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Abstract

Let K be a convex polytope in R?, let h(z) be the hyperplane
consisting of all points with first coordinate equal to z, and let A(z)
be the area (or volume, if d > 3) of the section K N h(z). Using the
Brunn-Minkowski inequality, we show that A(z) is a strictly unimodal
function and give an algorithm to determine a hyperplane that achieves
the maximum. Our algorithm runs in linear time, if the facial lattice
of K is given.

1 Introduction

A function f: R — R is said to be unimodal if it increases to a maximum
value and then decreases. It is strictly unimodal if the increase and decrease
are strict. To be precise, f is strictly unimodal iff for all reals z < y,
the minimum value v = min{f(z), f(y)} is either the global minimum or
maximum of f or v < f(z) for all z € (z,y).

Unimodality of functions is important for the design of efficient search
algorithms because it permits prune-and-search strategies such as binary
search or Fibonacci search [11]. For example, it was shown by Chazelle and
Dobkin [4, 6] that the perpendicular distance from a line £ to an n-vertex
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convex polygon @ is bimodal (i.e., with exactly two local minima). From
this, unimodal functions can be constructed and the farthest point from £
can be computed in O(logn) time. Unimodality can also simplify proofs
of geometric properties. For example, Pach [13] gave a 9-case combinato-
rial argument proving that the minimal-area triangle determined by three
vertices of a convex polygon must share two edges with the polygon. This
follows easily from the unimodality of distance.

It was shown in 1973 [8] that if A(z) is the length of the intersection of
a convex polygon @ with the vertical line through z, then A(z) is a strictly
unimodal function. We generalize this to higher dimensions in Section 2.
Specifically, we show that the area in R (or volume in Rd) of the intersection
of a convex polytope K and a hyperplane h(z) = {(z,z2,...,24) | Vz; € R}
is a strictly unimodal function A(z). (If the intersection plane is defined by
rotation instead of translation, then there are convex polytopes for which
sectional area is not unimodal.)

In the plane, the knowledge that A(z) is unimodal leads easily to a
binary search algorithm that computes the maximum-length intersection
in O(log? n) time. (With a “tentative prune-and-search” paradigm, one can
obtain an O(logn) time algorithm [12].) In higher dimensions, we show that
prune-and-search can be used to compute the intersection with maximum
area (volume) in time proportional to the size of K, if K is stored with its
complete facial lattice.

We begin in Section 3 with an algorithm specifically for R3; this algo-
rithm computes the maximum-area section of a convex polyhedron K in
time proportional to the number of vertices or faces of K. This algorithm
has an application to shape matching: Given convex polygons P and @
and a direction in which to translate P, one can find the translation having
maximum overlap with @ in linear time.

In Section 4 we extend this algorithm to R% by representing K as a sum of
positive and negative simplices and computing the maximum-volume section
of such a sum, knowing that the volume function is unimodal. Shermer [16]
developed a similar algorithm for computing a bisector of a triangulated
polygon; we observe that the simplices need not form a decomposition of
the polytope and simplify his algorithm as well.



2 Unimodality of Sectional Area

Let K be a convex polyhedron in R%. Let h(z) be the hyperplane consisting
of all points with first coordinate equal to z. Let A(z) denote the area (or
volume, if d > 3) of the intersection K N h(z). We show that A(z) is a
strictly unimodal function; it need not be convex or concave. This has also
been observed by B. Chazelle and D. Dobkin (private communication).

The proof of strict unimodality rests on the Brunn-Minkowski Theorem,
a powerful inequality for mized volumesin R4~ [15]. In this theorem, poly-
topes are considered as sets of vectors and linear combinations of polytopes
give new polytopes by scalar multiplication and Minkowski sums of sets of
vectors. Let A(Q) denote the area (or volume) of a polytope Q.

Theorem 2.1 (Brunn-Minkowski) If Q1 and Q2 are convez polygons in
R3I-1, then

SAQL + (1 - 2)Q2) > X /A(Qr) + (1 - A) “7/4(Qa),

for all0 < X < 1. FEquality holds if and only if Q1 and Q2 are homothetic—
that is, if Q2 = AQ1 + p for some A > 0 and p € R4,

An easy corollary establishes strict unimodality.
Corollary 2.2 The sectional area A(z) is a strictly unimodal function.

Proof: To establish strict unimodality, we show that the minimum of
A(z) for = in any interval [z1,z3] is min{A(z1), A(z2)}. If A(z1) #
A(z3), then the minimum value is unique.

Assume that A(z;) > A(z2), since the opposite inequality can be
handled in a similar manner. Notice that any ¢ € (21, z2) can be written
as Az1+ (1 —A)zgfor 0 < A < 1.

