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tion L of lines inR 2 there are many possible ways of defining the girth.oOne possibility is the
circumference of the smallest disc that intersects every memberlbfs an open problem to de-
termine the complexity of computing such a disc.

Finally we mention theofa problem [Wa76]. The traditional sofa problem asks for, given a
right-angled corridor, what is the rigid object (sofa) of largest area that can be moved around the
corner. This problem remains unsolved although upper and lower bounds are known. In case the
sofa is a line segment (ladder) the solution is given by Niven [Ni81]. It is not difficult to see that
the longest ladder that can be passed around the corner is equivalent to the shortest line segment in
the corridor that will connect the outer walls while remaining in contact with point g, the vertex of
the inner walls. Therefore lemma 2.1 generalizes the result of Niven [Ni81] to handle corridors
which need not be right-angled nor have parallel walls.
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Fig. 5.1: lllustrating the internal cone of support of
vertex p of a convex polygon P.

them. The algorithm in [AGT86] for determining partial visibility between two edges in P com-
putes the “internal convex hulls” between the end points of the edges to create an “hourglass” poly-
gon if in fact the edges are partially visible thus leading to a situation similar to that encountered
in section 2 where we have two instances of the geometric minimization. Therefore, combining
the results of section 2 with those in [AGT86] we obtain the following.

Theorem 5.2: Given two edges; ande, in a simple n-vertex polygon P, tHortest line-of-sight
between them, if one exists, can be computed in O(n) time and space.

6. Concluding Remarks

In this paper it was shown that given a set of lines{L ,, L,,...,.L.} the girth of L, or the

shortest line segment that intersects every memberazn be found in O(n I8an) time and O(n)

space. This was established by proving that the shortest transversal of a seLolidestical

to the shortest transversal of a set of line-segn&ntsch are obtained by intersecting each given

line in L with the convex hull of the intersection points determined by these lines. An &) log

time algorithm for arbitrary line segments is subsequently us&l diote however thed is not

an arbitrary set of line segments as it exhibits the property that all the end points of all the line seg-
ments lie on the boundary of a convex polygon. It may be the case that exploiting this information
will yield an O(n log n) time algorithm for computing the girth of an arrangement. Given a collec-
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Let L*(P) be the shortest line segment from which P iswesakly externally visible.

Lemma 5.3: L*(P) has one of its end points on one of the bounding rays of W, (e;) and the other
on the other bounding ray for some value of i.

Lemma 5.4: L*(P) istangent to P.

Definition: Let p; be avertex of P. The internal cone of support at p;, denoted by i-cone(p;), is
the wedge determined by HL(p;_1,p;) N HL(P;.P;+1)-

Lemma 5.5: A line segment L=[a,b] lying ini-cone(p;), tangent to P, from which Pisweakly vis-
ible must be tangent to a vertex P such that P is an antipodal vertex of p;.

Proof: If L does not intersect ray(p;,p;_1) then edge [p;_1.p;] of Pisnot visiblefrom L. Similarly,
if L does not intersect ray(p;,p;.1) then edge [p;,p;.+1] of Pisnot visiblefrom L. Therefore L must
have one endpoint on ray(p;,p;_;) and the other on ray(p;,p;.1). Now assume that pj isnot an an-
tipodal vertex of p;. Let Pk(i-L,i) denote the vertex of P determined by a tangent line parallel to
ray(p;,p;_1) and antipodal top;_; and p;. Similarly, Let Pk(i,i+1) denotethevertex of P determined
by atangent line parallel to ray(p;,p;4) and antipodal to p; 1 and p;. Clearly, aswerotate aline
of support in a counterclockwise manner starting at Pk(i-1,i) and ending at P i+1) We visit the
polygonal chain C[pk(i-l,i)’ Pi(i-1,i)+1Pk(i,i+1)-1' Pk(i ,i+1)] which hasthe property that all its
vertices are antipodal to p;. Furthermoreif pj is not antipodal to p; then L must have an unoriented
direction that liesin the wedge determined by theinternal angle of P at vertex p;. Thisimpliesthat
one endpoint of L must liein int(i-cone(p;)), whichisacontradiction. Q.E.D.

Lemma 5.6: The antipodal chains of two consecutive cones intersect only at their end points.

The above lemmas combined with the results of section 2 lead straightforwardly to the fol-
lowing theorem the details of which are left to the reader.

Theorem 5.1: Given a convex n-gon P, the shortest line segment L*(P) from which P is weakly
externally visible can be found in O(n) time.

5.2. Shortest Lines of Sight

One of the most recurring themesin many computer applications such as graphics, automated
cartography, robotics and image processing is the notion of visibility relations between elements
such as vertices or edgesin asimple polygon. One such class of problemsis concerned with com-
puting edge-to-edge visibility relations. Given two edges e; and e, of asimple n-vertex polygon

P, there exist four natural types of visibility all of which can be determined in O(n) time [AGT86].
A line-of-sight between e, and e, isaline segment [a,b] such that a [ e; and b [J e, and [a,b] []

P. Two edges e; and e, of P are said to be partially-visible if they admit aline-of-sight between
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Fig. 4.6 Illustrating one of the two possible regions (shaded) in which al line transversals of
aset of isothetic rectangles must lie. The sets F; and F, are shown in white and black filled

circles, respectively. Heavy lines indicate the left and right envelopes.

If a half-plane contains the interior of P it will be referred to as an interior half plane. Denote the
infinite half-ray starting at apoint x and traversing a second point y by ray(x,y). Let L=[a,b] (also
just plain L) denote aline segment with end pointsa,b. For avertex p; of Pthelinesthrough e_q

and g partition the plane into four wedges. Let W;(p;) be the wedge containing P. We begin by
presenting several easy lemmas that we state without proof.

Lemma5.1: Pisweakly externaly visiblefrom L[ab] if, and only if, for i=1,2,...,n we have that
HR(g) N L[ab] # .

Lemmab.2: Pisweakly externally visiblefrom L[ab] if, and only if, there exists atangent ray of
support to P from a and b, ray(a,P) and ray(b,P) such that the following three conditions hold: (i)
ray(a,P) and ray(b,P) intersect at some point x, (ii) x is a vertex of P, and (iii) P is contained in
QAabx.
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Fig. 4.5 Illustrating the maximal linearly separable extension (shaded re-
gion) of one convex polygon Sqwith respect to another S,.

time. Thealgorithm followsfrom the results presented in section 2 and afew straightforward lem-
mas that we mention here without proofs.

