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tion L of lines inR 3 there are many possible ways of defining the girth ofL.  One possibility is the
circumference of the smallest disc that intersects every member ofL.  It is an open problem to de-
termine the complexity of computing such a disc.

Finally we mention thesofa problem [Wa76].  The traditional sofa problem asks for, given a
right-angled corridor, what is the rigid object (sofa) of largest area that can be moved around the
corner. This problem remains unsolved although upper and lower bounds are known.   In case the
sofa is a line segment (ladder) the solution is given by Niven [Ni81].  It is not difficult to see that
the longest ladder that can be passed around the corner is equivalent to the shortest line segment in
the corridor that will connect the outer walls while remaining in contact with point q, the vertex of
the inner walls.  Therefore lemma 2.1 generalizes the result of Niven [Ni81] to handle corridors
which need not be right-angled nor have parallel walls.
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them.  The algorithm in [AGT86] for determining partial visibility between two edges in P com-
putes the “internal convex hulls” between the end points of the edges to create an “hourglass” poly-
gon if in fact the edges are partially visible thus leading to a situation similar to that encountered
in section 2 where we have two instances of the geometric minimization.  Therefore, combining
the results of section 2 with those in [AGT86] we obtain the following.

Theorem 5.2:  Given two edgese1 ande2 in a simple n-vertex polygon P, theshortest line-of-sight

between them, if one exists, can be computed in O(n) time and space.

6.  Concluding Remarks

In this paper it was shown that given a set of linesL = {L 1, L2,...,Ln} the girth of L, or the

shortest line segment that intersects every member ofL, can be found in O(n log2 n) time and O(n)
space.  This was established by proving that the shortest transversal of a set of linesL is identical
to the shortest transversal of a set of line-segmentsS which are obtained by intersecting each given
line in L with the convex hull of the intersection points determined by these lines.  An O(n log2 n)
time algorithm for arbitrary line segments is subsequently used onS.  Note however thatS is not
an arbitrary set of line segments as it exhibits the property that all the end points of all the line seg-
ments lie on the boundary of a convex polygon.  It may be the case that exploiting this information
will yield an O(n log n) time algorithm for computing the girth of an arrangement.  Given a collec-

Fig. 5.1:  Illustrating the internal cone of support of
vertex pi of a convex polygon P.
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Let L*(P) be the shortest line segment from which P is weakly externally visible.

Lemma 5.3: L*(P) has one of its end points on one of the bounding rays of Win(ei) and the other

on the other bounding ray for some value of i.

Lemma 5.4: L*(P) is tangent to P.

Definition: Let pi be a vertex of P.  The  internal cone of support at pi, denoted by i-cone(pi), is

the wedge determined by HL(pi-1,pi) ∩ HL(pi,pi+1).

Lemma 5.5: A line segment L=[a,b] lying in i-cone(pi), tangent to P, from which P is weakly vis-

ible must be tangent to a vertex pj such that pj is an antipodal vertex of pi.

Proof: If L does not intersect ray(pi,pi-1) then edge [pi-1,pi] of P is not visible from L.  Similarly,

if L does not intersect ray(pi,pi+1) then edge [pi,pi+1] of P is not visible from L. Therefore L must

have one endpoint on ray(pi,pi-1) and the other on ray(pi,pi+1).  Now assume that pj is not an an-

tipodal vertex of pi.  Let pk(i-1,i) denote the vertex of P determined by a tangent line parallel to

ray(pi,pi-1) and antipodal to pi-1 and pi.  Similarly,  Let pk(i,i+1) denote the vertex of P determined

by a tangent line parallel to ray(pi,pi+1) and antipodal to pi+1 and pi.  Clearly, as we rotate a line

of support in a counterclockwise manner starting at pk(i-1,i) and ending at pk(i,i+1)  we visit the

polygonal chain C[pk(i-1,i), pk(i-1,i)+1,...,pk(i,i+1)-1, pk(i,i+1)] which has the property that all its

vertices are antipodal to pi.  Furthermore if pj is not antipodal to pi then L must have an unoriented

direction that lies in the wedge determined by the internal angle of P at vertex pi.  This implies that

one endpoint of L must lie in int(i-cone(pi)), which is a contradiction.  Q.E.D.

Lemma 5.6: The antipodal chains of two consecutive cones intersect only at their end points.

The above lemmas combined with the results of section 2 lead straightforwardly to the fol-
lowing theorem the details of which are left to the reader.

Theorem 5.1: Given a convex n-gon P, the shortest line segment L*(P) from which P is weakly
externally visible can be found in O(n) time.

5.2.  Shortest Lines of Sight

One of the most recurring themes in many computer applications such as graphics, automated
cartography, robotics and image processing is the notion of visibility relations between elements
such as vertices or edges in a simple polygon.  One such class of problems is concerned with com-
puting edge-to-edge visibility relations.  Given two edges e1 and e2 of a simple n-vertex polygon

P, there exist four natural types of visibility all of which can be determined in O(n) time [AGT86].
A line-of-sight between e1 and e2 is a line segment [a,b] such that a ∈ e1 and b ∈ e2 and [a,b] ∈
P.  Two edges e1 and e2 of P are said to be partially-visible if they admit a line-of-sight between
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If a half-plane contains the interior of P it will be referred to as an interior half plane. Denote the
infinite half-ray starting at a point x and traversing a second point y by ray(x,y).  Let L=[a,b] (also
just plain L) denote a line segment with end points a,b.  For a vertex pi of P the lines through ei-1
and ei partition the plane into four wedges.  Let Win(pi) be the wedge containing P.  We begin by

presenting several easy lemmas that we state without proof.

Lemma 5.1: P is weakly externally visible from  L[a,b] if, and only if, for i=1,2,...,n we have that
HR(ei) ∩ L[a,b] ≠ ∅.

Lemma 5.2: P is weakly externally visible from  L[a,b] if, and only if, there exists a tangent ray of
support to P from a and b, ray(a,P) and ray(b,P) such that the following three conditions hold: (i)
ray(a,P) and ray(b,P) intersect at some point x, (ii) x is a vertex of P, and (iii) P is contained in
∆abx.

Fig. 4.6   Illustrating one of the two possible regions (shaded) in which all line transversals of
a set of isothetic rectangles must lie.  The sets Ft and Fb are shown in white and black filled

circles, respectively. Heavy lines indicate the left and right envelopes.
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time.  The algorithm follows from the results presented in section 2 and a few straightforward lem-
mas that we mention here without proofs.

