
- 6 -

[Ba] Bykat, A., “Convex hull of a finite set of points in two dimensions,”Info. Proc. Lett.7
(1978), 296-298.

[Ch] Chazelle, B., “A theorem on polygon cutting with applications,”Proc. 23rd IEEE Sym-
posium on Foundations of Computer Science (1982), 339-349.

[CI] Chazelle, B. and Incerpi, J., “Triangulation and shape complexity,”ACM Transactions
on Graphics3 (1984), 135-152.

[EET] ElGindy, H., Everett, H. and Toussaint, G. T., “Slicing an Ear in Linear Time,” internal
memorandum, School of Computer Science, McGill University, (1989).

[ET] ElGindy, H. and Toussaint, G., “On geodesic properties of polygons relevant to linear
time triangulation,”The Visual Computer5(1989), 68-74.

[FM] Fournier, A. and Montuno, D., “Triangulating simple polygons and equivalent prob-
lems,”ACM Transactions on Graphics3 (1984), 153-174.

[GJPT] Garey, M. R., Johnson, D. S., Preparata, F. P., and Tarjan, R. E., “Triangulating a simple
polygon,” Info. Proc. Lett.7 (1978), 175-180.

[Gr] Graham, R. L., “An efficient algorithm for determining the convex hull of a finite planar
set,” Info. Proc. Lett.1 (1972), 132-133.

[HM] Hertel, S. and Mehlhorn, K., “Fast triangulation of simple polygons,” Proc. FCT, LNCS
158 (1983), 207-215.

[KKT] Kirkpatrick, D. G., Klawe, M. M., and Tarjan, R. E., “O(n log log n) polygon triangula-
tion with simple data structures,” to appear in Sixth Annual ACM Symposium on Compu-
tational Geometry (1990).

[Me] Meisters, G. H., “Polygons have ears,”American Mathematical Monthly (1975), 648-
651.

[Sk] Sklansky, J., “Measuring concavity on a rectangular mosaic,”IEEE Trans. Comput.C-
21 (1972), 1355-1364.

[To] Toussaint, G. T., “An Output-Complexity-Sensitive Polygon Triangulation Algorithm”,
to appear inProc. Computer Graphics International’90, Singapore (1990).

[TV] Tarjan, R. E. and Van Wyk, C. J., “An O(n log log n)-time algorithm for triangulating a
simple polygon,”SIAM Journal on Computing (1988), 143-178.

- 5 -

Proof: First we prove, by induction, that each time the algorithm reaches Step 2 there are no ears
lying strictly between p0 and PRED(pi). This is true the first time that Step 2 is reached since there

are no vertices lying strictly between p0 and PRED(pi). Consider the kth execution of the body of

the loop. By the induction hypothesis there are no ears strictly between p0 and PRED(pi). If

PRED(pi) is not an ear then pi is advanced to pi’ = SUCC(pi) in Step 12 and the algorithm returns

to Step 2 with no ears strictly between p0 and PRED(pi’). If PRED(pi) is an ear then it is cut in

Step 5 forming a smaller polygon P’. Let PRED’(pi) be the predecessor of pi in P’. The only vertex

between p0 and pi in P’ which may have become an ear as a result of this cut is PRED’(pi). In the

special case that PRED’(pi) = p0, pi is advanced to pi’ = SUCC(pi) in Step 11; otherwise, pi re-

mains unchanged so pi’ = pi. In either case, the algorithm then returns to Step 2 with no vertices

between p0 and PRED’(pi’) being ears.

To complete the proof we show that when pi = p0, that is, when the algorithm terminates, the poly-

gon is a triangle. This implies that n-3 ears have been cut. As soon as the polygon becomes a tri-
angle, the test in Step 3 ensures that pi is advanced to p0. Consider the point in the algorithm when

pi = pn-1 and suppose that the polygon at this stage, P’, is not a triangle. We show that pi is not

advanced to p0. By the previous argument there are no ears lying strictly between p0 and

PRED’(pn-1). By the Two-Ears Theorem, P must have two non-overlapping ears. Thus two of p0,

pn-1 and PRED’(pn-1) must be non-overlapping ears and the only possibility is that at least p0 and

PRED’(pn-1) are ears. In this case, PRED’(pn-1) will be cut in Step 5 and pi is not advanced.

Q.E.D.

4. Time Analysis

Theorem: Algorithm Triangulate runs in O(kn) time where n is the number of vertices in P and k-
1 is the number of concave vertices in P.

Proof: In each execution of the loop either an ear is removed (Step 5) or pi is advanced (Step 12).

