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vertex-visibility t—y. Hence we have,

Theorem 4: The minimum sector edge-visibility and the minimum sector vertex-visibility prob-
lems both have complexity O(n), when the minimum o is at most Tt

It remains now to show that the condition o < Ttin the two preceding theorems cannot be relaxed.
Thisis an immediate consequence of the following,

Theorem 5: The sector vertex-visibility problem requires Q(n log n) time, when 1< o < 21U

Proof: Asin lemma 4, we prove the lower bound by reduction from the set equality problem.
Hence, our lower bound holds for arbitrary fixed order algebraic decision trees.

For simplicity, wewill describethereductionwhen o =311/ 2; the generalization should beclear.
Leta, [J{1,..., n}. Consider the polygon P with 3n+ 18 verticesillustrated schematically in Figure

4.Vertexvi, 1 <i <nby construction, hasW(v;) = &I, (g -1 Ly

2n 2n 2
Note that each such wedge W(v;) [ (0, ) and thus constitutes anotch in the upper edge of polygon

P. The dual wedges associated with vertices wy,..., wg cover the entire plane except for the wedge

[0, Tt/ 2]. Thus P is o—sector-vertex-visibleif and only if the dual wedges associated with vertices
Vq,--, Vi do not cover the wedge [0, Tt/ 2]. But, by construction, this holds precisely when{ay....,

ant ={1,...n}.

Q.E.D.
5. Concluding remarks

Sector visibility problems constitute what may be considered the easiest external visibility prob-
lems. Though we have characterized the asymptotic complexity of many of these exactly, some
guestions from within this family remain incompletely resolved. For example, what is the com-
plexity of sector edge-visibility whentt < 0 <2 1m?
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pop S
else push [¢5, o]
@ - B

oF - F

end

We know from lemma 1 that the angles in the wedges remaining on the stack containing S at the
completion of algorithm Combine-Dual-Wedgeslie in theinterval [-5tt, 511. It is now straightfor-
ward to compl ete the union of the dual wedges with all angles now reduced mod 21t With thisre-
duction, Spartitionsinto O(1) ordered lists of intervals, which can be merged in O(n) time. Togeth-
er with lemma 2 and lemma 3, this completes the proof of the following:

Theorem 3: The sector edge-visibility and the sector vertex-visibility problems both have com-
plexity O(n), when o < Tt

It isimmediate from their definition that dual wedges decrease linearly in width with increasing o.
This permits us to solve the minimum sector vertex-visibility problem by first using the above al-
gorithm to check if P is Tesector-vertex-visible. If thisis so, then the union of the dual wedges on
the stack at completion fail to cover the plane. If the maximal uncovered wedge (which can be con-
structed in O(n) time by asimple scan) haswidthy, then it is easy to seethat P has minimum sector



discontinuity. The purpose of this section is to substantiate this claim.

Superficial examination of the global wedges of support associated with the vertices of arbitrary
simple polygon, reveals little apparent structure. For example, the wedges of adjacent vertices can
intersect in an arbitrary fashion. It turns out that the useful structure is most easily seen by exam-
ining the dual wedges.

Recall that the global wedge of support of polygon P at vertex p;, W(p;), is the interval (L|JB(pi),
WF(pp). Its o-dual WO(p) istheinterval [T (p,) - 2+ o, WB(p)).

Lemmab. If j > i then qJF(pi) -Ti< qJB(pJ-).

Proof. Let ¢ denote the direction of the ray from p; through pj . Then the existence of achain from

p; to pj in P ensures that qJF(pi) < ¢and QJB(pj) >C-TL
Q.E.D.

Corollary. If | > 1 then V\/G(pj) either intersects WO( p;) or it contains angles strictly larger than
those of WO( ).

It follows from the corollary above that we can maintain [ V\p(pi) asastack Sof disoint wedges

where the angles of successive wedges strictly increase. this construction is made precise in the
following algorithm.