For any integer n ≥ 3, we define a polygon in the Euclidean plane E2 as the figure P = [x1,x2,...,xn]

formed by n points x1,x2,...,xn  in E2 and n line segments [xi,xi+1], i=1,2,...,n-1, and [xn,x1].  The

points xi are called the vertices of the polygon and the line segments are termed its edges.  We as-

sume the vertices of P are in general position, i.e., no three vertices are colinear and that the poly-
gon is in standard form, i.e., the vertices appear in counterclockwise order as their index increases.
A polygonal sub-chain of P will be denoted by C[xi,xi+1,...,xj-1,xj].  Therefore C[x1,x2,...,xn] cor-

responds to P with the segment [xn,x1] removed.  A polygon P is called a simple polygon provided

that no point of the plane belongs to more than two edges of P and the only points of the plane that
belong to precisely two edges are the vertices of P.

A simple polygon has a well defined interior (denoted by int(P)) and exterior (denoted by
ext(P)). We will follow the convention of including  the interior of a polygon when referring to P.

Let P be a convex polygon.  Denote the closed half-plane to the left of a directed line deter-
mined by two ordered points x,y by HL(x,y).  The corresponding closed half-plane to the right of
a directed line determined by two ordered points x,y is denoted by HR(x,y). It is also convenient
to denote the edge [pi,pi+1] of P by ei.  Thus HR(ei) is the outer half plane determined by edge ei.

Fig. 4.5   Illustrating the maximal linearly separable extension (shaded re-
gion) of one convex polygon S1with respect to another S2.
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each edge in turn the latter problem can be solved in O(n2) time.  Sack and Suri [SS86] discovered
a linear-time algorithm for determining all (if any) such edges of a given polygon.  Recently Yan
Ke [Ke88] considered the problem of detecting the weak visibility of a simple polygon from an
internal line segment.  He presents an O(n log n) time algorithm that tests if a polygon is weakly
visible from some internal line segment and reports such a line segment if it exists.  He also ad-
dresses the query version of this problem: given a query line segment in P, is P weakly visible from
it?  He shows that this question can be answered in O(log n) time after the polygon is preprocessed
in O(n log n) time using O(n) space.  More relevant to the work in this paper, Ke shows that the
shortest such line segment can be found in O(n log n) time.  All these results are concerned with
internal visibility.  Bhattacharya, Kirkpatrick and Toussaint [BKT89] have considered the corre-
sponding computational problems for the case of external weak visibility.  A polygon P is said to
be weakly-externally-visible provided that for every point x on the boundary of P there exists an
infinite ray starting at x that intersects P only at x.  More intuitively speaking  P is weakly-exter-
nally-visible if when a guard patrols along a circle containing P in its interior then the entire bound-
ary of P is visible by the guard at one time or another.  In particular they show that given a simple
polygon P, all lines not intersecting P from which P is weakly externally visible can be found in
O(n) time.  Furthermore queries can be answered in O(log n) time after the polygon is preprocessed
in O(n) time using O(n) space.  We note that external visibility from finite sets of points rather than
lines or line segments has also received attention in the mathematics literature [BV76], [Va70]
where the results are of a combinatorial nature.

  In this section we consider the question of computing the shortest line segment from which
a given convex polygon is weakly externally visible.  It is shown that, given a convex polygon P,
the minimal length line segment from which P is weakly externally visible can be found in O(n)

Fig. 4.4   Illustrating case 2 in the proof of Lemma 4.1.
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rectangle induces a halfplane, namely, that which contains the rectangle in question and has its
bounding line colinear with the said edge.  Another such halfplane is induced by the highest lower
edge of some rectangle.  Consider the boundary of the intersection of these two halfplanes. Now
intersect this boundary with the complement of int(Emax(Ft/Fb)) ∪ int(Emax(Ft/Fb)).  It is

straightforward to compute this structure in linear time.  Furthermore, the envelopes consist of at
most two edges each reducing the problem to eight instances of the geometric optimization prob-
lem considered in section 2.   Let k denote the maximal cardinality of the convex hulls of each of
the four sets of corners of the rectangles in F.  In other words, 4k is an upper bound on the combi-
natorial complexity of the space of transversals for F.  Then we have the following theorem.

Theorem 4.4:  Given a set F = {F1,F2,...,Fn} of n isothetic rectangles in R2 the minimal length

line segment that intersects every member of F can be computed in O(n log k) time and O(n) space.

5.  Applications

5.1.  Minimal Sets of External Visibility

The notion of weak visibility has also received attention in both the mathematics and com-
puter science literatures.  Horn and Valentine [HV49] have characterized L-sets in terms of their
weak visibility properties while such characterizations for convex and star-shaped sets have been
obtained by Shermer and Toussaint [ST88].  Avis and Toussaint [AT81] showed that given a sim-
ple polygon P and a specified edge e of P, whether P is edge-visible from e can be determined in
O(n) time.  A polygon P is edge-visible from an edge e if for every point x in P there exists a point
y in e such that the line segment xy is in P.  A more difficult problem is to determine whether there
exists an edge of P from which P is edge-visible.   Clearly by applying the algorithm in [AT81] to

Fig. 4.3   Illustrating case 1 in the proof of Lemma 4.1.
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designed to test whether any two segments intersect.  Therefore we have the following result.

Corollary 4.2:  Given a set S = {s1, s2,...,sn} consisting of n line segments, the minimal length line
segment that intersects S can be computed in O(n log n) time and O(n) space if the line segments
do not intersect.

4.4.  The Case of Isothetic Rectangles

Transversals are closely related to the notion of separability [We88] through which we take

a small detour.  Let S1 and S2 be two finite sets of points in R2.  We say that S1 and S2 are linearly

separable if there exists a line that partitions the plane into two closed half-planes H1 and H2 such

that S1 ⊂ H1 and S2 ⊂ H2 .  A point x ∈ R2 is a linearly separable extending (LSE) point of S1
with respect to S2 if, (1) x ∉S1, and (2) any line that separates S1 from S2 also separates x from

S2.  The maximal linearly separable extension of S1 with respect to S2, denoted by Emax(S1/S2),

is the union of S1 with all points of R2 that are linearly separable extending points of S1 with re-

spect to S2.  The boundary of Emax(S1/S2) is an unbounded convex polygonal chain.  Let S* de-

note the complement of int(Emax(S1/S2))∪int(Emax(S2/S1)).  Clearly, S* is the union of all sep-

arating lines of S1 and S2 and its boundary is a description of all such lines (see Fig. 4.5).  Thus

the cardinality of S* is the combinatorial complexity of the space of an equivalence class of trans-
versals.

