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Abstract

In this paper we report on a new approach to the instance-based learning problem.

The new approach combines five tools: first, editing the data using Wilson-Gabriel-

editing to smooth the decision boundary, second, applying Gabriel-thinning to the

edited set, third, filtering this output with the ICF algorithm of Brighton and Mellish,

fourth, using the Gabriel-neighbor decision rule to clasify new incoming queries, and

fifth, using a new data structure that allows the efficient computation of approximate

Gabriel graphs in high dimensional spaces. Extensive experiments suggest that our

approach is the best on the market.

1 Introduction

In the typical non-parametric classification problem (see Devroye, Gyorfy and Lugosi [3]) we
have available a set of d measurements or observations (also called a feature vector) taken from
each member of a data set of n objects (patterns) denoted by {X, Y } = {(X1, Y1), ..., (Xn, Yn)},
where Xi and Yi denote, respectively, the feature vector on the ith object and the class label
of that object. One of the most attractive decision procedures, conceived by Fix and Hodges
in 1951, is the nearest-neighbor rule (1-NN-rule). Let Z be a new pattern (feature vector) to
be classified and let Xj be the feature vector in {X, Y } = {(X1, Y1), ..., (Xn, Yn)} closest to
Z. The nearest neighbor decision rule classifies the unknown pattern Z into class Yj.

A key feature of this decision rule is that it performs remarkably well considering that no
explicit knowledge of the underlying distributions of the data is used. Furthermore, a simple
generalization of this rule called the k-NN-rule, in which a new pattern Z is classified into the
class with the most members present among the k nearest neighbors of Z in {X, Y }, can be

∗This research was supported by NSERC.
†This research was supported by NSERC and FCAR.

1



used to obtain good estimates of the Bayes error and its probability of error asymptotically
approaches the Bayes error (Devroye et al. [3]).

In practice the size of the training set {X, Y } is not infinite. This raises several practical
questions. How can the storage of the training set be reduced without degrading the perfor-
mance of the decision rule? How large should k be? How can the rule be made robust to
overlapping classes or noise present in the training data? How can new decisions be made
in a practical and computationally effcient manner? Geometric proximity graphs such as
Voronoi diagrams and their many relatives provide elegant approaches to these problems.

2 Editing the Training Data to Improve Performance

Methods that have as their goal the improvement of recognition acuracy and generalization,
rather than the reduction of the size of the stored training set, are called editing rules in the
pattern recognition literature. In 1972 Wilson [9] first conceived the idea of editing with this
goal in mind, and proposed the following elegant and simple algorithm. Delete all points (in
parallel) misclassified by the k-NN-rule. Classify a new unknown pattern Z using the 1-NN

rule with the edited subset of {X, Y }.
This simple editing scheme is so powerful that the error rate of the 1-NN rule that uses

the edited subset converges to the Bayes error as n approaches infinity.

3 Thinning the Training Data to Reduce Storage

In 1979 Toussaint and Poulsen [8] used d-dimensional Voronoi diagrams to delete “redundant”
members of {X, Y } in order to obtain a subset of {X, Y } that implements exactly the same
decision boundary as would be obtained using all of {X, Y }. For this reason they called
their method Voronoi condensing. The algorithm in [8] is very simple. Two points in {X, Y }
are called Voronoi neighbors if their corresponding Voronoi polyhedra share a face. First
mark each point Xi if all its Voronoi neighbors belong to the same class as Xi. Then discard
all marked points. The main problem with Voronoi-condensing is that the complexity of
computing all the Voronoi neighbors of a point is prohibitive in high dimensions.