Algorithm combine-dual-wedges

begin
[P — W (py - 2+ 3, WB(py)]
] <2
whilej <ndo
(¢ — [Wh(p) - 20+ 8, wB(p)]

if (971 n [Bc1#0
thencpB - min{(pB,c
F F
¢ — max{g g
while S# @and top n [ch, I:] z0
(B, M« top
% — min{¢?, &5

o~ max{¢", ¢}

By
B!
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Figure 3

the plane covering problem by setting W, = [2m&i/n, 2r(a,+1)/n], for 1 <i <n. Note that thisis

closely related to the so-called measure problem also discussed by Ben-Or.
Q.E.D.

The following theorem which summarizes the main result of this section is an immediate
conesguence of the above lemmas.

Theorem 2. The sector vertex-visibility problem has complexity O(n log n).

In fact lemma 4 tells us something stronger than Theorem 2. In particular, if we have any hope of
achieving an O(n log n) bound on the complexity of sector visibility problems, it must come as a
result of exploiting the structure imposed by the underlying polygon on the set of visibility wedges
associated with its vertices. Of course, thisis precisely what makes problems for polygonal chains
less complex than their unstructured counterparts in general. We pursue this idea in the next sec-
tion.

4. Sector vigibility wheno <

We have seen that sector edge-visibility reducesto sector vertex-visibility when o < 1t Curiously,
itisin precisely thissituation that sector vertex-visibility itself exhibits ademonstrable complexity



compute basic properties such as their intersection and common tangeihdsg. rp(ime is suffi-

cient for the special cases of vertical line segments [O’R], for line segments with arbitrary direc-
tions [EMPRWW], and for a set oftransates of a simple object in the plane [Ed]. Finally, for a

set ofisothetic rectangles Q1) time suffices via linear programming [Ed].

Even more closely related to the topic of this paper is the problem of comghdrtest transver-
sals of sets, when a transversal exists. In [BCETSU]d(n) time algorithms are given for com-
puting a shortest transversal for a familyndines, a family o line segments and a family of
convex polygons with a total ofvertices. The algorithms are optimal for the latter two families
of objects.

Given a familyF of n convex cones, as in the visibility problem considered in this paper, determin-

ing whether= admits a common transversal could certainly be accomplishedfrid@(n) time

with the procedure of [EOW] or in @(og n a(n)) time, wherex(n) is the extremely slowly grow-

ing inverse Ackermann’s function, with the more recent technique of Atallah and Bajaj [AB]. We
now show that the structure in our fanilynamely the fact that our convex cones are not arbitrary
and independent but with their apexes anchored on the vertices of a simple polygon, allows us to
solve this transversal problem inrf@¢g n) time. In the next section, this result is improved tn)O(

time.

In the remainder of this section, we show that the problem of finding a wedge, of width at most
< 21, that spans a collection nfwedges, has inherent worst-case compleXity log n). We in-
troduce a dual wedge cover problem that simplifies some of the argumeé=L{t/; ,..., W}

be a set of wedges. The ¥¢éts said tacover the plane if for every anglp, 0 <y < 21, there exists
a wedgew. 1 W such thatp O Wi. If W = (lpB, lpF) is an (open) wedge thah® denotes the

(closed) wedgeqi': - 21+ 0, qJB]. WP, which we call thes-dual of wedgan, can be viewed as
a generalized complement of weddeFurthermore,

Lemma3: The seWW ={W;,..., W} admits a spanning wedge of widthif and only if the sen\©

={W; ..., W%} does not cover the plane.

Proof: This follows immediately from the observation that the wedgep(+ o) spansw if and
onlyif y O O WP,
Q.E.D.

Lemma 4. The plane covering problem for wedges has worst case time com@¢rityg n).