Given a set F = {F1,F2,...,Fn} of n isothetic rectangles in R2 , it is desired to find the mini-

mal-length line segment that intersects every member of F if it exists.  The problem of whether
such an F admits a common line transversal was originally investigated by Edelsbrunner [Ed85].
Let Ft = {t1,t2,...,tn} denote the set of north-east vertices of the members of F.  Similarly let Fb =

{b1,b2,...,bn} denote the set of south-west vertices of the members of F.  Finally let Fl and Fr de-

note, respectively, the set of north-west and south-east vertices of the members of F.  See Fig. 4.6
for an illustration of these sets.  Edelsbrunner showed that whether F admits a common transversal
can be determined in O(n) time by reducing the problem to a separability question.  The key ob-
servation is that F admits a common transversal if, and only if, either Ft and Fb, or Fl and Fr, are

linearly separable.  Furthermore, the set-set-separation problem can be solved with linear pro-
gramming.  Thus it suffices to apply one of the linear-time linear-programming algorithms of either
Megiddo [Me83] or Dyer [Dy84] to determine whether a separator exists.  If no separator exists
for either of the two problems then we conclude F does not admit a line transversal.  If at least one
of the two problems admit a separator then we compute the respective convex hulls and critical
lines of support as in the previous sections.  Here it is advantageous to compute the convex hull
with the output-size sensitive algorithm of Kirkpatrick & Seidel [KS86] in O(n log h) time where
h is the number of vertices on the convex hull.  Each problem induces only a single equivalence
class of transversals and furthermore it  is easy to construct its left and right envelopes in linear
time.  Consider the left envelope for the sets Ft and Fb in Fig. 4.6.  The leftmost right edge of a
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4.3.  The Case of Non-intersecting Line Segments

It should be clear from the previous discussion that when S = {s1, s2,...,sn} consists of a set of
non-intersecting line segments the left and right envelopes for each equivalence class of transver-
sals is made up of a portion of a single line segment.  Therefore all the machinery used in the pre-
vious section for efficiently updating the envelopes is superfluous.  Furthermore, under these re-
strictive assumptions we do not require the nested binary search algorithm for computing the con-
strained visible distance problem.  Since these are the only portions of the algorithm requiring O(n
log2 n) time, we have the following theorem.

Theorem 4.3:  Given a set S = {s1, s2,...,sn} consisting of n non-intersecting line segments the min-
imal length line segment that intersects S can be computed in O(n log n) time and O(n) space.

O’Rourke [O’R81] showed that given a set of data ranges (vertical line segments in sorted
order as a function of time) line-fitting between these data ranges can be done in linear time.  Since
data ranges are a special case of line segments which are non-intersecting, our results imply the
following.

Corollary 4.1:  Given a set S={s1, s2,...,sn} consisting of n data-ranges in sorted order, the minimal
length line-segment fit through S can be computed in O(n) time and space.

Chazelle & Edelsbrunner [CE88] recently showed that given n line segments in the plane all
k pairwise intersections can be computed in O(n log n +k) time and O(n +k) space.  By running
this algorithm and stopping as soon as the first intersection is found we can detect if S consists of
pairwise non-intersecting line segments in O(n log n) time and O(n) space.  Alternately, we can use
the much simpler O(n log n) time line-sweep algorithm of Shamos and Hoey [SH76] specifically

Fig. 4.2   Illustrating the proof of Lemma 4.1 .  The end
points of the shortest transversal must lie on lines.

a b
b’a’
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CH(I ) and therefore b ∈ CH(I ) which contradicts the assumption of Case 2.

Case 2.2.2:  All points of I lie on one side (say to the left of the directed line through a,b) of b on
line Lk.  Let b’  be the point of I  on Lk closest to b and let c be the point of I  on Lk furthest from b
and refer to Fig. 4.4 (b).  Consider triangle [b, a, c].  Since all lines in L  other than Lk intersect Lk

to the left of b, it follows that none of these lines intersect the open line segment (a, c).  For other-
wise [a, b] would not be a transversal, contrary to the assumption of the lemma.  Let a’ ∈ (a, c)
denote the point such that [a’, b’ ] is parallel to [a, b].  By the method of construction of [a’, b’ ] it
follows that it is a transversal of L  and it is shorter than [a, b], a contradiction.   Q.E.D.

This lemma allows us to transform the problem of computing the shortest transversal of a set
of lines to the problem of finding the shortest transversal of a set of line segments in O(n log n)
time.  First we compute the convex hull of I  in O(n log n) time with the algorithm of either Ching
& Lee [CL85] or Atallah [At86].  Then we intersect each line in L  with the resulting convex poly-
gon in logarithmic time per line using the algorithm of Chazelle & Dobkin [CD80].  Although I
contains O(n2) points the CH(I ) contains only O(n) points in the worst case [CL85], [At86] and
O(1) points on the average for almost any definition of a random arrangement of lines and for al-
most any distributions on the resulting parameters [DT90].  Therefore the set of line segments can
be computed in O(n log n) time.  We thus have the following theorem.

Theorem 4.2:  Given a set of lines L = {L1, L2,...,Ln} the shortest line segment that intersects every

member of L  can be found in O(n log2 n) time and O(n) space.

Fig. 4.1   Illustrating the data-structure used in the efficient updating of left and right envelopes
corresponding to the transitions between equivalence classes of transversals.
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4.2.  The Shortest Transversal of an Arrangement of Lines

Let L = {L1, L2,...,Ln} denote the set of lines where each line Li is specified by an equation
Y=aiX + bi for some real numbers ai, bi, i=1,2,...,n.  Let pij denote the intersection point of Li and

Lj.  The set I  = { pij | 1 ≤ i,j ≤ n } denotes the set of intersection points.  Finally, let CH(I ) denote
the convex hull of I .

Lemma 4.1:  The shortest transversal of a set of lines L is identical to the shortest transversal of
the set of line-segments which are obtained by intersecting each given line in L with the convex
hull of the intersection points determined by these lines.

Proof:  The shortest transversal of L  clearly has the property that its end points each belong to
some line of L .  For assume the contrary and let a and b denote its end points as illustrated in Fig.
4.2.  Let a’ denote the first point of intersection of a point travelling from a to b along segment
[a,b] that it makes with a line in L .  Similarly, let b’  denote the first point of intersection of a point
travelling from b to a along segment [a,b] that it makes with a line in L .  The new line segment
[a’,b’ ] is a transversal because it intersects all the lines that [a,b] does and it is shorter than [a,b]
which is a contradiction.  The same argument shows that the shortest transversal of a set of line
segments must have each of its end points on some line segment.  Furthermore, by the method of
construction of the line segments from L , these must all lie in CH(I ).  Hence the statement of the
lemma implies that the end points of the shortest transversal for L  must lie in CH(I ).  Conversely,
if the shortest transversal for L  lies in CH(I ) then we need not examine the portions of lines in L
lying outside CH(I ).  Therefore let [a,b] be the shortest transversal of L  and assume that a and b
do not both lie in CH(I ).  We will look for a contradiction.  Two cases arise.

