
also find the shortest line segment that intersects a set of n isothetic rectangles in O(n log k) time,
where k is the combinatorial complexity of the space of transversals and k≤ 4n. These results find
application in: (1) line-fitting between a set of n data ranges where it is desired to obtain the shortest
line-of-fit, (2) finding the shortest line segment from which a convex n-vertex polygon is weakly
externally visible, and (3) determining the shortestline-of-sight between two edges of a simple n-
vertex polygon, for which O(n) time algorithms are also given   All the algorithms are based on the
solution to a fundamental geometric minimization problem that is of independent interest and
promises to find application in several different contexts. Some extensions of these results can be
found in [BCETSU91]. If the girth is measured as the smallest disc intersectingL then it is shown
in [BJMR91] that it can be computed in O(n) time even for the case of line segments.

Fig. 3 An arrangement of six lines and their envelope.
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Let the first point onI be pointa located at the origin. We accomplish this by defining line1 to
have the equation y=-x, and line2 to have the equation y=-(1+ε)x whereε is a small positive con-
stant. Letθ denote the angle that the line with maximum slope makes (over all lines drawn so far)
with the y axis measured in a counter clockwise manner. The third line has equation y=-(1+2ε)x -
δ, whereδ is a small positive constant. This consists of the three-step initialization phase of the
construction and yields a triangle [a,b,c] such that all three vertices are maximal vectors andc has
maximum y coordinate. We now show how to add, at step r, liner and create r-1 new maximal
vectors. Letd denote the leftmost intersection point of a horizontal line collinear withc. Line 4 is
then constructed to pass through pointd and make an angleθ/2 with the y axis. This procedure is
repeated until all n lines have been used up. For example, after line4 has been insertedf is the in-
tersection point with maximum y coordinate andg is the point on line1 with y coordinate equal to
that off. Therefore line5 passes throughg and makes an angleθ/2 with the y axis, whereθ is the
angle made by line4 with the y axis. Since at each step the angle with the y axis is decreased by
half of the remaining angle all the lines in the arrangement have negative slope and this ensures
that when we add a new line nonew intersection point is dominated by any othernew intersection
point. By making each line pass through the point on line1 that has the same y coordinate of the
highest intersection point created thus far we ensure that nonew intersection point is dominated by
any otherold intersection point. Therefore at each step all the new intersection points introduced
are maximal vectors. Therefore all n(n-1)/2 intersection points are maximal vectors.   Q.E.D.

It follows that even if we use the output-size sensitive algorithm of Kirkpatrick & Seidel
[KS86] with O(k log v) complexity, where k is the number of input points and v is the number of

maximal vectors found, our results imply an adaptive algorithm with O(n2 log v) actual running

time, O(n2) expected time and O(n2) space.

4.  The Envelope of an Arrangement

Definition: The envelope of an arrangement, denoted byE(A), is the simple polygon whose
boundary consists of the bounded edges of all the unbounded faces ofA.

Fig. 3 illustrates an arrangement of six lines and their envelope. A naive approach to comput-
ing E(A) would first construct the arrangementA(L) (i.e., the data structure containing all the inci-
dence relations between faces, edges and vertices) from the given n lines using the algorithm of
Edelsbrunner, O’Rourke & Seidel [EOS83] and subsequently search the arrangement to find all the
bounded edges of all the unbounded faces ofA. This approach unfortunately leads to an algorithm

requiring O(n2) time and space. Suri [Su85] first established that the cardinality ofE(A) is only
O(n) and presented an O(n log n) time divide-&-conquer algorithm for computingE(A). Further-
more theΩ(n log n) lower bound for determination of the convex hull ofI [CL85] holds also for
computingE(A) and therefore Suri’s algorithm is optimal. Unfortunately Suri’s algorithm is com-
plicated. However, since then at least two other O(n log n) algorithms have been discovered
[Ve87], [Ke91] and the one due to Mark Keil [Ke91] is quite elegant and simple.

One can also define for anarrangement A(L) other traditional morphological properties (pre-
viously defined for sets of points or a polygon) such as thegeodesic diameter and thegeodesic cen-
ter as the geodesic diameter of E(A) and the geodesic center ofE(A), respectively. SinceE(A) is a
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an algorithm with O(n2 log n) time and O(n2) space. However, it is difficult to improve on this for
the following reason.

Lemma: An arrangement of lines L = {L1, L2,...,Ln} may contain as many as O(n2) maximal vec-

tors.

Proof: We provide a construction illustrated in Fig. 2 that has all points in I as maximal vectors.
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Fig. 2   Illustrating the construction that demonstrates that an arrange-
ment of lines may have all its intersection points as maximal vectors.
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the vertices of the convex hull of I are a subset of the critical points determined by pairs of lines
which are adjacent on a list in which they are sorted by slope. Therefore they first sort the lines by
slope to obtain O(n) critical points and subsequently find their convex hull with any O(n log n) con-
vex hull algorithm. Devroye and Toussaint [DT90] show that if we chose our convex hull algo-
rithm carefully we can obtain an algorithm which will also exhibit O(n) expected complexity under
a natural definition of a random line and almost any radially symmetric distribution on its param-
eters as well as under a model of computation that allows us to compute floor and ceiling functions
in constant time.