Proof. An O(n log n) solution follows by simply lexicographically sorting the wedges (viewed as
ordered pairs) and scanning the resulting list. @frelog n) lower bound, which says, in effect,

that this sorting step is unavoidable in general, holds for arbitrary fixed order algebraic decision
trees [B-O]. Ben-Or [B-O] shows that determining if aset{a,,..., 3,} is identical to the seB

= {by,..., by} requiresQ(n log n) time on this model. This set equality problem can be reduced to



It may be suspected that to determine the sector edge-visibility of a given polygon it suffices to
determine its sector vertex-visibility. In fact, this is the case for bothnd 2tsector visibility

[TA], [PSu]. This is not true in general, however. Nevertheless, whem, we can reduce the
sector edge-visibility problem to a closely related sector vertex-visibility problem.

Lemma 2: Let P be any polygon and |8V be any wedge of sight lines of width at masthenP
is W-edge-visible if and only if the polygd?, formed fromP by subdividing each of its edges, is
W-vertex-visible.

Proof: It suffices to observe that if both of the endpoints of some edgeareW-visible then so
is the entire edge. We know, from [AT], that if the endpoints of any edfe" areW-visible then
eis edge-visible.

If supporting rays fronW at each of the endpoints@tliverge then at least one of these must sup-
port all of the points o (here we use the fact that one of the two end poirgsrafst be a subdi-
vision point). Alternatively, it is easy to see that W "-edge-visible for some wedy€” bounded
by two rays oW and satisfyingW ’| <1t Since the width o is at mostr, it follows thatWw ™ [
W, and hence is W-edge-visible.

Q.E.D.

Note that lemma 2 does not hold for wedges of width greatemttégure 3 illustrates a polygon
P and a visibility wedg&V such that each vertex Bf includingv, is W-visible, and yet the shaded
edge is noW-visible.

3. The sector edge-visibility problem

In section 1 we introduced the sector edge- and vertex-visibility problems. In section 2 we showed
that, wheno < 11, sector edge-visibility reduces to sector vertex-visibility. In this section we focus
on the problem of sector vertex-visibility. Before addressing the general case, it is instructive to
review the case where= 11, what we originally called weak visibility from a line. The problem of
sector vertex-visibility in this case can be interpreted as a transversal problem; specifically does
the collection {Np(v) | v O V} (whereV denotes the set of vertices®and eacth(v) IS now

viewed as a sector of the plane) admit a common transversal. In general, &fafrslybsets of
the plane is said to admitammon transversal if there exists a straight linewhich intersects ev-
ery member ofF.

Common transversals for families of convex sets have been investigated for some time in both the
mathematics [Gr], [Le] and computer science [AB], [AW1], [AW2], [Ed], literatures. In the latter,
the more aggressive testabber is more often used faransversal. Transversals in the plane find
application in several areas including line-fitting [O"R] and updating triangulations [ET]. Edels-
brunner, Overmars and Wood [EOW] develop a method for planar visibility problems that yields

a procedure for computing transversalsfoa family ofsimple objects, in O(? log n) time, where
nis the cardinality oF. By simple objects, it is meant those objects that have an O(1) storage de-
scription each, and which are such that, for every pair of such objects, constant time suffices to
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elsez ~ top

pop S

while S# @ and side (top, z, pj) >0
W « intersect (line(top, 2); Iine(pj_l,pj))
insert won [pj_l,pj]
tB(W) 4
Z ~ top
pop S

tB(pj) -z

push z

j—jt1

end

The correctness of Algorithm Back-Tangents follows from a straightforward case analysis similar
to that of Melkman [M], together with the invariant that the elements of Sfollowed by Pj-1 describe

the convex hull of the polygonal chain C[py,....p,,.1]- Itis aso straightforward to confirm that the

algorithm runsin O(n) steps and inserts O(n) new vertices into the edges of C. We summarize the
result of this section with the following theorem.

Theorem 1: Given a polygon P, linear time suffices to construct a refinement P~ of P with the
property that given any point x of P ” and its associated edge, the wedge of support of P at x can be
determined in O(1) time.