Case 1:  Both a and b ∉ CH(I ).  Neither a nor b may lie on points of I  or they would lie in CH(I ).
Therefore, without loss of generality let a lie in line Li and let b lie on line  Lj.  These two lines
intersect at  pij and this point together with a and b determine a triangle illustrated in Fig. 4.3.  Let
a and b each travel towards pij on their respective lines  Li and Lj such that the resulting line seg-
ment remains parallel to [a,b] until the line segment intersects an intersection point of I  on either
Li or Lj.  Without loss of generality assume a’ ∈ Li is such a point and let b’ ∈ Lj be the other
endpoint of the resulting line segment.  By the method of construction of [a’,b’ ] it follows that it
must be a transversal and its length is shorter than that of [a,b], which is a contradiction.

Case 2: a ∈ CH(I ) and b ∉ CH(I ).  Therefore b cannot lie on an intersection point of I .  We thus
have two sub-cases.

Case 2.1:  Point a ∉ I .  In this case both a and b each lie on distinct and unique lines in L  and a
similar argument to that used in case 1 leads to a contradiction.

Case 2.2:  Point a ∈ I .  Let a lie in lines Li and  Lj and let b lie on line Lk and refer to Fig. 4.4.
Two sub-cases arize depending on whether or not points of I  lie on both sides of b on line Lk.

Case 2.2.1:  Points of I lie on both sides of b on line Lk.  Let c ∈ I  lie on one side of b and d ∈ I

lie on the other side of b on line Lk and refer to Fig. 4.4 (a).  By convexity triangle [a, c, d] ∈
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describe the algorithm for the case of left envelopes only.

We describe first an O(n log n) time algorithm for computing the left envelope of S for region
R1.  The data structure created in this stage will allow the computation of the left envelope for R2

by affording insertions and deletions which take O(log2 n) time per update.

Let Lw be a line transversal that is a member of the equivalence class corresponding to R1.

Let θi be the angle of the line segment si directed from b(si,Lw) to a(si,Lw) with the positive x-di-

rection.  First we sort all the line segments in S according to increasing values of θ.  Then we apply
a divide-and-conquer strategy to this sorted list.  The merging step involves intersecting two coun-
terclockwise directed convex chains that have the special property that the angles of their directed
edges with respect to the positive x-direction of one chain are all greater than (or all less than) that
of the other chain.  As a result these two chains, if they intersect, do so at most once.  Whether these
two chains intersect can be determined in logarithmic time by applying the hierarchical techniques
developed in [DK83].  If the chains do not intersect then we need only keep the leftmost of the two
chains.  We can determine which chain is the leftmost chain by intersecting both chains with the
witness transversal Lw in logarithmic time using the algorithm of Chazelle & Dobkin [CD80].  If
the chains do intersect we can find the intersection point in logarithmic time by again applying the
techniques in [DK83].  Hence O(n log n) time is sufficient to compute the left envelope of R1.

This algorithm creates a balanced tree [AHU83] with the leaves containing the directed line
segments in sorted order by angle as illustrated in Fig. 4.1.  An internal node represents the left
envelope of the line segments in its subtree.  Note that if we were to store the left envelope explic-
itly in each node the total storage space requirement for this tree would be O(n log n).  However,
space requirements can be reduced to O(n) by storing at each internal node only that part of the
chain which is not present in the left envelope of its parent node with methods such as those dis-
cussed in [OV81].  The root node contains the left envelope of S for region R1.

We now see what happens when the end points of a line segment si switch to create a new

equivalence class.  First we delete the directed line segment si with angle θi from the tree.  This
operation will require O(log n) time to update the information stored at each node along the path
from the root node to the leaf containing si by merging at each node the chain with the missing edge
with its brother to create a new parent.  Since the depth of this tree is O(log n) this step must be
done O(log n) times.  Thus the deletion step requires O(log2 n) time.  We then insert a directed line
segment with angle θi+180° (modulo 360°).  This step also requires updating left envelopes of

O(log n) nodes leading to a total time of O(log2 n).  According to Lemma 3.2 there are at most n
switches.  We have therefore established the following theorem.

Theorem 4.1:  Algorithm SHORTEST-TRANSVERSAL finds the minimal length line segment that
intersects a given set of n line segments in O(n log2 n) time and O(n) space.
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Algorithm SHORTEST-TRANSVERSAL

Input: A set  S = {s1, s2,...,sn} of line segments inR2 given as pairs of end points with their asso-
ciated cartesian coordinates.

Output:  The line segment of minimum length that intersects every member of S or the conclusion
that S does not admit a transversal of any length.

Begin:

Step 1: Transform each line segment of S into a double wedge in the dual plane.

Step 2: Compute the intersectionR, of R1, R2 ,..., Rk of the double wedges.

Step 3: If the intersection is emptyexit with “there exists no transversal.”

Step 4: For each convex region  Ri
⊆ R, i=1,2,...,k do the following:

(a) Compute the left envelope, the right envelope, the convex hull of the upper
end points of S, and the convex hull of the lower end points of S.

(b) Compute the critical lines of support between the two convex hulls and con-
catenate their relevant portions with the envelopes and convex hull bound-
aries to form akite-shaped polygon.

(c) Determine the minimum visible distance between the left and right chains
of the kite-shaped polygon.

Step 5: Select the smallest minimum distance encountered in Step 4 andexit with the
line segment that determines this distance as the shortest transversal of S.

end

Steps 1-3 of AlgorithmSHORTEST-TRANSVERSAL can be computed in O(n log n) time
with the algorithm of Edelsbrunner et al. [EMPRWW82].  In order to implement Step 4 efficiently
we must be able to avoid recomputing the left envelope, the right envelope, the convex hull of the
upper end points of S, and the convex hull of the lower end points of S from scratch for every region
Ri

⊆ R, i=1,2,...,k.  Actually, for each i=1,2,...,k the lower hull of the top convex hull and the upper
hull of the bottom convex hull can be obtained from the boundary information of Ri in the dual
plane in time proportional to the cardinality of the boundary of Ri.  Therefore all the upper and low-
er relevant subchains of the top and bottom convex hulls can be obtained in O(n) time onceR is
computed in Step 2.  The critical support lines between the pair of convex hulls corresponding to
each region Ri can be found with the “rotating-calipers” [To83] also in time proportional to the car-
dinality of the boundary of Ri or even in logarithmic time if desired [Ro85].  Therefore all the lower
and upper chains of the kite-shaped polygons corresponding to the Ri can be computed in linear
time after Step 2 is executed.  Thus we concentrate on computing efficiently the left and right en-
velopes correponding to Ri from the left and right envelopes of Ri-1.  Without loss of generality we
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4.  Algorithms for Computing Shortest Transversals

4.1.  The General Case

First we give a high-level outline of the algorithm for computing the shortest transversal of a
given set of line segments.