For any integer n > 3, we define a polygon in the Euclidean plane E2 asthefigure P=[xq,Xo,....Xpl

formed by n pointsxq,Xp,....Xp in E2andnline segments [X;,Xj+1], 1=1,2,...,n-1, and [X,X1]. The
points x; are called the vertices of the polygon and the line segments are termed its edges. We as-

sume the vertices of P arein general position, i.e., no three vertices are colinear and that the poly-
gonisin standard form, i.e., the vertices appear in counterclockwise order astheir index increases.

A polygonal sub-chain of Pwill be denoted by C[Xx;,X; +1,...,xj_1,xj]. Therefore C[X1,X2,...,Xpy] COr-

respondsto P with the segment [x,,x4] removed. A polygon Pis called asimple polygon provided

that no point of the plane belongs to more than two edges of P and the only points of the plane that
belong to precisely two edges are the vertices of P.

A simple polygon has a well defined interior (denoted by int(P)) and exterior (denoted by
ext(P)). Wewill follow the convention of including theinterior of a polygon when referring to P.

Let P be a convex polygon. Denote the closed half-plane to the left of a directed line deter-
mined by two ordered points x,y by HL(x,y). The corresponding closed half-plane to the right of
adirected line determined by two ordered points x,y is denoted by HR(X,y). It is also convenient
to denote the edge [p;,p; 1] of Pby €. Thus HR(e;) isthe outer half plane determined by edge e;.
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@

Fig. 4.4 lllustrating case 2 in the proof of Lemma4.1.

each edge in turn the latter problem can be solved in O(n) time. Sack and Suri [SS86] discovered
alinear-time algorithm for determining all (if any) such edges of a given polygon. Recently Yan
Ke [Ke88] considered the problem of detecting the weak visibility of a ssmple polygon from an
internal line segment. He presents an O(n log n) time algorithm that tests if a polygon is weakly
visible from some internal line segment and reports such a line segment if it exists. He also ad-
dressesthe query version of this problem: given aquery line segment in P, isPweakly visiblefrom
it? He showsthat this question can be answered in O(log n) time after the polygon is preprocessed
in O(n log n) time using O(n) space. More relevant to the work in this paper, Ke shows that the
shortest such line segment can be found in O(n log n) time. All these results are concerned with
internal visibility. Bhattacharya, Kirkpatrick and Toussaint [BKT89] have considered the corre-
sponding computational problems for the case of external weak visibility. A polygon Pissaid to
be weakly-externally-visible provided that for every point x on the boundary of P there exists an
infinite ray starting at x that intersects P only at x. More intuitively speaking P is weakly-exter-
nally-visibleif when aguard patrols along acircle containing Pinitsinterior then the entire bound-
ary of Pisvisible by the guard at one time or another. In particular they show that given asimple
polygon P, al lines not intersecting P from which P is weakly externaly visible can be found in
O(n) time. Furthermore queries can be answered in O(log n) time after the polygon is preprocessed
in O(n) time using O(n) space. We note that external visibility from finite sets of points rather than
lines or line segments has aso received attention in the mathematics literature [BV76], [Var0]
where the results are of a combinatorial nature.

In this section we consider the question of computing the shortest line segment from which
agiven convex polygon is weakly externally visible. It is shown that, given a convex polygon P,
the minimal length line segment from which P is weakly externally visible can be found in O(n)
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Fig. 4.3 Illustrating case 1 in the proof of Lemma4.1.

rectangle induces a halfplane, namely, that which contains the rectangle in question and has its
bounding line colinear with the said edge. Another such halfplane isinduced by the highest lower
edge of some rectangle. Consider the boundary of the intersection of these two halfplanes. Now
intersect this boundary with the complement of int(E.,(F{/Fp)) U INt(Eppau(F/Fp)- Itis

straightforward to compute this structure in linear time. Furthermore, the envelopes consist of at
most two edges each reducing the problem to eight instances of the geometric optimization prob-
lem considered in section 2. Let k denote the maximal cardinality of the convex hulls of each of
the four sets of corners of the rectanglesin F. In other words, 4k is an upper bound on the combi-
natorial complexity of the space of transversalsfor F. Then we have the following theorem.

Theorem 4.4: Givenaset F = {F,F,,...,F;} of nisothetic rectanglesin R the minimal length
line segment that intersects every member of F can be computed in O(n log k) time and O(n) space.

5. Applications
5.1. Minimal Sets of External Visibility

The notion of weak visibility has also received attention in both the mathematics and com-
puter science literatures. Horn and Valentine [HV49] have characterized L-sets in terms of their
weak visibility properties while such characterizations for convex and star-shaped sets have been
obtained by Shermer and Toussaint [ST88]. Avisand Toussaint [AT81] showed that given asim-
ple polygon P and a specified edge e of P, whether P is edge-visible from e can be determined in
O(n) time. A polygon Pisedge-visible from an edge eif for every point x in P there exists a point
y in e such that the line segment xy isin P. A more difficult problem isto determine whether there
exists an edge of P from which Pisedge-visible. Clearly by applying the algorithm in [AT81] to
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designed to test whether any two segments intersect. Therefore we have the following result.

Corollary 4.2: Givenaset S={s,, s,,...,.,} consisting of n line segments, the minimal length line

segment that intersects S can be computed in O(n log n) time and O(n) space if the line segments
do not intersect.

4.4. The Case of Isothetic Rectangles

Transversals are closely related to the notion of separability [We88] through which we take
asmall detour. Let S; and S, betwo finite sets of pointsin RZ. Wesay that S; and S, arelinearly
separableif there existsaline that partitions the plane into two closed half-planes H4 and H,, such

that S; L1 H, and S, L1 H, . A point x [ RZ isalinearly separable extending (L SE) point of Sq
with respect to S, if, (1) x DSl, and (2) any line that separates Sq from S,, also separates x from
Sy. The maximal linearly separable extension of S; with respect to S,, denoted by E.,. (S1/S)),

isthe union of S; with all points of R that are linearly separable extending points of Sy with re-
spect to S,. The boundary of E, 5, (S1/S5) is an unbounded convex polygonal chain. Let S* de-

note the complement of int(me(Sllsz))D INt(Eppgu(So/Sq))- Clearly, S* isthe union of all sep-
arating lines of S and S, and its boundary is a description of all such lines (see Fig. 4.5). Thus

the cardinality of S* isthe combinatorial complexity of the space of an equivalence class of trans-
versals.