Let S; and S5 be the polygons in which K intersects the planes
h(z1) and h(zs), respectively. (If either polygon is empty, say S; = 0,
then A(z;) = 0 is the unique minimum value.) Because K is convex,
both S; and S5 are convex. Furthermore, the intersection of K with
the plane ¢ = Az; + (1 — A)zg, for 0 < A < 1 contains the polygon
AS1 + (1 — A)S2. Applying the inequalities first for containment and
second for Brunn-Minkowski, we obtain

YAO +(1-Na2) 2 ANS + (1-2)8)

A Y A(S) + (1= X) 3/ A(S,)
U A(S2) + M A(S1) — “/A(S2)).
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In the last line, the coefficient of A is non-negative, so A(z) > A(zz)
for z € (z1,z2). Furthermore, if A(z;) > A(z;), then this coefficient
is positive, which implies that A(z) > A(z). Thus, A(z) is strictly
unimodal. =

the h(0) plane the h(4) plane
/:\ \
~ i
— — — /— —
S V4

Figure 1: A convex polyhedron whose section area is neither convex or
concave.

We observe that A(z) need not be either convex or concave. Recall that
a function f(z) is concave if f(Az; + (1 — N)z2) > Af(z1) + (1 — X)f(z2).
Consider a pyramid in R® whose base polygon S is a square of area 4 in
the h(0) plane and whose apex is in the h(4) plane. All sections of this
polyhedron are homothets (squares). The Brunn-Minkowski theorem (or
a simple geometric argument) tells us that the area A(2) = (1/4(0)/2 +
VA(4)/2)? = 1. Since A(4)/2 + A(0)/2 = 2 > A(2), the sectional area
function A(z)is not convex. If we now form the convex polyhedron by taking
the union of S and its reflection across its base, we obtain a polyhedron for
which A(z) is neither convex nor concave, as illustrated in figure 1.

Finally, if instead of translating a plane across a convex polyhedron, we
rotate a plane about some axis, then sectional area is no longer unimodal.
We can take a planar construction [1], which places n vertices around the
unit circle in the yz plane, and add a point in R® at (1,0,0) to obtain a
pyramid with a regular n-gon as its base. The sections formed by planes
rotating about the = axis are unit-height triangles whose base edge length



is a function of 6, the angle of the plane. This length has local maxima at
each vertex [1], thus the sectional area has (n) local maxima and minima.

3 An Algorithm for Sectional Area in R® and 2-d
Shape Matching

By using the unimodality property, we can find the maximum-area inter-
section of a convex, n-vertex polyhedron K with a plane perpendicular to
the first coordinate axis. If the vertices, edges, and faces of K are stored
in a standard data structure, such as the winged-edge [2], quad-edge [9], or
doubly-connected edge list [14], then our algorithm runs in O(n) time.

Figure 2: A drum.

We begin by defining a special class of polyhedra that have quadratic
sectional-area function A(z). A polyhedron is a drum if all of its vertices lie
on two planes perpendicular to the z axis. Figure 2 depicts a convex drum;
drums can also be non-convex.

Lemma 3.1 Suppose that polyhedron P 1is a drum with vertices lying on
planes ¢ = z1 and ¢ = z3. Then A(z) is a quadratic function for © €
[ml,iﬂz].

Proof: The section of a drum by a plane z = Az; + (1 — A)z, for
0 < A < 1is a simple polygon, which we call S. Suppose the vertices
of S are the points s1,$2,...,5k = So, where s; = (s;.z, 8;.9, 8;.2). Then



the area A(S) is given by the formula

1
A(S) =5 Z (Si-1.Y " 8i2 — 8i—1.2 " 8;.Y).
1<i<k

Vertex s; of S is actually the intersection of the plane z = Az + (1 —
A)zg with some edge of the drum. If the endpoints of that edge are ¢; on
the plane z = z; and z; on z = 3, then s; = Ag; + (1 — A)z;. Plugging
the coordinates of these points into the area A(S) gives us a quadratic
function of A. (Note: the ¢; need not all be distinct and the z; need not
all be distinct.) m

Corollary 3.2 For a convez polyhedron K, the sectional area A(z) is a
piecewise quadratic function.

Proof: Intersect K with each plane h(z) that contains a vertex of K
and define a set of O(n) drums by taking the closures of the portions of
K between adjacent planes. Lemma 3.1 says that area is quadratic on
each drum. m

The simple structure of A(z) within drums suggests several possible
algorithms for computing the maximum sectional area:

e When K is a drum, for example, we can maximize by computing the
derivative A’(z), which is a linear function by Lemma 3.1. This takes
O(n) time.

e When K is not a drum, we can decompose K into drums, as suggested

in the proof of corollary 3.2, and maximize in each drum. Unfortu-
nately, the drums of this decomposition can have @(n?) vertices.

o We could sweep through the drums of K in order of increasing z
coordinate and take advantage of the fact that the changes in the area
formula are proportional to the number of edges of K, which is O(n).
This would necessarily sort the vertices of K by z coordinate and
require ©(nlogn) time.

e The strict unimodality of A(z) allows us to apply binary search on
coordinates of vertices to locate the drum containing the maximum
area section. Computing the area function at ®(logn) sections, how-
ever, could still take ®(nlogn) time.