Bhattacharya [1] and Toussaint, Bhattacharya and Poulsen [7] generalized Voronoi con-
densing so that it would discard more points in a judicious and organized manner so as not
to degrade performance unnecessarily. The Delaunay triangulation is the dual of the Voronoi
diagram. Therefore an equivalent description of Voronoi-condensing is to discard all points
(in parallel) if all their Delaunay neighbors belong to the same class. The idea is then to use
subgraphs of the Delaunay triangulation in exactly the same manner. Experimental results
obtained in [1] and [7] suggest that the Gabriel graph is the best in this respect. This proce-
dure will be referred to as Gabriel-thinning in the following. Two points are Gabriel neighbors
if the smallest hypersphere that contains them, contains no other points. The Gabriel graph
is obtained by connecting two points with an edge if they are Gabriel neighbors.
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4 Filtering the Training Data for Fine Tuning

Brighton and Mellish [2] proposed a new hybrid method and compared it to several other
hybrid methods on 30 different classification data sets. Their elegant and simple algorithm,
which appears to be the previous best in practice, is called iterative case filtering (ICF), and
may be described as follows. The first part of the algorithm consists of preprocessing with the
original Wilson editing scheme. The second part of their algorithm, their main contribution,
is an adaptive condensing procedure. The rule for discarding an element (Xk, Yk) of {X, Y }
depends on the relative magnitute of two functions of (Xk, Yk) called the reachable set of
(Xk, Yk) and the coverage set of (Xk, Yk). The reachable set of (Xk, Yk) consists of all the
data points contained in a hypersphere centered at Xk with radius equal to the distance from
Xk to the nearest data point belonging to a class different from that of Xk. More precisely, let
S(Xk, Yk) denote the hypersphere with center Xk and radius rk = min{d(Xk, Xj)|Yj 6= Yk}
minimized over all j. Then all the data points of {X, Y } that are contained in S(Xk, Yk)
constitute the reachable set of (Xk, Yk) denoted by R(Xk, Yk). The coverage set of (Xk, Yk),
denoted by C(Xk, Yk), consists of all the data points in {X, Y } that have (Xk, Yk) in their
own reachable set. More precisely, C(Xk, Yk) consists of all data points (Xi, Yi), i = 1, 2, ..., n
such that (Xk, Yk) is a member of R(Xi, Yi). The condensing (thinning) step of the ICF
algorithm of Brighton and Mellish [2] can now be made precise. First, for all i mark (Xi, Yi)
if |R(Xi, Yi)| > |C(Xi, Yi)|. Then discard all marked points. This condensing step is repeated
until no marked points are discarded. We will refer to this second iterative step of their overall
procedure as the filtering step of ICF.

5 The New Hybrid Gabriel Graph Algorithm

Our new approach to the problem of instance-based learning depends heavily on the use of
the Gabriel graph. First we describe the approach using the exact Gabriel graph, and after
than we turn to the practical version for high dimensional problems.

Step 1: The original training set {X, Y } is subjected to editing with a modification of
Wilson editing. Instead of editing with the k nearest neighbors of a point, we use the Gabriel
neighbors, thus dispensing with the problem of choosing a value of k. Let {X, Y }′ denote
the edited training set.

Step 2: The set {X, Y }′ is subjected to thinning (condensing) using the Gabriel graph
rule: points are discarded (in parallel) if all their Gabriel neighbors belong to the same class.
Let {X, Y }′′ denote the resulting edited-thinned training set.

Step 3: Subject the set {X, Y }′′ to the filtering step of the ICF algorithm of Brighton
and Mellish [2]. Let {X, Y }′′′ denote the final training set obtained.

Decision rule: A new query point Z is classified according to the majority vote among
the Gabriel neighbors of Z in {X, Y }′′′.

In high dimensional spaces computing the exact Gabriel graph may be costly for large
training sets. Therefore we use a new data structure that computes approximate Gabriel
neighbors in a practical and efficient manner. The practical version of our algorithm uses
the approximate Gabriel graph instead of the Gabriel graph at every step. We call this the
Hybrid Approximate Gabriel-Graph Algorithm. The data structure called GSASH [6] is a
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modification of SASH [4] to handle Gabriel neighbors rather than the originally intended k

nearest neighbors. The query time of GSASH is O(dk log k + log m), where m is the size
of {X, Y }′′′ and k is the number of approximate Gabriel neighbors computed. Extensive
experiments comparing our algorithm with the best available using the standard data sets
from the UCI Machine Learning repository [5] suggest that our algorithm is better than any
other on the market.
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