Givenaset F ={F,F,,...,F;} of nisothetic rectanglesin R2 , it isdesired to find the mini-

mal-length line segment that intersects every member of F if it exists. The problem of whether
such an F admits a common line transversal was originally investigated by Edelsbrunner [Ed85)].
Let Fi ={tq,ty,...t;} denotethe set of north-east vertices of the members of F. Similarly let Fy, =

{bq.,by,....b} denote the set of south-west vertices of the membersof F. Finaly let F| and F de-

note, respectively, the set of north-west and south-east vertices of the membersof F. See Fig. 4.6
for anillustration of these sets. Edelsbrunner showed that whether F admits acommon transversal
can be determined in O(n) time by reducing the problem to a separability question. The key ob-
servation isthat F admits acommon transversal if, and only if, either Fy and F|,, or F and F, are

linearly separable. Furthermore, the set-set-separation problem can be solved with linear pro-
gramming. Thusit sufficesto apply one of thelinear-timelinear-programming agorithmsof either
Megiddo [Me83] or Dyer [Dy84] to determine whether a separator exists. If no separator exists
for either of the two problems then we conclude F does not admit alinetransversal. If at least one
of the two problems admit a separator then we compute the respective convex hulls and critical
lines of support as in the previous sections. Here it is advantageous to compute the convex hull
with the output-size sensitive algorithm of Kirkpatrick & Seidel [KS86] in O(n log h) time where
h is the number of vertices on the convex hull. Each problem induces only a single equivalence
class of transversals and furthermore it is easy to construct its left and right envelopes in linear
time. Consider the left envelope for the sets Ft and Fp in Fig. 4.6. The leftmost right edge of a
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Fig. 4.2 lllustrating the proof of Lemma 4.1 . The end
points of the shortest transversal must lie on lines.

4.3. The Case of Non-intersecting Line Segments

It should be clear from the previous discussion that when § s,{s.,s} consists of a set of

non-intersecting line segments the left and right envelopes for each equivalence class of transver-
sals is made up of a portion of a single line segment. Therefore all the machinery used in the pre-
vious section for efficiently updating the envelopes is superfluous. Furthermore, under these re-

strictive assumptions we do not require the nested binary search algorithm for computing the con-

strained visible distance problem. Since these are the only portions of the algorithm requiring O(n

log? n) time, we have the following theorem.

Theorem 4.3: Given a set S = {ss,,...,§} consisting of n non-intersecting line segments the min-
imal length line segment that intersects S can be computed in O(n log n) time and O(n) space.

O’Rourke [O’R81] showed that given a set of data ranges (vertical line segments in sorted
order as a function of time) line-fitting between these data ranges can be done in linear time. Since
data ranges are a special case of line segments which are non-intersecting, our results imply the
following.

Corollary 4.1: Given a set S={ss,,...,§} consisting of n data-ranges in sorted order, the minimal
length line-segment fit through S can be computed in O(n) time and space.

Chazelle & Edelsbrunner [CE88] recently showed that given n line segments in the plane all
k pairwise intersections can be computed in O(n logptime and O(n k) space. By running
this algorithm and stopping as soon as the first intersection is found we can detect if S consists of
pairwise non-intersecting line segments in O(n log n) time and O(n) space. Alternately, we can use
the much simpler O(n log n) time line-sweep algorithm of Shamos and Hoey [SH76] specifically
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Fig. 4.1 lllustrating the data-structure used in the efficient updating of left and right envelopes
corresponding to the transitions between equivalence classes of transversals.

CH(l) and therefore b [J CH(I) which contradicts the assumption of Case 2.

Case 2.2.2:All pointsof | lie on one side (say to the left of the directed line through a,b) of b on
lineL,. Letb’ bethepointof | onL, closesttob and let c bethe point of | on L, furthest from b

and refer to Fig. 4.4 (b). Consider triangle [b, a, c]. Sinceall linesin L other than L, intersect L,
to the left of b, it follows that none of these lines intersect the open line segment (a, ¢). For other-
wise [a, b] would not be a transversal, contrary to the assumption of the lemma. Let a’ [ (a, ©)

denote the point such that [a’, b’] isparallel to [a, b]. By the method of construction of [a’, b’] it
followsthat it isatransversal of L and it is shorter than [a, b], acontradiction. Q.E.D.

Thislemmaallows us to transform the problem of computing the shortest transversal of a set
of lines to the problem of finding the shortest transversal of a set of line segments in O(n log n)
time. First we compute the convex hull of | in O(n log n) time with the algorithm of either Ching
& Lee[CL85] or Atallah [At86]. Then we intersect each linein L with the resulting convex poly-
gon in logarithmic time per line using the algorithm of Chazelle & Dobkin [CD80]. Although I
contains O(n?) points the CH(1) contains only O(n) points in the worst case [CL85], [At86] and
O(2) points on the average for amost any definition of a random arrangement of lines and for al-
most any distributions on the resulting parameters [DT90]. Therefore the set of line segments can
be computed in O(n log n) time. We thus have the following theorem.

Theorem 4.2: Givenaset of linesL ={L, L,,...,L } theshortest line segment that intersects every
member of L can be found in O(n log? n) time and O(n) space.
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4.2. The Shortest Transversal of an Arrangement of Lines

LetL ={L,, L,....L} denote the set of lines where each line L, is specified by an equation
Y=aX + b, for somered numbersa, b, i=1,2,...,n. Let p; denote the intersection point of L, and
L;. Theset| ={ p; | 1<i,) £n} denotesthe set of intersection points. Finally, let CH(l) denote
the convex hull of I.

Lemma 4.1: The shortest transversal of aset of linesL isidentical to the shortest transversal of
the set of line-segments which are obtained by intersecting each given line in L with the convex
hull of the intersection points determined by these lines.