Consider n i.i.d. random lines in the plane defined by their slope and distance from the origin.
The slope is uniformly distributed on [0,2π] and independent of the distance R from the origin. Let
Nch and Nol be the number of points on the convex hull and outer layer (maximal vectors) of I,

respectively. We will show below that there exist arrangements of lines in which Nol = n(n-1)/2 =

O(n2). It is shown in [DT90] that nevertheless Nol, and therefore Nch, have expected values O(1),

and they give bounds that are uniform over all distributions of R with 0 < ER < ∞.

Therefore, if we first sort the lines using distributive partitioning [DK80] in O(n log n) worst-
case, O(n) expected time and O(n) space, and subsequently find the convex hull of the adjacent
critical points of I using the output-size sensitive algorithm of Kirkpatrick & Seidel [KS86] which
has complexity O(k log h) where k is the number of input points and h is the cardinality of the con-
vex hull, we obtain an algorithm for computing the convex hull of I in O(n log n) worst-case time,
O(n) expected time and O(n) space. Furthermore, since once the convex hull has been obtained,
the diameter can be found in O(n) time [To83], the above complexity results apply also to the prob-
lem of computing the diameter of an arrangement of n lines.

There has also been some work done on the dynamic convex hull problem for arrangements
of lines. An algorithm was recently published [Bo90] for maintaining dynamically the convex hull
of I. In other words, given the convex hull of I it is desired to update the convex hull when a new
line is added to L (the insertion problem) and it is desired to update the convex hull when an old
line is deleted from L (the deletion problem). No proofs of correctness are given in [Bo90]. In fact
it is shown in [BET91] that the deletion algorithm proposed in [Bo90] is incorrect.

3.  Maximal Vectors of Arrangements

Definition: We say that a point A in I dominates a point B in I if A is greater than B in both of its
coordinates

Definition: A maximal vector of an arrangement A(L) is a point in I that is not dominated by any
other point in I.

The above definition (stated in a first-quadrant version) can be modified to include maximal
vectors in all four quadrants.

For an arbitrary set of n points in the plane it is well known that computing the maximal vec-
tors has the same complexity as computing the convex hull. Surprisingly, for the case of arrange-
ments computing maximal vectors is more difficult. The standard method [KLP75] clearly yields
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whereas a survey of recent research results can be found in [EGS90].

2.  Convex Hulls of Arrangements

Definition: The intersection point pij for i≠j and 1 ≤ i,j ≤ n is said to be extreme with respect to

line Li if all other intersection points on Li lie to one side of pij.

Definition: The intersection point pij for i≠j and 1 ≤ i,j ≤ n is said to be critical if and only if pij
is extreme with respect to both lines Li and Lj.

Definition: The diameter of an arrangement, denoted by D(A), is the maximum distance realized
by a pair of points in I.

Lemma: (Ching & Lee, 1985) The diameter of an arrangement is determined by a pair of critical
intersection points of I.

Definition: The convex hull of an arrangement, denoted by CH(A), is the convex hull of I.

Figure 1 illustrates an arrangement of six lines and the convex hull of I.

It is well known that the convex hull of n points in the plane can be computed in O(n log n)
worst-case and linear expected time [DT81] under certain assumptions on the distributions of the
points. Straight forward application of such algorithms to all the points in I thus leads to algorithms

with O(n2 log n) worst-case time, O(n2) expected time as well as O(n2) space under such assump-
tions. Surprisingly, Atallah [At86] and Ching & Lee [CL85] independently present an O(n log n)
worst-case time algorithm with O(n) space for this problem. In [At86] and [CL85] it is shown that

Fig. 1 An arrangement of six lines and their convex hull.
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ABSTRACT

An arrangement of n lines in the plane is a partition of the plane into O(n2) faces,
edges, and vertices (intersection points). Such line processes play a fundamental
role in modeling spatial patterns and studying a variety of problems such as traffic
flow. We briefly survey recent results on the complexity of computing morpholog-
ical properties of such arrangements.

1.  Introduction

The analysis of line patterns (sets of lines in the plane here referred to as arrangements) are
of considerable interest to geographers [GB78], [Ba67], [Da67], [Ba75], nuclear physicists
[Ho65], urban planners [Ga71], [SW72] and the pulp-and-paper industry [Mi64a], [Mi64b] among
others. In the “spatial analysis literature” cited above the properties of arrangements that have tra-
ditionally been used to measure the similarities between arrangements, and thus the processes gen-
erating these arrangements, have been restricted to simple geometric properties such as the lengths
of the line segments or the areas of the polygons induced by the arrangement [Mi64a], [SY72]. On
the other hand, in the computational geometry literature there has been a flurry of activity in the
area of computing more complex morphological properties of arrangements. In this paper we sur-
vey some of these recent results which will it is hoped pump new ideas and existing algorithms into
the field of spatial analysis.

Let L = {L1, L2,...,Ln} be a finite set of lines in the plane where each line Li is specified by an

equation Y=aiX + bi for some real numbers ai, bi, i=1,2,...,n. L induces a partition of the plane,

known as the arrangement A(L), into O(n2) faces, edges, and vertices. The vertices are the points
where the lines in L intersect. Let pij denote the intersection point of Li and Lj. The set I = {pij | 1

≤ i,j ≤ n} denotes the set of all O(n2) such intersection points. The edges are the connected com-
ponents of the lines that remain when the vertices are deleted. The faces are the connected compo-
nents of the complement of the union of the lines L1, L2,...,Ln. For a detailed fundamental treat-

ment of the combinatorial properties of arrangements the reader is referred to [Gr67] and [Ed87]