P at x. Let W(X) = (WB(x),wF(x)). By the maximality of W(x) it follows that both ray(x,wB(x)) and

ray(x,qJF(x)) intersect P- {x}. Let tB(x) (respectively, tF(x)) bereferred to as the back (respective-
ly, forward) tangent point from x (see Figure 2). With this notation, it is clear that P is W-edge-
visibleif and only if for every point x 1 P thereisay DWp(x) anday” 0 Wsuchthat ¢ =" (mod

2n). If thisisthe case, we say that Wspansthecollection{Wp(x) | x O P}.

In this section, we consider the efficient computation of Wp(x) for all points x of a given polygon

P. We assume without loss of generality that P isedge-visible; in fact, if thisisnot the case, it will
be detected as part of the algorithm.

It will suffice to show how to determine tB(x) for all points x of P; a symmetric algorithm can be
used to construct tF(x), and hence complete the determination of Wp(x). The algorithm proceeds
by refining P, through the addition of new vertices on some of its edges, and determining tB(x) for
each vertex v of this refined polygon. The new vertices are chosen in such away that for an arbi-
trary non-vertex point x on P, tB(x) = tB(v), where v isthe vertex following x on the refined chain.

The algorithm is most easily described as a ssmple modification of the on-line convex hull algo-
rithm for simple polygonal chains due to Melkman [M]. Let P = C[p;,....p4+1] be asimple poly-

gon. Suppose, without loss of generality, that p; isavertex of the convex hull of P. If X;,X, and x5
ar three points then the function side(x4,x5,X3) takesthe value 1, 0, or -1 depending on whether x5
isto theright of, collinear with, or to the left of the line through x4 and x, and directed from x4 to
Xo. Theagorithm maintainsastack Sof points (initially empty). The operations push and pop mod-
ify Sin the obvious way. The variable top refersto the top element of S

Algorithm back-tangents

begin
push py
tB(pz) <P
j <3
whilej <ndo
if side (top, Pj-1 pj) <0

then if side (pj_z, pj-l’ pJ-) >0
then HALT {pj-l is not weakly externally visible}
dset3(p) < pjy

pUShpj_]_
j<jt1



2. [Sector (edge/vertex)-visibility problem]
Given apolygon P and an angle g, 0 < ¢ < 21, determine whether P is o-sector-(edge/
vertex)-visible, and if so describe all wedges W that realize this sector visibility.

3. [Minimum sector (edge/vertex)-visibility problem]
Given a polygon P, determine the minimum o for which P is o-sector-(edge/vertex)-
visible.

We show that the inherent (worst case) complexity of answering the sector (edge/vertex)-visibility
problem exhibits a curious discontinuity. When o < 1tor o = 2rtthe complexity is ©(n), yet when
i< 0 < 2mit hasan Q(n log n) lower bound. Furthermore, when o < 11, in at most O(n) additional
timealinear size description of all wedgesrealizing the specified sector visibility can be construct-
ed, that permits wedge visibility queries to be answered in O(log n) time per query. The minimum
sector (edge/vertex)-visibility problem inherits the same complexity bounds; it hasa ®(n) solution
when the minimum is at most Ttand an Q (n log n) lower bound otherwise.

2. Determining wedges of support

If P=C[pq,...Pn+1] isapolygon and xisany point of P we define angle(x) to be the external angle
of P at point x. (In particular, angle(x) = mtfor all points of P which are not vertices.). The local
wedge of support of P at point x, denoted wp* (¥), is given by (85(x), 87(x)) where 65(p,) isthe

anglein [0,2r] formed by the ray with endpoint p, passing through p,, 4, BB(pi) = GB(pi_l) +an-
gle(p; 1) - T for i > 1, 85(x) = 65(py), if x 0 int([p;_1,p;1), and 87(x) = 6B(x) + angle(x), for all x
inP.