Proof: The shortest transversal of L clearly has the property that its end points each belong to
somelineof L. For assume the contrary and let a and b denote its end points asillustrated in Fig.
4.2. Let a’ denote the first point of intersection of a point travelling from a to b along segment
[a,b] that it makeswith alineinL. Similarly, let b’ denote the first point of intersection of a point
travelling from b to a along segment [a,b] that it makes with alinein L. The new line segment
[a’,b’] isatransversal because it intersects al the lines that [a,b] does and it is shorter than [a,b]
which is a contradiction. The same argument shows that the shortest transversal of a set of line
segments must have each of its end points on some line segment. Furthermore, by the method of
construction of the line segments from L, these must al liein CH(l). Hence the statement of the
lemma implies that the end points of the shortest transversal for L must liein CH(l). Conversely,
if the shortest transversal for L liesin CH(l) then we need not examine the portions of linesin L
lying outside CH(l). Therefore let [a,b] be the shortest transversal of L and assume that a and b
do not both liein CH(I1). We will look for a contradiction. Two cases arise.

Case 1:Bothaand b [J CH(l). Neither anor b may lie on points of | or they would liein CH(l).
Therefore, without loss of generality let alieinlineL, and let b lie on line L;. These two lines

intersect at P; and this point together with a and b determine atriangle illustrated in Fig. 4.3. Let
a and b each travel towards p; on their respective lines L, and L, such that the resulting line seg-
ment remains parallel to [a,b] until the line segment intersects an intersection point of | on either
L;orL, Without loss of generality assume a’ [ L, is such apoint and let b’ [] L, be the other

endpoint of the resulting line segment. By the method of construction of [a’,b’] it follows that it
must be atransversal and its length is shorter than that of [a,b], which is a contradiction.

Case 2:a ] CH(l) and b 1 CH(l). Therefore b cannot lie on an intersection point of |. We thus
have two sub-cases.

Case 2.1:Pointa [ 1. Inthiscase both aand b each lie on distinct and unique linesin L and a
similar argument to that used in case 1 leads to a contradiction.

Case 2.2:Pointa [J 1. LetalieinlinesL; and L, andlet b lieonlineL, and refer to Fig. 4.4.
Two sub-cases arize depending on whether or not points of | lie on both sidesof b onlineL,.

Case 2.2.1:Pointsof | lieon both sidesof bonlineL,. Letc [l lieononesideof bandd [
lie on the other side of b on line L, and refer to Fig. 4.4 (a). By convexity triangle [a, c, d] [
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describe the algorithm for the case of |eft envelopes only.

We describefirst an O(n log n) time algorithm for computing the left envelope of Sfor region
R,. Thedata structure created in this stage will allow the computation of the left envelope for R,

by affording insertions and deletions which take O(log? n) time per update.

Let L, bealine transversal that is a member of the equivalence class corresponding to R;.
Let Gi be the angle of the line segment s directed from b(s,L ) to a(s,L,,) with the positive x-di-

rection. First we sort al theline ssgmentsin S according to increasing values of 6. Then we apply
adivide-and-conquer strategy to this sorted list. The merging step involvesintersecting two coun-
terclockwise directed convex chains that have the special property that the angles of their directed
edges with respect to the positive x-direction of one chain are all greater than (or all less than) that
of the other chain. Asaresult thesetwo chains, if they intersect, do so at most once. Whether these
two chainsintersect can be determined in logarithmic time by applying the hierarchical techniques
developed in [DK83]. If the chains do not intersect then we need only keep the leftmost of the two
chains. We can determine which chain is the leftmost chain by intersecting both chains with the
witness transversal L, in logarithmic time using the algorithm of Chazelle & Dobkin [CD80]. If

the chains do intersect we can find the intersection point in logarithmic time by again applying the
techniquesin [DK83]. Hence O(n log n) timeis sufficient to compute the left envelope of R,.

This algorithm creates a balanced tree [AHU83] with the leaves containing the directed line
segments in sorted order by angle as illustrated in Fig. 4.1. An internal node represents the left
envelope of the line segmentsinits subtree. Notethat if we were to store the left envelope explic-
itly in each node the total storage space requirement for this tree would be O(n log n). However,
space requirements can be reduced to O(n) by storing at each internal node only that part of the
chain which is not present in the left envelope of its parent node with methods such as those dis-
cussed in [OV81]. Theroot node contains the left envelope of Sfor region R;.

We now see what happens when the end points of a line segment s switch to create a new

equivalence class. First we delete the directed line segment s, with angle Gi from the tree. This

operation will require O(log n) time to update the information stored at each node along the path
from the root nodeto theleaf containing s by merging at each node the chain with the missing edge

with its brother to create a new parent. Since the depth of this tree is O(log n) this step must be
done O(log n) times. Thusthe deletion step requires O(log? n) time. Wetheninsert adirected line
segment with angle 8.+180° (modulo 360°). This step also requires updating left envelopes of

O(log n) nodes leading to atotal time of O(log? n). According to Lemma 3.2 there are at most n
switches. We have therefore established the following theorem.

Theorem 4.1: Algorithm SHORTEST-TRANSVERSAL finds the minimal length line segment that
intersects a given set of n line segmentsin O(n log? n) time and O(n) space.
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Algorithm SHORTEST-TRANSVERSAL

Input: Aset S={s,s,....s} of line segments iR2 given as pairs of end points with their asso-
ciated cartesian coordinates.

Output: The line segment of minimum length that intersects every member of S or the conclusion
that S does not admit a transversal of any length.

Begin:
Step 1: Transform each line segment of S into a double wedge in the dual plane.

Step 2:  Compute the intersectid®, of R, R, ,..., R of the double wedges.
Step 3:  If the intersection is empigxit with “there exists no transversal.”
Step 4. For each convex region; R R, i=1,2,...,k do the following:

(@) Compute the left envelope, the right envelope, the convex hull of the upper
end points of S, and the convex hull of the lower end points of S.

(b) Compute the critical lines of support between the two convex hulls and con-
catenate their relevant portions with the envelopes and convex hull bound-
aries to form &ite-shapedgolygon.

(©) Determine the minimum visible distance between the left and right chains
of the kite-shaped polygon.