CH(A(S,L))

CH(B(S,L))

Fig. 3.4  Illustrating the left envelope (l1,l2,l3,l4), the right envelope (r1,r2,r3), the top

convex hull CH(A(S,L)), the bottom convex hull CH(B(S,L)), and the relevant kite-
shaped polygon induced by these four polygonal chains (shaded).
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Lemma 3.3:  The end points of the shortest transversal s for a given equivalence class of transver-
sals must lie on the left and right envelopes of that equivalence class and s cannot intersect the in-
terior of CH(A(S,L)) and CH(B(S,L)).

Let Lr denote the critical line of support separating CH(A(S,L)) and CH(B(S,L)) with extre-
mal clockwise rotation and let ar and br denote the tangent vertices of CH(A(S,L)) and CH(B(S,L)),
respectively, that are furthest apart (see Fig. 3.4).  Similarly, let Ll denote the critical line of support
separating CH(A(S,L)) and CH(B(S,L)) with extremal counter-clockwise rotation and let al and bl

denote the tangent vertices of CH(A(S,L)) and CH(B(S,L)), respectively, that are furthest apart.
Let bd denote the boundary of a set and let bd(CH(A(S,L))) be specified by its vertices listed in
counter-clockwise order.  Then in lemma 3.3 we need only concern ourselves with those portions
of CH(A(S,L)) and CH(B(S,L)) determined by their critical support lines.  More specifically, we
are only concerned with the convex polygonal chains [ar,...,al] from bd(CH(A(S,L))) and [br,...,bl]
from bd(CH(B(S,L))).  In fact, the region of interest is a kite-shaped polygon obtained by concat-
enating the left and right envelopes and the chains [ar,...,al] and [br,...,bl] with the portions of the
critical support lines that connect the upper and lower chains with the envelopes.  For example, in
Fig. 3.4, the relevant kite-shaped polygon (shaded) is given by [r1, r2, r3] ∪ [r3, al] ∪ [al ,..., ar]

∪ [ar, l1] ∪ [ l1, l2, l3, l4] ∪ [l4, bl] ∪ [bl ,..., br ] ∪ [br, r1], where the four convex vertices in

question are r1, r3, l1, and l4.  We have thus transformed the problem of computing the shortest

transversal for a given equivalence class of transversals into the problem of computing the mini-
mum visible distance between two opposite concave chains of a kite-shaped polygon that is easily
obtained from the available information.

Lemma 3.4:  Given a simple polygon of n vertices known to be kite-shaped, with its four convex

Fig. 3.3  Illustrating a kite-shaped
polygon.

a

b

c

d

vertices available in order, the minimum visi-
ble distance between a pair of opposite concave
chains can be computed in O(log2 n) time.

The proof is too lengthy to reproduce here and
forms the topic of a companion paper [BET91].
Here we provide only the basic idea.  The ap-
proach is to first disregard the upper and lower
chains in computing the minimum distance be-
tween the left and right chains.  If this uncon-
strained solution yields a line segment (repre-
senting the distance) that does not intersect the
upper or lower chains then it is the final solu-
tion.  If it does intersect the upper (lower) chain
then the final solution is tangent to the upper
(lower) chain and can be found by an analogous
but more sophisticated prune-and-search meth-
od.
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computing.  Let Ls be the transversal which contains s.  Clearly L and Ls are members of the same
equivalence class.  In what follows it will be useful to define a new class of polygons as follows.

Definition:  A simple polygon P is a kite (kite-shaped) provided that it contains only four convex
vertices labelled a,b,c,d in order and such that the diagonals [a,c] and [b,d] lie in the polygon (see
Fig. 3.3).

Definition:  A line segment si is left (/right) of another line segment sj , with respect to a transversal
L, if the intersection of si with L lies to the left (/right) of the intersection of sj with L.

Definition:  The left-envelope of S with respect to an equivalence class of transversals is defined
as the union of all points p such that p is the leftmost intersection point of a line segment in S with
some transversal belonging to the equivalence class.

The right-envelope of S is defined in a similar manner.  Figure 3.4 illustrates the left and right
envelopes for an equivalence class of transversals for a set of line segments.  It is straightforward
to verify that these envelopes are convex polygonal chains composed of a concatenation of por-
tions of the line segments of S.  Let CH(A(S,L)) and CH(A(S,L)) denote, respectively, the convex
hulls of the sets A(S,L) and B(S,L).  We shall refer to these as the top and bottom convex hull, re-
spectively.  Then the following lemma is easily established and stated without proof.

Fig. 3.2   Illustrating the convex regions (in the dual plane) of the intersection of five
double wedges induced by five line segments in the primal plane.  The convex regions
are shaded and the solid dots mark the centers of the double wedges.

R1 R3 R5 R6
C1

C2

C3
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Proof:  It has been shown in [EMPRWW82] that the intersection of the n double wedges consists
of at most n+1 convex polygons monotonic in the x-direction.  Every point in this intersection cor-
responds to a transversal for S.  From property (f) above it follows that there is a one-to-one cor-
respondence between the convex polygons and the equivalence classes of transversals.  Q.E.D.

Let Ri and Ri+1 be two adjacent convex regions in the intersection of the double wedges.  Then
there are only two structural possibilities [EMPRWW82] for their location: (a) Ri and Ri+1 share a
vertex which is a center of some double wedge or (b) Ri and Ri+1 are disjoint.  Let L(Ri) and L(Ri+1)
be two representative transversals corresponding to points in Ri and Ri+1, respectively.  When Ri

and Ri+1 share a center of a double wedge of some line segment, say sk , then A(S,L(Ri+1)) =

{A(S,L(Ri)) - a(sk,L(Ri))} ∪ {b(sk,L(Ri))} and B(S,L(Ri+1)) = {B(S,L(Ri)) - b(sk,L(Ri))} ∪
{a(sk,L(Ri))}.  This suggests that we may be able to compute A(S,L(Ri+1)) and B(S,L(Ri+1)) from
A(S,L(Ri)) and B(S,L(Ri)), respectively, in an efficient manner.  In addition, when Ri and Ri+1 are
disjoint, the line segments whose end points switch sides from above (/below) of L(Ri) to below (/
above) of L(Ri+1) are precisely those whose corresponding double wedge centers lie between re-
gions Ri and Ri+1.  Furthermore, once the end points of a line segment have switched sides they will
never switch sides again.  We therefore have the following straightforward lemma which we state
without proof.