To obtain a linear-time algorithm, we employ binary search, but we ensure
that the complexity of the polyhedron being searched decreases by a constant
factor at each search step. We define near-drums, which are the polyhedra
that we will search, and a cutting operation to reduce their complexity.

A polyhedron P is a near-drum if it lies between the planes z = z; and
T = 9. The vertices of P strictly between these two planes are called inner
vertices. Edges of P that are neither contained in the planes nor incident
on inner vertices are called long edges. We can decompose a convex near-
drum into a few (non-convex) drums and one convex near-drum that has
size proportional to the sum of the degrees of the inner vertices of P.

Lemma 3.3 Let P be an n-vertez, convezr near-drum whose inner vertices
have total degree k. In O(n) time we can decompose P into a set of drums
with O(n) vertices total and a convez near drum with O(k) vertices.

Proof: We continue to assume that P is represented by a standard data
structure. We can therefore traverse the representation for P, and mark
edges that bound faces that are incident to inner vertices.

Because faces of a convex near-drum are convex, each face incident
on an inner vertex has at most one long edge. By charging the degree
of an inner vertex for marking incident edges and faces, we see that at
most 2k edges are marked. In fact, our decomposition is done if all edges
are marked (we have a near-drum of O(k) vertices) or if all edges are
unmarked (we have a drum).

Otherwise, consider the long edges in sequence around P. Let £ =
{e1,ea,...,em} be a sequence of unmarked long edges that is bounded
by marked edges (g1,q2) and (r1,72), where points ¢; and r; lie on the
plane z = z; for ¢+ = 1,2. (It is possible that edges of E end at g; or 7;,
or even that ¢ =r, fort=1o0r¢=2.)

We cut a drum off the near-drum P as follows. Cutting along the
boundary of the (possibly degenerate) quadrilateral O(gi, g2,72,71) sep-
arates the surface of the near-drum into two pieces. The piece that
contains the edges E has no inner vertices, because its faces are incident
on unmarked edges. Taking the convex hull of the other piece adds at
most one diagonal—either (g1, 72) or (71, g2)—and makes it into a convex
near-drum. Adding the same diagonal into quadrilateral O(gq, g2, 72,71)
forms two triangles in space that were inside the convex polyhedron P.
These triangles cut a drum from P whose edges consist of £ with (g1, ¢2),
(r1,72), and the diagonal. (If m = 1 then e; was the diagonal and the
resulting drum has no area and can be ignored.)



Figure 3: Removing a sequence of unmarked long edges.

We apply this cutting operation to all sequences of unmarked edges.
Because each edge can participate in at most one cutting, the resulting
drums have O(n) total complexity. The final near-drum has at most 2k
marked edges and k new diagonals. This completes the decomposition. m

We can now describe the algorithm that takes a convex polyhedron K
and computes the maximum of the sectional area function, A(z). The algo-
rithm maintains a near-drum P whose area is Ap(z) for z € [z1, 2] and a
quadratic drum area function Ap(z) valid over [z1,z2]. The algorithm also
maintains two invariants:

1. The complexity of P is proportional to the total degree of its inner
vertices.

2. The drum area function Ap(z) = A(z) — Ap(z) over [z1, z3].

To initialize, we set the quadratic function Ap(z) = 0 and turn K into
near-drum by letting £ = z; and ¢ = z5 be the supporting planes parallel to
the yz plane. (If an initial support plane contains more than one vertex of K
we may need to perform a cutting operation to establish the first invariant,
as below.)

Now, given the near-drum P, list the z coordinates of the inner vertices
with multiplicity equal to the vertex degree. The median z coordinate, &,
can be found in linear time [3]. We can evaluate the derivative of sectional
area at the median, A'(Z) by summing A,(Z) and Ap(Z)—the latter we
obtain by traversing P. If A'(Z) = 0, then we have found the maximum sec-
tional area. Otherwise, if A'(Z) is positive we search [z, Z], and if negative
we search [Z, z,] for the drum containing the maximum.