Step 5:  Select the smallest minimum distance encountered in Step éimwdth the
line segment that determines this distance as the shortest transversal of S.

end

Steps 1-3 of AlgorithnBHORTEST-TRANSVERSAAN be computed in O(n log n) time
with the algorithm of Edelsbrunner et al. [EMPRWW82]. In order to implement Step 4 efficiently
we must be able to avoid recomputing the left envelope, the right envelope, the convex hull of the
upper end points of S, and the convex hull of the lower end points of S from scratch for every region

R, UR,i=1,2,....k. Actually, for each i=1,2,....k the lower hull of the top convex hull and the upper
hull of the bottom convex hull can be obtained from the boundary informatiopioftiie dual
plane in time proportional to the cardinality of the boundary, offRerefore all the upper and low-

er relevant subchains of the top and bottom convex hulls can be obtained in O(n) tikei®nce
computed in Step 2. The critical support lines between the pair of convex hulls corresponding to
each region Rcan be found with the “rotating-calipers” [To83] also in time proportional to the car-

dinality of the boundary of Rr even in logarithmic time if desired [Ro85]. Therefore all the lower
and upper chains of the kite-shaped polygons corresponding to ta@ Be computed in linear

time after Step 2 is executed. Thus we concentrate on computing efficiently the left and right en-
velopes correponding ta Rom the left and right envelopes of R Without loss of generality we
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by

CH(B(S.L))

Fig. 3.4 lllustrating the left envelope (14,15.13,1 ), theright envelope (r4,r5,r3), thetop

convex hull CH(A(S,L)), the bottom convex hull CH(B(S,L)), and the relevant kite-
shaped polygon induced by these four polygonal chains (shaded).

4. Algorithmsfor Computing Shortest Transversals
4.1. The General Case

First we give a high-level outline of the algorithm for computing the shortest transversal of a
given set of line segments.
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Lemma 3.3: The end points of the shortest transversal sfor agiven equivalence class of transver-
salsmust lie on the left and right envel opes of that equivalence class and s cannot intersect the in-
terior of CH(A(S,L)) and CH(B(S,L)).

Let L, denote the critical line of support separating CH(A(S,L)) and CH(B(S,L)) with extre-
mal clockwiserotation and let a_ and b. denote the tangent verticesof CH(A(S,L)) and CH(B(SL)),
respectively, that arefurthest apart (see Fig. 3.4). Similarly, let L, denotethecritical line of support
separating CH(A(S,L)) and CH(B(S,L)) with extremal counter-clockwise rotation and let a, and b,
denote the tangent vertices of CH(A(S,L)) and CH(B(S,L)), respectively, that are furthest apart.
Let bd denote the boundary of a set and let bd(CH(A(S,L))) be specified by its vertices listed in
counter-clockwise order. Then in lemma 3.3 we need only concern ourselves with those portions
of CH(A(S,L)) and CH(B(S,L)) determined by their critical support lines. More specificaly, we
are only concerned with the convex polygonal chains[a.,...,a] from bd(CH(A(S,L))) and [b.....,.b]
from bd(CH(B(S,L))). Infact, the region of interest is a kite-shaped polygon obtained by concat-
enating the left and right envelopes and the chains [a,,...,a] and [b,,...,b] with the portions of the
critical support lines that connect the upper and lower chains with the envelopes. For example, in
Fig. 3.4, the relevant kite-shaped polygon (shaded) isgivenby [rq, 1o, rgl U [rg, a] U [a ..., a]

Ola, 14 O 11513, 14 Ul bl U b ..., b ] U [b, rq], where the four convex verticesin
question arerq, rg, 14, and 1. We have thus transformed the problem of computing the shortest

transversal for a given equivalence class of transversals into the problem of computing the mini-
mum visible distance between two opposite concave chains of a kite-shaped polygon that iseasily
obtained from the available information.

Lemma 3.4: Given asimple polygon of n vertices known to be kite-shaped, with its four convex
vertices available in order, the minimum visi-

ble distance between apair of opposite concave
chains can be computed in O(log? n) time.

The proof istoo lengthy to reproduce here and
formsthe topic of acompanion paper [BET91].
Here we provide only the basic idea. The ap-
proach isto first disregard the upper and lower
chainsin computing the minimum distance be-
tween the left and right chains. If this uncon-
strained solution yields a line segment (repre-
senting the distance) that does not intersect the
upper or lower chains then it is the final solu-
tion. If it doesintersect the upper (lower) chain
then the final solution is tangent to the upper

a (lower) chain and can be found by an analogous
Fig. 3.3 Illustrating a kite-shaped ggt more sophisticated prune-and-search meth-

polygon.
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computing. Let L_bethetransversal which containss. Clearly L and L are members of the same
equivalence class. In what follows it will be useful to define anew class of polygons as follows.

Definition: A simple polygon P is a kite (kite-shaped) provided that it contains only four convex
vertices labelled a,b,c,d in order and such that the diagonals [a,c] and [b,d] lie in the polygon (see
Fig. 3.3).

Definition: A linesegment s isleft (/right) of another IinesegmentsJ , With respect to atransversal
L, if theintersection of s with L liesto the left (/right) of the intersection of S with L.

Definition: The left-envelope of S with respect to an equivalence class of transversalsis defined
asthe union of al points p such that p isthe leftmost intersection point of aline segment in Swith
some transversal belonging to the equivalence class.

Theright-envelope of Sisdefined inasimilar manner. Figure 3.4 illustratesthe left and right
envelopes for an equivalence class of transversals for a set of line segments. It is straightforward
to verify that these envelopes are convex polygonal chains composed of a concatenation of por-
tions of the line segmentsof S. Let CH(A(S,L)) and CH(A(S,L)) denote, respectively, the convex
hulls of the sets A(S,L) and B(S,L). We shall refer to these as the top and bottom convex hull, re-
spectively. Then the following lemmais easily established and stated without proof.

Fig. 3.2 lllustrating the convex regions (in the dual plane) of the intersection of five
double wedges induced by five line segments in the primal plane. The convex regions
are shaded and the solid dots mark the centers of the double wedges.
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Proof: It has been shown in [EMPRWW82] that the intersection of the n double wedges consists
of at most n+1 convex polygons monotonic in the x-direction. Every point in thisintersection cor-
responds to atransversal for S. From property (f) above it follows that there is a one-to-one cor-
respondence between the convex polygons and the equivalence classes of transversals. Q.E.D.