Lemma 3.2:  As one traverses the arrangement determined by the n double wedges in the positive
x-direction the number of end-point switches that occurs is at most n.

It is a simple matter to determine in linear time the shortest line segment that intersects a set
of line segments S if we demand that it be parallel with a given transversal L of S.  We thus con-
centrate now on the next most difficult problem: that of computing the shortest transversal from
amongst a single equivalence class of transversals.  Accordingly, let L be a transversal belonging
to such a class and let s be the shortest line segment of the equivalence class we are interested in

Fig. 3.1   A line segment s in the primal plane and its
transformed double-wedge (shaded) in the dual plane.
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through point p such that either the perimeter or the area of triangle OHK is minimized are in fact
classical fundamental problems that have simpler and more elegant solutions [La59] than our prob-
lem considered here and have been applied successfully to several interesting problems in compu-
tational geometry [CY84], [DA84], [KL85], [OAMB86].  Finally, we remark that Lemma 2.2
holds for the more general case when OQ and OR are themselves diverging convex chains.  This
more general version of the lemma will be used in subsequent sections.

3.  Geometric Preliminaries for Computing Shortest Transversals

Let S = {s1, s2,...,sn} denote the given set of line segments in R2  (termed the primal plane).
We first describe briefly the technique of Edelsbrunner et al. [EMPRWW82] to construct a descrip-
tion of all infinite length transversals admitted by S.  Each endpoint (x,y) of a line segment in S in
the primal plane is transformed to the line b=xm+y in the dual plane and each line y=kx+d is trans-
formed into a point (-k,d).    Thus each line segment in the primal plane is transformed to a double
wedge in the dual plane as illustrated in Fig. 3.1.  Furthermore, a point in the double wedge in the
dual plane represents a transversal of the corresponding line segment in the primal plane.  In this
way the problem of determining a description of all transversals in the primal plane is converted to
the problem of intersecting a set of double wedges in the dual plane.  The following properties are
shown in [EMPRWW82] and illustrated in Fig. 3.2.

(a) the intersection of the double wedges consists of at most n+1 convex regions,

(b) the cardinality of the intersection is at most 8n+8,

(c) the intersection region is monotonic in the x-direction,

(d) a point in the intersection region corresponds to a transversal for S,

(e) vertical lines through the centers of the double wedges do not intersect the interior
of the intersection region.

(f) the end points, of line segments of S, which lie above a transversal L in the primal
plane are precisely those whose corresponding dual lines intersect the vertical half-
lines emanating from the dual point of L in the positive direction.

Let L be a transversal of S and assume it is not vertical.  Let a(si,L) and b(si,L) denote the end
points of line segment si that lie above and below, respectively, of the transversal L.  Let A(S,L) =
{a(s1,L), a(s2,L),..., a(sn,L)} denote the set of end points of S that lie above L.  Similarly let B(S,L)
= {b(s1,L), b(s2,L),..., b(sn,L)} denote the set of end points of S that lie below L.

Definition:  Two transversals L1 and L2 are called equivalent if A(S,L1) = A(S,L2).  All transversals
that are pairwise equivalent form an equivalence class of transversals.

Lemma 3.1:  A set of line segments S = {s1, s2,...,sn} admits at most n+1 distinct equivalence class-
es of transversals.
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Subcase 2.2.1:  p∉int(∆OHK)

Let HK* be cc’ making angleθ = θ3 with OR.  By the unimodality ofl(HK(q,θ)) from lem-

ma 2.1 it follows thatl(cc’) < l(bb’) and l(HK(q,θ)) increases continually asθ varies fromθ3 past

θ2 and on toθ = π.  This implies thatl(HK(P,θ)) reaches its minimum value atθ = θ2 when HK

= bb’ and that HK(q,θ) for θ = θ2 + ε, ε >0,  is an instance ofCase 1.  Thus in this subcase

l(HK(P,θ)) continually increases forθ2 < θ < π andl(bb’) is the minimum ofl(HK(P,θ)) in the

interval φ < θ < π.

Subcase 2.2.2:  p ∈int(∆OHK)

Let HK* be dd’ making angleθ = θ4 with OR.  By the unimodality ofl(HK(q,θ)) from lem-

ma 2.1 it follows thatl(dd’) < l(bb’) and l(HK(q,θ)) decreases continually asθ varies fromθ2 to

θ4.  Thereforel(HK(P,θ)) continues to decrease asθ varies fromθ1 about p toθ4 about q.

Thus we have shown that for a starting vertex p of P and corresponding angleθ1, l(HK(P,θ))

either continuously increases, or first decreases and then increases asθ varies fromθ1 toπ.  Since

this holds for any p and any corresponding angleθ1 the statement of the lemma follows.  Q.E.D.

We remark in closing this section that the related problems of finding the line segment HK

Fig. 2.5:  Illustrating the proof of lemma 2.2: case 2:l(aa’) is de-
creasing atθ = θ1.
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< θ2 or it first decreases to a minimal length and then increases.  In either case it follows from lem-

ma 2.1 thatl(HK(q,θ)) continues to increase forθ2 < θ < θ3 , whereθ3 is eitherπ or the angle

determined by HK(qr,θ3), as the case may be, where r is the vertex of P adjacent to q in a counter-

clockwise order aboutbd(P).  Similar arguments apply to succeeding vertices of P.  Therefore we
conclude that ifl(HK(P,θ)) is increasing atθ1 it continues to increase forθ1 < θ < π.

Case 2: l(aa’) is decreasing atθ = θ1.  (Fig. 2.5)

Let p, q, aa’, and bb’ be as inCase 1.  Consider HK(p,θ) for θ1 < θ < θ2.  From the uni-

modality ofl(HK(p,θ)) by lemma 2.1 it follows that we have two subcases.

Subcase 2.1: l(HK(p,θ)) decreases continually until it reaches a minimal lengthl*= l(HK(p,θ*))
at θ = θ* and subsequently increases continually forθ* < θ < θ2.  In this subcase forθ* < θ <
θ2 we have an instance ofCase 1 andl(HK(P,θ)) will continue to increase forθ > θ2.  Note that

in this subcasel* is in fact the minimum ofl(HK(P,θ))  in the entire intervalφ < θ < π.