Note that by this definition the local wedge of support of a point is dependent on the choice of ini-
tial vertex p;. The redundancy evident in the representation of angles, though hard to motivate

here, is exploited in subsequent algorithms. This redundancy is limited, however, by the fact that
polygons that are vertex-visible cannot spiral too much. The following lemma quantifies this re-
dundancy.

Lemma 1. If P isvertex-visible then Wp* (v) O (=5, 5m), for al verticesv of P.

Proof. Suppose eB(pi) <51t Then it is straightforward to show that P does not admit a supporting
ray at either p; or p; 1. The argument when GF(pi) > brtisidentical.
Q.E.D.
If Pisapolygon and x isany point of P, the global wedge of support of P at x, denoted Wp(x) (or
: . . *
simply W(x) when P is understood), isthe set of al angles y [ Wp (X) such that ray(x,J) supports



Fig. 1. A polygon P (weak external)
edge-visible from alineL.

line L.

The above notions of external visibility have a natural unification and generalization. We refer to
arbitrary angles as sight-lines. An open fixed angular interval W of sight-lines () satisfying LpB <
P < qJF and denoted by (LpB,qJF) isreferred to as a (visibility) wedge; closed wedges are defined

similarly. We denote by |W/| the (angular) width of W, namely wF - wB. A polygonal chain Cis
said to be W-edge-visible (respectively, W-vertex-visible) for agiven W, if for every point (respec-
tively, vertex) x of C thereexistsa O W such that ray(x,) supports C at x. Furthermore, Cissaid
to be o—sector-(edge/vertex)-visible if there exists a wedge W of width o such that C is W-(edge/
vertex)-visible. It should be clear from the discussion above that (weak external) edge-visibility
corresponds to 21t-sector-edge-visibility, edge-visibility from aline corresponds to T—sector-edge-
visibility, and monotonicity (of chains) corresponds to e-sector-edge-visibility, for al sufficiently
small € > 0.

We should add here that since the compl etion of the work presented here, the problem of determin-
ing the shortest line segment from which a polygon is weakly externally visible has been solved in
O(n) time by Bhattacharya, Mukhopadhyay and Toussaint [BMT]. The agorithm in [BMT] can
also be used to solve the 21e-sector-edge-visibility problem considered here.

Given the framework described above, a number of natural questions arise:
1. [Wedge (edge/vertex)-visibility problem]

Given apolygon P and awedge W of sight lines, determine whether P is W-(edge/ver-
tex)-visible.



(with respect to P).

A point set T is said to be weakly visible from a point set Sif, for each point p [J T, there exists a
point q [0 Ssuch that p and q are visible. The notion of weak visibility has received attention in
both the mathematics and computer science literature. Horn and Valentine [HV] have character-
ized L-sets in terms of weak visibility properties while such characterizations for convex, star-
shaped and other sets have been presented by Bezdek, Bezdek and Bisztriczy [BBB] and Shermer
and Toussaint [ST]. A polygon P is said to be an L-set provided that for every pair of pointsx, y [
P, there existsathird point z [ P (possibly dependent on x and y) such that both x and y are visible
from x. Avis and Toussaint [AT] showed that given a polygon P and a specified e of P, whether
P* isweakly visible from e can be determined in O(n) time. A more difficult problem is to deter-
mine whether there exists an edge of P from which P is weakly visible. Clearly, by applying the

algorithmin [AT] to each edgein turn thelatter problem can be solved in O(n?) time. Subsequently
Sack and Suri [SS] discovered a linear-time algorithm for determining all (if any) such edges of a
given polygon. Recently, Yan Ke [Ke] considered the problem of detecting the weak visibility of
a polygon from an internal line segment. He presents an O(n log n) time algorithm that tests if a
polygon isweakly visible from some internal line segment and reports such aline segment if it ex-
ists. He also shows that the shortest such segment can be found in O(n log n) time. Finally he ad-
dresses the query version of this problem: given a query line segment Sin P, is P weakly visible
from S? he shows that this question can be answered in O(log n) time after the polygon is prepro-
cessed in O(n log n) time using O(n) space.