Let R and R, , betwo adjacent convex regionsin theintersection of the double wedges. Then
there are only two structural possibilities[EMPRWW8Z] for their location: () R, and R, sharea
vertex whichisacenter of some doublewedgeor (b) R, andR,,, aredigoint. LetL(R)andL(R,,,)
be two representative transversals corresponding to pointsin R and R, ,, respectively. When R

and R, share a center of a double wedge of some line segment, say s, , then A(SL(R,,)) =

{AGSLR)) - as,LR)} O {bs,L(R)} and BSL(R,y) = {B(SL(R)) - b(s,L(R))} O
{a(s,L(R))}. Thissuggests that we may be able to compute A(SL(R,,,)) and B(SL(R,,)) from
A(SL(R)) and B(SL(R))), respectively, in an efficient manner. In addition, when R and R, are
disioint, the line segments whose end points switch sides from above (/below) of L(R)) to below (/
above) of L(R,,,) are precisely those whose corresponding double wedge centers lie between re-
gionsR and R, ;. Furthermore, oncethe end points of aline segment have switched sidesthey will

never switch sides again. We therefore have the following straightforward lemma which we state
without proof.

Lemma 3.2: Asone traverses the arrangement determined by the n double wedgesin the positive
x-direction the number of end-point switches that occursis at most n.

It isasimple matter to determine in linear time the shortest line segment that intersects a set
of line segments S if we demand that it be parallel with agiven transversal L of S. We thus con-
centrate now on the next most difficult problem: that of computing the shortest transversal from
amongst a single equivalence class of transversals. Accordingly, let L be atransversal belonging
to such aclass and let s be the shortest line segment of the equivalence class we are interested in

[ LA LER RN TIT] g

T X | — m
1 2 3 -3 -1

Fig. 3.1 A line segment s in the primal plane and its
transformed double-wedge (shaded) in the dual plane.
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through point p such that either the perimeter or the area of triangle OHK is minimized are in fact
classical fundamental problemsthat have simpler and more elegant solutions[La59] than our prob-
lem considered here and have been applied successfully to several interesting problemsin compu-
tational geometry [CY84], [DA84], [KL85], [OAMBS86]. Finaly, we remark that Lemma 2.2
holds for the more general case when OQ and OR are themselves diverging convex chains. This
more general version of the lemmawill be used in subsequent sections.

3. Geometric Preliminariesfor Computing Shortest Transversals

Let S={s,s,,...,S} denotethe given set of line segmentsin R2 (termed the primal plane).
Wefirst describe briefly the technique of Edelsbrunner et al. [EM PRWW82] to construct adescrip-
tion of al infinite length transversals admitted by S. Each endpoint (x,y) of aline segmentin Sin
the primal planeistransformed to theline b=xm+y in the dual plane and each liney=kx+distrans-
formed into apoint (-k,d). Thuseach line segment in the primal planeistransformed to adouble
wedge in the dual plane asillustrated in Fig. 3.1. Furthermore, a point in the double wedge in the
dua plane represents a transversal of the corresponding line segment in the primal plane. In this
way the problem of determining a description of al transversalsin the primal planeis converted to
the problem of intersecting a set of double wedgesin the dual plane. The following properties are
shown in [EMPRWW82] and illustrated in Fig. 3.2.

@ the intersection of the double wedges consists of at most n+1 convex regions,

(b) the cardinality of the intersection is at most 8n+8,

(© the intersection region is monotonic in the x-direction,

(d) apoint in the intersection region corresponds to a transversal for S,

(e vertical lines through the centers of the double wedges do not intersect the interior

of the intersection region.

) the end points, of line segments of S, which lie above atransversal L in the primal
plane are precisely those whose corresponding dual linesintersect the vertical half-
lines emanating from the dual point of L in the positive direction.

Let L beatransversal of Sand assumeitisnot vertical. Leta(s,L) and b(s,L) denote the end
points of line segment s, that lie above and below, respectively, of thetransversal L. Let A(S.L) =
{a(s; L), a(s,L),..., a(s,,L)} denotethe set of end points of Sthat lieabovelL. Similarly let B(SL)
={b(s L), b(s,L),..., b(s,,L)} denote the set of end points of Sthat lie below L.

Definition: TwotransversalsL, and L, arecalled equivalentif A(SL,) =A(S.L,). All transversals
that are pairwise equivalent form an equivalence class of transversals.

Lemma3d.l: A setof linesegmentsS={s,, s,,...,S,} admitsat most n+1 distinct equivaence class-
es of transversals.
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Fig. 2.5: lllustrating the proof of lemma 2.2: cas&(&a’) is de-
creasing ab = 0;.

Subcase 2.2.1: p Lint(AOHK)

Let HK* be cc’ making angl® = 83 with OR. By the unimodality d{HK(q,0)) from lem-
ma 2.1 it follows thal(cc’) <I(bb’) and I(HK(q,0)) increases continually &varies fromf5 past
0, and on td =Tt This implies thal(HK(P,0)) reaches its minimum value @t 6, when HK
= bb" and that HK({) for 6 = 8, + €, € >0, is an instance dfase 1. Thus in this subcase
I(HK(P0)) continually increases fd, < 6 < TtandI(bb’) is the minimum of(HK(P,9)) in the
interval <O <TL

Subcase 2.2.2: p Lint(AOHK)

Let HK* be dd’ making angl€ = 6, with OR. By the unimodality d{HK(q,0)) from lem-
ma 2.1 it follows thak(dd’) <I(bb’) and I(HK(q,0)) decreases continually Bsvaries fromb, to
0,. Thereford(HK(P,0)) continues to decrease @waries fromB, about p td, about q.

Thus we have shown that for a starting vertex p of P and correspondin@gﬁW(P,G))
either continuously increases, or first decreases and then increBsexias fronﬁl toTL Since

this holds for any p and any corresponding aﬂqlehe statement of the lemma follows. Q.E.D.

We remark in closing this section that the related problems of finding the line segment HK



Fig. 2.4: lllustrating the proof of lemma 2.2: casé(da’) is in-
creasing ab = 0;.