Subcase 2.2: l(HK(p,θ)) decreases continually in the intervalθ1 < θ < θ2.  Construct HK(q,θ)

such thatl(HK(q,θ)) is the minimum overφ < θ < π.  Denote such an HK by HK*.  Two cases
arise depending on whether or not p lies in the interior of∆OHK.

Fig. 2.4:  Illustrating the proof of lemma 2.2: case 1:l(aa’) is in-
creasing atθ = θ1.
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then HK may traverse the interior of P.  Similarly, HK(pq,θ) denotes such a line segment con-
strained to be colinear with line segment pq.  Let HK(P,θ) denote the line segment HK as above
such that HK is tangent to polygon P and P is contained in∆OHK.  Finally, letl(HK(.)) denote the
length of the line segment HK(.).

Lemma 2.2: Forφ < θ < π we have thatl(ΗΚ(P,θ)) is aunimodal function ofθ.

Proof: Consider any fixed position for HK(P,θ).  We will show thatl(ΗΚ(P,θ)) is either contin-
ually increasing as a function ofθ or it is first continually decreasing to a minimal lengthl*, at-
tained at some angleθ*, and subsequently continually increasing forθ > θ*.  Therefore let the
starting position of HK(P,θ) be  HK(p,θ1) = aa’ and refer to Fig. 2.4.  We have two cases: either

l(aa’) is increasing atθ = θ1 or it is decreasing.

Case 1: l(aa’) is increasing atθ = θ1.  (Fig. 2.4)

Let q be the vertex of P adjacent to p in counter-clockwise order aboutbd(P).  Construct
HK(q,θ1) = cc’ and HK(pq,θ2) = bb’.  Since cc’ is parallel to aa’ and closer to O than aa’, it follows

that l(cc’) <  l(aa’).  Sincel(aa’) is increasing atθ = θ1 andl(aa’) = l(HK(p,θ1)) is unimodal by

lemma 2.1, we have thatl(aa’) <  l(bb’).  Thereforel(cc’) <  l(bb’).   Now consider HK(q,θ) asθ
varies fromθ1 to θ2.  From lemma 2.1 it follows thatl(HK(q,θ)) is unimodal and therefore we

must have two possible situations.  Eitherl(HK(q,θ)) continually increases in the intervalθ1 < θ

Fig. 2.3:  Let P be a convex polygon contained in QOR.  Let H slide along OQ and
K slide along OR.  Then, asθ increases fromφ to π with the constraint that HK
remain tangent P , the length of HK is aunimodal function ofθ.
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< 0 is for either all three roots to be positive or one to be positive and the other two negative.  In
addition since b< 0 we must have r1r2 + r2r3 + r3r1 < 0.  Thus consider the case in which all three

roots are positive.  This implies r1r2 + r2r3 + r3r1 > 0, a contradiction.  It follows that one root must

be positive and the other two negative.  We can in a similar way show that when only one root of
(2) is real that root has to be a positive one.  For assume that we have, as before,

                                          x3 + ax2 + bx + c = 0 with a,b,c< 0,

and that we have two complex roots and one real.  Let r1 be the real root.  Then we can rewrite this

equation as

                                                        (x-r1)(x
2 + ex + f) = 0.

For there to be two complex roots we must have e2-4f < 0, which implies in turn that f> 0.

Since c=-r1f < 0 and f> 0 it follows that r1 > 0.

We conclude from the above discussion that we need only be concerned with the positive root.  Let
x = r be the positive root  of (2).  We now show thatl(x) attains a minimum value at x = r.  We do
this by demonstrating that the second derivative ofl(x) evaluated at x = r must be greater than zero.

Let A = x3-2ux2+(u2-au)x-aβ2.  Thenl’(x) = (β 2 + x2 )-1/2 (x-u)-2 A.  It is sufficient to show that
dA/dx > 0 at x = r.

We see that                                 dA/dx  = 3x2 - 4ux + u2 -au                                          (4)

Evaluating (4) at x = r we obtain

      dA/dx(r) = 3r2 - 4ur + u2 - au

                                        = (2r2 - 2 ur) + (r2 - 2ur + (u2 - au))

                                        = (2r2 - 2ur) + aβ2/r , since r3-2ur2+(u2-au)r-aβ2 = 0.

                                        = 2r(r-u) + aβ2/r .                                                                  (5)

Since all terms in (5) are positive and r> u, dA/dx  at x = r> 0, andl(x) attains its minimum value
at x = r.  Since this minimum is the only local minimum in the region of interest, unimodality in
the region of interest follows.  Q.E.D.

In order to obtain efficient algorithms for our problems we actually need a more general result
than that provided by lemma 2.1.  We need an analogous unimodality result for the case when point
p is actually a convex polygon P and the line segment HK is constrained to remain tangential to P
asθ increases fromφ to π as illustrated in Fig. 2.3.  Accordingly, let HK(p,θ) denote the line seg-
ment HK with end point H on OQ and endpoint K on OR such that HK traverses point p and makes
an angleθ with respect to OR as an axis of reference (see Fig. 2.3).  Note that if p is a vertex of P
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Since x> u it follows that l’(x) = 0 implies that

                                   x3-2ux2+(u2-au)x-aβ2 = 0                                                   (2)

Rewriting (2) in standard form we have that

                                     x3 + ax2 + bx + c = 0

where  a = -2u < 0; b =u(u-a) < 0, sincea > u, and c = -aβ2 < 0.

Let r1, r2, and r3 be the roots of (2).  We assume that r1, r2, and r3 are all real.  Then we can

write

                           x3 + ax2 + bx + c = (x-r1)(x-r2)(x-r3) .                                       (3)

We now show that we need only examine one root in more detail.  Since a, b, and c, are all less
than zero we argue that precisely one of the roots must be greater than zero and the other two must
be less than zero.  We start by rewriting (3) as follows:

                x3 + ax2 + bx + c = x3 - (r1+ r2+ r3)x
2 + (r1r2 + r2r3 + r3r1)x - r1r2r3 = 0

where a = - (r1+ r2+ r3), b = (r1r2 + r2r3 + r3r1) and c = - r1r2r3 .  Now c< 0 and the only way -r1r2r3

Fig. 2.2:  Illustrating the proof of lemma 2.1.  O
represents the origin and x=u+u’.
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In order to simplify analysis it is convenient to break up the problem into two cases depend-
ing on whetherφ is greater thanπ/2 or not, and to parameterize the problem not as a function ofθ
as in Fig. 2.1, but rather as a function of x=u+u’ as in Fig. 2.2.  It is straightforward to demostrate
that unimodality under the first parameterization implies unimodality  under the second.  Further-
more, we restrict our analysis to the more difficult case ofφ greater thanπ/2.  The analysis forφ
less than or equal toπ/2 is similar and less involved.  Accordingly, let p(α,β) be the point in the
interior of the cone in question.  Thusβ > 0.  H’p has lengtha and is parallel to OK.  K’p is parallel
to OH.  Letl(x) denote the length of line segment HK as a function of x.  We then have the follow-
ing lemma.