Since there are only n vertices, at most n ears can be removed. Step 10 ensures that p0 is never cut

as an ear, so pi must reach p0 after advancing all the way around P at which point the algorithm

halts. Since pi can be advanced at most n times, the loop is executed at most 2n times. All steps

inside the loop can be done in constant time with the exception of Step 3 which may require O(k)
time. Thus the time for the entire algorithm is O(kn). Q.E.D.

References

[AT] Avis, D., and Toussaint, G., “An optimal algorithm for determining the visibility of a
polygon from an edge,”IEEE Trans. Comp. C-30 (1981), 910-914.

- 4 -

FUNCTION IsAnEar(P,R,pj)

1. if R = ∅ then return true {P is a convex polygon}
2. else if pj is a convex vertex then

3. if triangle (PRED(pj),pj,SUCC(pj)) contains no vertex of R then

4. return true
5. else return false
6. else return false
End IsAnEar

3. Proof of Correctness

In this section we prove that the algorithm correctly triangulates a simple polygon P. To
show that the only vertices that are cut are ears it suffices to prove the correctness of the function
IsAnEar and the following lemma.

Lemma 1: Each time that IsAnEar is called R consists of exactly those vertices in P which are con-
cave.

Proof: First we show that cutting an ear from a polygon creates no new concave vertices. Suppose
vertex pj is cut. The only vertices which are affected are pj-1 and pj+1. Neither of these will be-

come concave since ∠pj-2,pj-1,pj > pj-2,pj-1,pj+1 and ∠pj,pj+1,pj+2 > pj-1, pj+1,pj+2. Thus no

vertex ever needs to be added to R. Next note that by cutting an ear, say pj, the only concave ver-

tices which may become convex are pj-1 or pj+1. In the case that pj-1 (or pj+1) does become con-

vex, it is removed from R in Step 9 (or 7). Q.E.D.

The correctness of IsAnEar follows from Lemmas 1 and 2.

Lemma 2: If a convex vertex pj is not an ear then triangle (pj-1,pj,pj+1) contains a concave vertex.

Proof: If pj is not an ear then triangle (pj-1,pj,pj+1) contains some vertex. Let pk be the vertex in

triangle (pj-1,pj,pj+1), j ≠ k, whose distance to line (pj-1,pj+1) is maximized. Let r and s be the

intersection points of the line going through pk parallel to line (pj-1,pj+1) with segments pj-1,pj
and pj,pj+1 respectively. By choice of pk triangle (r,pj,s) is empty and lies entirely inside P. Thus,

pk-1 and pk+1 must lie on the opposite side of line (r,s) as pj making pk a concave vertex. Q.E.D.

Next we will show that the algorithm cuts n-3 ears and the correctness of the entire algo-
rithm follows.

Lemma 3: Algorithm Triangulate cuts n-3 ears.

- 3 -

ALGORITHM Triangulate(P)

The algorithm takes as input a simple polygon P = (p0,p1,...,pn-1), stored as a doubly linked cir-

cular list. SUCC(pi) and PRED(pi) indicate the successor and predecessor of pi respectively. The

algorithm produces a set D of diagonals comprising a triangulation of P. R is a set containing all
the concave vertices of P. IsAnEar(P,R,pi) is a function which returns true if pi is an ear in polygon

P and false otherwise.

1. pi ← p2;

2. while (pi!= p0) do

3. if (IsAnEar(P,R,PRED(pi)) and P is not a triangle then {PRED(pi) is an ear.}

4. D ← D ∪ (PRED(PRED(pi)),pi) {Store a diagonal.}

5. P ← P - PRED(pi) {Cut the ear.}

6. if pi ∈ R and pi is a convex vertex then {pi has become convex.}

7. R ← R - pi
8. if PRED(pi) ∈ R and PRED(pi) is a convex vertex then {PRED(pi) has become

9. R ← R - PRED(pi) convex.}

10. if (PRED(pi) = p0) then {SUCC(p0) was cut.}

11. pi ← SUCC(pi) {Advance the scan.}

12. else pi ← SUCC(pi) {PRED(pi) is not an ear or P is a triangle. Advance the scan.}

13. end while

END Triangulate

Figure 1.

p0

p1

p4

p7

p6p5p2

p11

p10 p9

p8

p3

- 2 -

Two-Ears Theorem: Except for triangles every simple polygon has at least two non-overlapping
ears.

This theorem forms the basis of the ear-cutting algorithm for triangulation. The algorithm
finds an ear of the polygon, cuts it off and then recursively triangulates the rest of the polygon. A

brute-force implementation of this approach yields an O(n3)-time algorithm. This can be improved

to O(n2) if the prune-and-search algorithm in [EET] is used to find an ear in linear time.
The Graham scan is an important technique in computational geometry which was indepen-

dently proposed by Graham [Gr] to compute the convex hull of a sorted set of points and by Sklan-
sky [Sk] to compute the convex hull of a simple polygon. Whereas the Sklansky scan fails for sim-
ple polygons [By] it succeeds for star-shaped polygons, a fact upon which the correctness of the
Graham scan relies. The idea of the Graham scan is to make a single scan through a sorted list of
the points. At each step in the scan an appropriate constant time test is made. After each test either
a point is deleted from the list or the scan is advanced. If there are n points in the list then only n
points can be deleted and the scan can be advanced at most n times. Thus the algorithm takes O(n)
time.