< 92 or it first decreases to a minimal length and then increases. In either case it follows from lem-
ma 2.1 that(HK(q,0)) continues to increase fdd, <8 < 85, wheref5 is eitherrtor the angle

determined by HK(qreg), as the case may be, where r is the vertex of P adjacent to q in a counter-

clockwise order abolid(P). Similar arguments apply to succeeding vertices of P. Therefore we
conclude that if(HK(P,0)) is increasing & it continues to increase fol; <0 <TL

Case2: I(aa’) is decreasing &=0,. (Fig. 2.5)

Let p, g, aa’, and bb’ be as@ase 1. Consider HK(®) for 6, <8< 6,. From the uni-
modality ofl[(HK(p,0)) by lemma 2.1 it follows that we have two subcases.
Subcase 2.1: 1(HK(p,0)) decreases continually until it reaches a minimal lehgth(HK(p,0%))
at 6 = 6* and subsequently increases continually @r<8 < 0. In this subcase fd@* <0 <
0, we have an instance Ghse 1 and|(HK(P,0)) will continue to increase fd > 6,. Note that
in this subcask is in fact the minimum of(HK(P,8)) in the entire intervap< 0 < Tt

Subcase 2.2: 1(HK(p,0)) decreases continually in the inten} <6 < B,. Construct HK(cf)

such thatl(HK(q,0)) is the minimum overp< 8 < Tt Denote such an HK by HK*. Two cases
arise depending on whether or not p lies in the interidx@ifiK.



o

R

O

Fig. 2.3: Let P be a convex polygon contained in QOR. Let H slide along OQ and
K slide along OR. Then, &increases fron@ to Tt with the constraint that HK
remain tangent P , the length of HK isramodal function of.

then HK may traverse the interior of P. Similarly, HK@qgenotes such a line segment con-
strained to be colinear with line segment pg. Let HBY®lenote the line segment HK as above
such that HK is tangent to polygon P and P is containA®DidK. Finally, letl(HK(.)) denote the
length of the line segment HR(

Lemma 2.2: For@< 0 < 1twe have that(HK (P 9)) is aunimodal function of®.

Proof: Consider any fixed position for HK@, We will show that(HK (P 9)) is either contin-
ually increasing as a function Bfor it is first continually decreasing to a minimal lentjthat-
tained at some angf@, and subsequently continually increasing @b 6*. Therefore let the
starting position of HK(F) be HK(pBl) = aa’ and refer to Fig. 2.4. We have two cases: either

I(a&’) is increasing & = 6, or it is decreasing.
Casel: I(aa) is increasing & = 0,. (Fig. 2.4)

Let g be the vertex of P adjacent to p in counter-clockwise order bRt Construct
HK(q,Gl) =cc’and HK(quZ) =bb’. Since cc’is parallel to aa’ and closer to O than aa’, it follows
thatl(cc’) < I(aa’). Sincd(aa’) is increasing & = 6, andl(aa’) =I(HK(p,0,)) is unimodal by

lemma 2.1, we have thiaa’) < I(bb’). Thereford(cc’) < I(bb’). Now consider HK(d}) asO
varies fromB; to 6,. From lemma 2.1 it follows th&HK(q,8)) is unimodal and therefore we

must have two possible situations. EithetK(q,0)) continually increases in the inten| <0



< 0 is for either all three roots to be positive or one to be positive and the other two negative. In
addition since I 0 we must haver, + rr; + r;r; <0. Thus consider the case in which all three

roots are positive. This impliegy + r,r; + r;r; > 0, a contradiction. It follows that one root must

be positive and the other two negative. We can in a similar way show that when only one root of
(2) is real that root has to be a positive one. For assume that we have, as before,

3% ax + bx + ¢ = 0 with a,b,& 0,

and that we have two complex roots and one real. ;Lige the real root. Then we can rewrite this
equation as

&x2 +ex +f)=0.

For there to be two complex roots we must hefdfe< 0, which implies in turn that> 0.

Since c:-if <0 and > 0 it follows that 1 > 0.

We conclude from the above discussion that we need only be concerned with the positive root. Let
X =r be the positive root of (2). We now show tlfg} attains a minimum value at x =r. We do
this by demonstrating that the second derivativéxyfvaluated at x = r must be greater than zero.

Let A = x3-2ux?+(u?-au)x-af3%. Thenl’(x) = (3 2 452 Y12 (x.u)2 A, It is sufficient to show that
dA/dx >0 atx=r.

We see that dA/dx = 3»% - 4ux + u? -au 4)

Evaluating (4) at x = r we obtai
dA/dx(r) = 3 - 4ur + u? - au
=f2r2ur) + (2 - 2ur + (U? - au))
= 2r2ur) + af3%/r , since $-2ur?+(u®-au)r-ap? = 0.

= 2ufy-—+ aPr . ()

Since all terms in (5) are positive and u, dA/dx at x = r> 0, and(x) attains its minimum value
at x = r. Since this minimum is the only local minimum in the region of interest, unimodality in
the region of interest follows. Q.E.D.

In order to obtain efficient algorithms for our problems we actually need a more general result
than that provided by lemma 2.1. We need an analogous unimodality result for the case when point
p is actually a convex polygon P and the line segment HK is constrained to remain tangential to P
as0 increases fronpto Ttas illustrated in Fig. 2.3. Accordingly, let HK@),denote the line seg-
ment HK with end point H on OQ and endpoint K on OR such that HK traverses point p and makes
an angled with respect to OR as an axis of reference (see Fig. 2.3). Note that if p is a vertex of P



Fig. 2.2: lllustrating the proof of lemma 2.1. O
represents the origin and x=u+u’.

Since x> u it follows that I'(x) = 0 implies that
32ux?+(u?-au)x-af? = 0 (2)

Rewriting (2) in standard form we have that
S ad+bx+c=0

where a=-2<0; b =u(u-a) <0, sincea>u, and c = af3? <O0.

Letr,, r,, and g be the roots of (2). We assume thaty, and g are all real. Then we can
write

3+ ax + bx + ¢ = (X-F)(X-T) (X-53) - (3)

We now show that we need only examine one root in more detail. Since a, b, and c, are all less
than zero we argue that precisely one of the roots must be greater than zero and the other two must
be less than zero. We start by rewriting (3) as follows:

— 2 —
R+ a8+ X +C=R- (r+ 1yt 1)X2 + ([ + g + 1l )X - l,r, = 0

where a = - (#+ r,+ 15), b = (gr, + r,ry + r5ry) and ¢ = - yrory . Now ¢< 0 and the only way ir.,r4



Fig. 2.1: lllustrating the fundamental geomet-
ric minimization problem.