Lemma 2.1:  For x> u > 0, l(x) is aunimodal  function.

Proof: Without loss of generality we assume thatα > 0.  For otherwise we may construct a sym-
metrical diagram whereβ represents the perpendicular drop from p to OH rather than OK.  First
we determine the value of x such that HK is a minimum.

Since∆pHH’ and∆pK’K are similar it follows that pH/a = pK/(x-u) and thus, (pH+pK)/pK
= 1+a/(x-u).  Sincel(x)=pH+pK we can writel(x) as follows:

                                   l(x) = ( β 2 + x2 )1/2 (1 +a/(x-u)) .                                      (1)

Differentiating (1) with respect to x we obtain,

                 l’(x) = (β 2 + x2 )-1/2 (x-u)-2 [x3-2ux2+(u2-au)x-aβ2] .

Fig. 2.1:  Illustrating the fundamental geomet-
ric minimization problem.
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erations as their intersection, common tangents, etc.  O(n log n) time is sufficient for the special
cases of unsorted vertical line segments [O’R81], for line segments with arbitrary directions
[EMPRWW82], for a set of n translates of a simple object in the plane [Ed85] and for n circles of
equal radius [BL83]. Given a familyK of n convex cones, determining whetherK admits a com-
mon transversal can be accomplished in  O(n log nα(n)) time, whereα(n) is the extremely slowly
growing inverse Ackermann’s function, with the technique of Atallah and Bajaj [AB87].  This re-
sult can now be improved however with the O(n log n) time algorithm of Hershberger [He89] for
finding the upper envelope of n line segments.  If on the other hand each cone inK is a maximal
unobstructed external-visibility cone anchored at a vertex of a simple polygon then this additional
structure can be exploited to determine if a common transversal exists in O(n) time [BKT89].  Fi-
nally we mention that high dimensional transversal problems have been recently investigated by
Avis & Doskas [AD90] and [Ro88].

In this paper we investigate the hitherto unexplored problem of computing theshortest trans-
versals when they exist.  We present an O(n log2 n) time and O(n) space algorithm for computing
the shortest transversal of a set of n given line segments or lines in the plane.  The length of such
a transversal can be viewed as a measure of thegirth of anarrangement. If the line segments do
not intersect the algorithm can be trimmed to run in O(n log n) time.  Furthermore, in conjunction
with convex hull and linear programming components the algorithm will also find the shortest line
segment that intersects a set of n isothetic rectangles in O(n log k) time, where k is the combinato-
rial complexity of the space of transversals and k≤ 4n. These results find application in: (1) line-
fitting between a set of n data ranges where it is desired to obtain the shortestline-of-fit, (2) finding
the shortest line segment from which a convex n-vertex polygon is weakly externally visible, and
(3) determining the shortestline-of-sight between two edges of a simple n-vertex polygon, for
which O(n) time algorithms are also given   All the algorithms are based on the solution to a fun-
damental geometric minimization problem that is of independent interest and should find applica-
tion in several different contexts.

2.  A Fundamental Geometric Optimization Problem

The foundation of our algorithm consists of a geometric minimization problem that, surpris-
ingly, appears not to have been investigated by geometers in the past.  Let OQ and OR denote two
infinite half rays emanating at O and subtending an angleφ as OR is rotated about O in a counter-
clockwise direction until it coincides with OQ, and refer to Fig. 2.1.  Note that Q and R are marked
for convenience but should be interepreted as lying at infinity.  Thus ROQ denotes an unbounded
cone.  Let p be any point in the interior of this cone.  We would like to find the shortest line segment
[H,K] such that H lies on OQ and K lies on OR and p lies on [H,K].  In other words we require the
shortest straight-line path that will connect OQ with OR with the constraint that the path traverse
the point p.  In actual fact we require more than that in order to design our algorithm.  Letθ be the
angle subtended by RKH as in Fig. 2.1 and letl denote the length of line segment [H,K].  Letl(θ)
denotel as a function ofθ whereφ = θ1 < θ ≤ θ2 < π.  We require thatl(θ) be aunimodal function

of θ for the interval of interest.  We conjecture the stronger result thatl(θ) is in fact aconvex func-
tion but we leave this as an open problem.
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ABSTRACT

We present an O(n log2 n) time and O(n) space algorithm for computing the shortest
line segment that intersects a set ofn given line segments or lines in the plane.  If
the line segments do not intersect the algorithm may be trimmed to run in O(n log
n) time.  Furthermore, in combination with linear programming the algorithm will
also find the shortest line segment that intersects a set ofn isothetic rectangles in
the plane in O(n log k) time, wherek is the combinatorial complexity of the space
of transversals andk ≤ 4n.  These results find application in: (1) line-fitting between
a set ofn data ranges where it is desired to obtain the shortestline-of-fit, (2) finding
the shortest line segment from which a convexn-vertex polygon is weakly external-
ly visible, and (3) determining the shortestline-of-sight between two edges of a sim-
ple n-vertex polygon, for which O(n) time algorithms are also given.  All the algo-
rithms are based on the solution to a new fundamental geometric optimization prob-
lem that is of independent interest and should find application in different contexts
as well.

1.  Introduction

Common transversals for families of convex sets have been investigated for some time in
both the mathematics [Gr58], [Le80] and computer science [AB87], [AW87], [AW88], [Ed85],
[We88] literatures.  In the computer science literature the more aggressive termstabber is tradi-
tionally used for transversal.  Transversals in the plane find application in several areas including
line-fitting [O’R81] and updating triangulations [ET85].  Edelsbrunner, Overmars and Wood
[EOW81] developed a method for solving planar visibility problems that yields a procedure for
computing transversals for F, a family of simple objects, in O(n2 log n) time, where n is the cardi-
nality of F.  By simple objects it is meant those objects that have an O(1) storage description each
and which are such that, for every pair of objects, constant time suffices to compute such basic op-