Since its introduction the Graham-Sklansky scan has found widespread application to other
problems. For example, it has been used to determine in O(n) time whether a simple polygon is
weakly visible from a specified edge [AT] and to triangulate in O(n) time a polygon known to be
palm-shaped with respect to a point in the polygon [ET].

In this paper we show how to use the Graham scan to obtain an O(kn)-time implementation
of the ear-cutting algorithm. Since k-1 is the number of concave vertices this algorithm can be as

bad as O(n2). The elegance and familiarity of the Graham scan combined with the simplicity of the
ear-cutting approach yields an algorithm which is both simple to state and straightforward to im-
plement. If the polygon is represented as a doubly-linked circular list then no additional data struc-
tures are required.

2. The Algorithm

The algorithm adapts the Graham scan in the following manner. The vertices of the polygon are
scanned in order starting with p2. At each step the current vertex is tested to see if it is the top of

an ear. If it is not the top of an ear then the current vertex is advanced. If it is the top of an ear then
the ear is cut off; that is, a diagonal is added to the triangulation and a vertex is deleted from the
polygon. The current vertex is not advanced in this case except in the special case that the ear is
the vertex following p0. This prevents p0 from being cut as an ear.

To illustrate the execution of the algorithm consider the polygon in Figure 1. Initially, the
algorithm tests p1 and determines that it is not an ear (note that this is equivalent to testing whether

p2 is the top of an ear). The scan is advanced through p2, p3, p4 and p5 at which time p5 is deter-

mined to be an ear. p5 is cut and then p4 is tested and found not to be an ear. p6 is the next vertex

tested. It is found to be an ear and cut. Again p4 is tested and this time it is an ear so it is cut. The

remaining vertices will be cut in the order p7, p3, p8,p2, p9, p1.

- 1 -

The Graham Scan Triangulates Simple Polygons

Xianshu Kong, Hazel Everett and Godfried Toussaint

ABSTRACT

The Graham scan is a fundamental backtracking technique in computational geo-
metry which was originally designed to compute the convex hull of a set of points
in the plane and has since found application in several different contexts. In this
note we show how to use the Graham scan to triangulate a simple polygon. The re-
sulting algorithm triangulates an n vertex polygon P in O(kn) time where k-1 is the
number of concave vertices in P. Although the worst case running time of the algo-

rithm is O(n2), it is easy to implement and is therefore of practical interest.

1. Introduction

A polygon P is a closed path of straight line segments. A polygon is represented by a se-
quence of vertices P = (p0,p1,...,pn-1) where pi has real-valued x,y-coordinates. We assume that

no three vertices of P are collinear. The line segments (pi,pi+1), 0 ≤ i ≤ n-1, (subscript arithmetic

taken modulo n) are the edges of P. A polygon is simple if no two nonconsecutive edges intersect.
A simple polygon partitions the plane into two open regions; one unbounded called the exterior of
P and one bounded called the interior of P. We follow convention in including the interior of P
when referring to P. We assume that the vertices are given in clockwise order so that the interior
of the polygon lies to the right as the edges are traversed. The line segment joining two non-con-
secutive vertices pi and pj of P is called a diagonal of P if it lies entirely inside P. A triangulation

of a simple polygon consists of n-3 non-intersecting diagonals.
Many algorithms exist for triangulating simple polygons [Ch] [CI] [FM] [GJPT] [HM]

[KKT] [To] [TV]. These algorithms vary in their worst case time complexities, in the complexity
of their descriptions and in the data structures they use. The fastest algorithm known is the O(n log
log n)-time algorithm of Tarjan and Van Wyk [TV]. The O(n log n)-time algorithm of Fournier and
Montuno [FM] and the O(tn)-time algorithm of Toussaint [T] (t is a measure of the “shape-com-
plexity” of the triangulation) are among the simplest.

Perhaps the simplest polygon triangulation algorithm of all from a conceptual viewpoint is
the classic ear-cutting algorithm. A vertex pi of a simple polygon P is called an ear if the line seg-

ment (pi-1,pi+1) is a diagonal. We call pi+1 the top of ear pi. We say that two ears pi and pj are

non-overlapping if the interior of triangle (pi-1,pi,pi+1) does not intersect the interior of triangle

(pj-1,pj,pj+1). Meisters [Me] has given an elegant inductive proof of the following theorem.