In order to simplify analysis it is convenient to break up the problem into two cases depend-
ing on whethetpis greater thami'2 or not, and to parameterize the problem not as a functidn of
as in Fig. 2.1, but rather as a function otixef as in Fig. 2.2. It is straightforward to demostrate
that unimodality under the first parameterization implies unimodality under the second. Further-

more, we restrict our analysis to the more difficult casp gfeater thamv2. The analysis foxp
less than or equal ®2 is similar and less involved. Accordingly, leogB) be the point in the
interior of the cone in question. Th@$> 0. H’p has lengtla and is parallel to OK. K’p is parallel

to OH. Letl(x) denote the length of line segment HK as a function of x. We then have the follow-
ing lemma.

Lemma2.1: Forx>u>0,l(x) is aunimodal function.

Proof: Without loss of generality we assume tbla® 0. For otherwise we may construct a sym-
metrical diagram wher represents the perpendicular drop from p to OH rather than OK. First
we determine the value of x such that HK is a minimum.

SinceApHH’ andApK’K are similar it follows that pHi = pK/(x-u) and thus, (pH+pK)/pK
= 1+a/(x-u). Since(X)=pH+pK we can writé(x) as follows:

1) = (B2 + %2 Y2 (1 +al(x-U) . (1)
Differentiating (1) with respect to x we obtain,

'(x) = (B2 + x2 )12 (x-u) 2 [x3-2ux2+(u2-au)x-aB?] .



erations as their intersection, common tangents, etc. O(n log n) time is sufficient for the special
cases of unsorted vertical line segments [O’R81], for line segments with arbitrary directions
[EMPRWW82], for a set of n translates of a simple object in the plane [Ed85] and for n circles of
equal radius [BL83]. Given a familg of n convex cones, determining whetkeadmits a com-

mon transversal can be accomplished in O(n lagm)) time, whereX(n) is the extremely slowly
growing inverse Ackermann’s function, with the technique of Atallah and Bajaj [AB87]. This re-
sult can now be improved however with the O(n log n) time algorithm of Hershberger [He89] for
finding the upper envelope of n line segments. If on the other hand each &oiseaiimaximal
unobstructed external-visibility cone anchored at a vertex of a simple polygon then this additional
structure can be exploited to determine if a common transversal exists in O(n) time [BKT89]. Fi-
nally we mention that high dimensional transversal problems have been recently investigated by
Avis & Doskas [AD90] and [Ro88].

In this paper we investigate the hitherto unexplored problem of computidgpiitest trans-
versals when they exist. We present an O(Ahddime and O(n) space algorithm for computing
the shortest transversal of a set of n given line segments or lines in the plane. The length of such
a transversal can be viewed as a measure @iittiheof anarrangement. If the line segments do
not intersect the algorithm can be trimmed to run in O(n log n) time. Furthermore, in conjunction
with convex hull and linear programming components the algorithm will also find the shortest line
segment that intersects a set of n isothetic rectangles in O(n log k) time, where k is the combinato-
rial complexity of the space of transversals arsl4n. These results find application in: (1) line-
fitting between a set of n data ranges where it is desired to obtain the dhwtafstit, (2) finding
the shortest line segment from which a convex n-vertex polygon is weakly externally visible, and
(3) determining the shortebhe-of-sight between two edges of a simple n-vertex polygon, for
which O(n) time algorithms are also given All the algorithms are based on the solution to a fun-
damental geometric minimization problem that is of independent interest and should find applica-
tion in several different contexts.

2. A Fundamental Geometric Optimization Problem

The foundation of our algorithm consists of a geometric minimization problem that, surpris-
ingly, appears not to have been investigated by geometers in the past. Let OQ and OR denote two
infinite half rays emanating at O and subtending an apge OR is rotated about O in a counter-
clockwise direction until it coincides with OQ, and refer to Fig. 2.1. Note that Q and R are marked
for convenience but should be interepreted as lying at infinity. Thus ROQ denotes an unbounded
cone. Let p be any pointin the interior of this cone. We would like to find the shortest line segment
[H,K] such that H lies on OQ and K lies on OR and p lies on [H,K]. In other words we require the
shortest straight-line path that will connect OQ with OR with the constraint that the path traverse
the point p. In actual fact we require more than that in order to design our algoriththbe tte
angle subtended by RKH as in Fig. 2.1 and tkinote the length of line segment [H,K]. L&)
denotd as a function o where=0, <0< 0, <TL We require thd(B) be aunimodal function

of O for the interval of interest. We conjecture the stronger resuli{8as in fact aconvex func-
tion but we leave this as an open problem.
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ABSTRACT

We present an @(og? n) time and Of) space algorithm for computing the shortest
line segment that intersects a sehgfiven line segments or lines in the plane. If
the line segments do not intersect the algorithm may be trimmed to run lagO(

n) time. Furthermore, in combination with linear programming the algorithm will
also find the shortest line segment that intersects a seisothetic rectangles in

the plane in Qflog k) time, wherek is the combinatorial complexity of the space

of transversals arki< 4n. These results find application in: (1) line-fitting between

a set oh data ranges where it is desired to obtain the shainesif-fit, (2) finding

the shortest line segment from which a conweertex polygon is weakly external-

ly visible, and (3) determining the shortBee-of-sight between two edges of a sim-

ple n-vertex polygon, for which @i time algorithms are also given. All the algo-
rithms are based on the solution to a new fundamental geometric optimization prob-
lem that is of independent interest and should find application in different contexts
as well.

1. Introduction

Common transversals for families of convex sets have been investigated for some time in
both the mathematics [Gr58], [Le80] and computer science [AB87], [AW87], [AW88], [Ed85],
[We88] literatures. In the computer science literature the more aggressivadioen is tradi-
tionally used for transversal. Transversals in the plane find application in several areas including
line-fitting [O’'R81] and updating triangulations [ET85]. Edelsbrunner, Overmars and Wood
[EOWS8L1] developed a method for solving planar visibility problems that yields a procedure for
computing transversals for F, a family of simple objects, irf @@n) time, where n is the cardi-
nality of F. By simple objects it is meant those objects that have an O(1) storage description each
and which are such that, for every pair of objects, constant time suffices to compute such basic op-