In this paper we focus on weak external visibility of apolygon. Thistopicisasyet quite unexplored
compared to itsinternal counterpart. Toussaint and Avis[TA] considered the problem of determin-
ing if apolygon isweakly externaly visible. (Since we will restrict ourselves hereafter to notions
of visibility that are both weak and external we will drop these adjectives for the sake of less cum-
bersome terminology). A polygon P is edge-visible if for each point x (I P there exists a ray that
supports P at x. Thisisequivalent to saying that P isvisible from acircle at infinity (or, infact, any
circle that properly encloses P). Toussaint and Avis[TA], using related results of [AT], show that
edge-visibility of polygons can be recognized in O(n) time. Thisresult is proved by showing that
the edge-visibility problem is equivalent to the somewhat less constrained vertex-visibility prob-
lem: determine, for each vertex v J P, if there exists aray that supports P at v.

The notion of monotonicity, which enjoys numerous applications [PSh], [TE], [CRS] can also be
cast as akind of external visibility problem. A polygonal chain C is said to be monotone with re-
spect to aline L if every line orthogonal to L intersects C in at most one point. Equivalently, Cis
weakly visible from one point on the circle at infinity (defined by the family of sight-lines orthog-
onal to L). A polygon is monotone with respect to aline L if it can be decomposed into two chains
each of which ismonotone with respect to L. Preparata and Supowit [PSu] show that monotonicity
of apolygon, infact adescription of all directions of monotonicity, can be determined in O(n) time.

Intermediate to the notions of edge-visibility and monotonicity isthe notion of edge-visibility from
aline, the study of which was the starting point for the research presented here. A polygon P is
edge-visiblefromal lineif thereexistsalineL in ext(P) such that P is edge-visible from L. (Equiv-
alently, P isedge-visible from a semicircle at infinity, whose points correspond to sight linesin an
interval bounded by the two orientations of L). Fig. 1 illustrates a polygon P edge-visible from a
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We consider ageneralization of several notionsof external visibility of simple poly-
gons, namely weak external visibility, weak externa visibility from aline and mo-
notonicity, that we call sector visibility. Informally, sector visibility addresses the
guestion of external visibility along rays (or sight lines) whose angles are restricted
to asector (wedge) of specified width o. Thisprovides an interesting measure of the
degree of external visibility of apolygon. Our framework also permitsaunification
and extension of a number of previously unrelated results. Finally, our results un-
cover acurious complexity discontinuity in thisfamily of problems: algorithms are
©(n)wheno < Tor o =211, but require Q(nlog n) time (at least), whent < ¢ <211

1. Introduction

Any sequence of n pointspy,...,p, in the Euclidean plane E2 defi nes apolygonal chain C[pl’...,pn]
whose vertices are the points p4,...,p,, and whose edges are the finite line segments [p;,p; 1], | =
1,...,n-1. A polygonal chain C[pl’...,pn+1] with pq = pp4+1 iscaled apolygon (or n-gon).

Semi-infinite line segments are referred to as rays. We denote by ray(x, ) the ray with endpoint
x and direction . Theray r = ray(x, {) issaid to support polygon P at xif r n P ={x}.

A polygonal chain is simple if no non-consecutive pair of its edges intersect. A simple polygon P
has a well defined (bounded) interior (denoted by int(P)) and (unbounded) exterior (denoted by
ext(P)). We denote by P* the union of P and int(P). We assume that the point sequence defining a
given simple polygon P satisfies the property that each directed line segment [p;,p; 1] hasthein-

terior of P to itsleft. Hereafter, polygonal chains (including polygons) will be assumed to be sim-
ple.

Two points x and y are said to be visible (with respect to a polygon P) if the interior of the line
segment [x,y] lies either completely in int(P) or completely in ext(P). If int([x,y]) O int(P) (respec-
tively, int([x,y]) O ext(P)) then x and y are said to be internally (respectively externally) visible