Suppose that we need to search [z, Z]. We set z5 = Z, which shrinks the
near-drum. To re-establish invariant 1, we perform the cutting operation of
Lemma 3.3, obtaining some drums Dy, Dj,..., D,, and a near-drum P’. By
Lemma 3.1, the area functions for drums Dy, D,, ..., D,, are quadratic over
[z1, 2], so they can be accumulated into Ap(z), restoring invariant 2.

The total degree of internal vertices of P’ is less than half that of P.
Since the initial sum of vertex degrees is O(n) by Euler’s formula, after
O(logn) iterations P’ is empty, and the maximum of Ap(z) over [z1, z,] is
the maximum of A(z) by invariant 2. Furthermore, the amount of work per
iteration is proportional to the total degree of internal vertices of P. Because
this decreases by a geometric series, the running time of the algorithm is
linear in n.

We conclude

Theorem 3.4 For a convex polyhedron K with n vertices, the mazimum-
area cross-section orthogonal to a given direction can be computed in O(n)
time.

A corollary of this result and Chazelle’s linear-time algorithm for in-
tersecting convex polyhedra [5] has consequences in shape matching in the
plane. Given two convex polygons, P and ), and a direction v, we can com-
pute the translation of P in the direction v that has maximum intersection
with @ or, equivalently, that minimizes the symmetric difference of P + av
and Q. De Berg et al. [7] have recently developed an O(nlogn) algorithm
to find the translation of P in any direction that has the maximum overlap
with @; their algorithm depends on this subroutine.

Corollary 3.5 Given convez polygons P and @, the magnitude o of the
translation along a given vector v that mazimizes the area of intersection
(P + av) N Q can be computed in linear time.

Proof: Add an a coordinate perpendicular to the zy-plane. Extend @
to a right cylinder in the direction (0,0,1) and P to a slanted cylinder
in the direction (v.z,v.y,1). The intersection of these two cylinders is a
polyhedron K.

Each vertex of K comes from a line through a vertex of P or @ that
is parallel to its cylinder axis and that intersects a plane of the other
cylinder. Because the cylinders are convex, each line gives rise to at
most two vertices; the size of K is proportional to the sizes of P and
Q. We can compute K in linear time by Chazelle’s algorithm [5]. (In



fact, since we are dealing with cylinders, Chazelle’s algorithm can be
simplified.)

The maximum section of K that is parallel to the zy plane has a
coordinate with the desired magnitude. m

One can replace the median finding with randomly selecting a simplex
and one of its vertices to use for partitioning. The expected running time
would remain linear.

4 An Algorithm for Sectional Area in R?

Given a convex polytope K C R? that is described by its facial lattice, we
can again compute the maximum sectional volume A(z) in linear time: We
represent K as a sum of positive and negative simplices, each with sectional
volume functions that are piecewise polynomials of degree d. Unimodality
allows us to use prune-and-search to narrow the interval for the maximum
section and replace simplices that have no vertices in the interval by their
volume functions.

Shermer [16] gave a similar algorithm for bisecting a polygon P in linear
time, which relied on a trapezoidation of P. We observe that the trapezoids
(or simplices) can be both positive and negative; they need not be a par-
tition of P. This allows for easier generalization of his algorithm to higher
dimensions. Furthermore, we replace his two median searches per step by a
single omne.

To begin, we need the formula for the sectional volume of a simplex.

Lemma 4.1 In R4, the sectional volume of a simplez is a degree d polyno-
mial between planes containing vertices.

Theorem 4.2 The mazimum sectional volume A(z) of a convez polytope
K C R? can be computed in linear time, if the facial lattice of K is given.

Proof: Form a linear-size sum of simplices K = ), +5; by bottom
vertex triangulation or any other way of connecting facets to an origin.

Let interval [z1,z3] contain the z coordinates of vertices of K. Let
S C {S.} denote the set of simplices with vertices having z coordinates in
the open interval (z;, ;). Initialize a degree-d polynomial, Ap(z) = 0,
to record the volume function for simplices of S = {5;}\ S.

List the z-coordinates of vertices in [z, z3] with multiplicity equal
to the number of times the vertex appears in §. Find the median =z
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coordinate, &, and evaluate the derivative A'(z) by evaluating A% (z)
and Y g.cs5 A'(S).

Next, assign ©; = £ or zo = Z so that [zq,z,] still contains the
maximum. Some simplices may no longer have vertices in the open
interval (z1,z,); we remove them from S and add their volume functions
to polynomial Ap. If S becomes empty, then we maximize Ap(z) over
T € [z1,z3], otherwise we continue with the previous paragraph.

The amount of work in each step is proportional to the number of
vertices of S in [z1, z3], since each simplex has constant complexity. At
each step, this number is halved. Thus, the total is a geometric series
that sums to linear. m

This algorithm can also be modified to compute the plane h(z) that

bisects a (possibly non-convex) polyhedron.
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