
Pattern Recognition Letters 3 (1985) 29-34 January 1985
North-Holland

On the ultimate convex hull algorithm in practice

Mary M. M c Q U E E N and Godfr ied T. T O U S S A I N T
School o f Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

Received 2 April 1984

Abstract: Kirkpatrick and Seidel [I 3,14] recently proposed an algorithm for computing the convex hull of n points in the plane
that runs in O(n log h) worst case time, where h denotes the number of points on the convex hull of the set. Here a modification
of their algorithm is proposed that is believed to run in O(n) expected time for many reasonable distributions of points. The
above O(n log h) algorithms are experimentally compared to the O(n log n) 'throw-away' algorithms of Akl, Devroye and
Toussaint [2,8,20]. The results suggest that although the O(n log h) algorithms may be the 'ultimate' ones in theory, they are
of little practical value from the point of view of running time.

Key words: Convex hull, algorithms, complexity, computational geometry.

1. Introduction

The convex hull of a finite set of points in the
plane is defined as the minimum area convex poly-
gon enclosing the set. As one of the earliest prob-
lems studied extensively in computational geo-
metry, algorithms for computing the convex hull
abound. Besides theoretical importance, the con-
vex hull is of practical relevance as a tool in pattern
recognition [19]. Hence, improved time bounds
and faster running time have been the focus of
research.

Many algorithms with O(n log n) worst case time
bounds have been described recently [3,5,11,15,16,
17]. Several papers have proved an I2(n log n) lower
bound for finding the convex hull [4,10,16,17,21].
Another pair of algorithms [9,12] have been pro-
posed with a worst case time bound of O(nh),
where h is the number of convex hull vertices.

Kirkpatrick and Seidel [13] have presented an
algorithm for determining the planar convex hull
with worst case time complexity O(n log h), sensi-
tive to both n and h. A second more comprehen-

Research supported by N.S.E.R.C. grant no. A9293 and
F.C.A.C. grant no. EQ1678.

sive paper [14] proves I-2(n log h) the lower bound
for the problem.

Algorithms with linear expected times have
also been described [5,18]. Furthermore, Akl,
Toussaint, and Devroye [2,8,20] have proved that
an increasing 'throw-away' preprocessing step will
cause any of the previously mentioned algorithms
to run in O(n) expected time for certain distribu-
tions of the input. Actual running times have also
been reported in [6].

In this paper we present a modification of
Kirkpatrick and Seidel's ultimate planar convex
hull algorithm [13,14] which is believed to run in
linear expected time, for some distributions of
points. Implementations of this and two other
algorithms are described. The first algorithm is
Kirkpatrick and Seidel's in its original form. The
other is Kirkpatrick and Seidel's with 'throw-
away' preprocessing. The running times of these
algorithms are compared for several distributions.
This analysis is especially valuable given that no
proof presently exists of the linear expected time of
the modified algorithm. A second reason for im-
plementing Kirkpatrick and Seidel's convex hull
algorithm is to check whether the algorithm, which
is perhaps the theoretical ultimate, is in fact practi-
cal.

0167-8655/85/$3.30 ~ 1985, Elsevier Science Publishers B.V. (North-Holland) 29

Volume 3, Number i PATTERN RECOGNITION LETTERS January 1985

2. Description of the algorithms

Kirkpatrick and SeideI's algorithm is described
briefly for completeness and to facilitate the des-
cription of the modified version of the algorithm.
A more extensive description of the algorithm
appears in the original paper [131.

Algorithm 1. Kirkpatrick and Seidel's original al-
gorithm

Procedure UPPER HULL(S)

Input : A set S ={PI Pn} of n points in the
plane, where x(P) and y(P) denote stan-
dard Cartesian coordinates.

Output : The sequence of indices of the vertices on
the upper hull of S.

1.1. Let Pxmin and Pxmax" be the points with mini-
mum and maximum x coordinate.

1.2. Let

T= {Pxmin, Pxmax}
U { p in S [x(Prmi n) < x(P) < X(Pxmax) } •

1.3. CONNECT(Xmin,xmax, T).

Procedure CONNECt(l, r, S)

2.1. Find a real number a such that a is the mean
of the median xcoordinate and the next largest
x coordinate.

2.2. Find the 'bridge' over the vertical line

A = { (x , y) I x = a } ; (h j) : = BRIDGE(S,a).

2.3. Let Slert = {P in S l x(P)<-x(Pi)}.
Let Sright = {P in S [x(P)>-x(Pi)}.

2.4. If i=l then print (i).
else CONNECT(/, i, Sleft).

l f j = r then print (i).
else CONNECT(J, r, Sright).

Function BRIDGE(S, a)

Input : A set S = {Pa Pn} of points and a real
a representing the line A = {(x,y) Ix=a}.

Output : A pair (i,j), where Pi and Pj are the left
and right bridge points respectively.

The function BRIDGE pairs up all points in the set
S and defines a line through each pair. The median

slope of these lines is computed and the support
line of the set having this slope is determined. If
this support line contains points on each side of
line A, then the vertices on this line with minimum
and maximum x coordinate are the bridge. Other-
wise, if the support line contains no points to the
right of line A, then of the point pairs defining
lines with slope less than or equal to the median
slope, the point with the least x coordinate is dis-
carded. Or, if the support line contains no points
to the left of line A, then of the point pairs de-
fining lines with slope greater than or equal to the
median slope, the point with the greatest x coordi-
nate is discarded. BRIDGE calls itself recursively
with the remaining points, until the bridge is found.

Procedure LOWER HULL is defined analogously
to Procedure UPPER HULL.

In Step 2.3, the algorithm removes from con-
sideration the points under the bridge. In Figure 1,
the shaded area under the upper hull represents the
location of ignored points.

Algorithm 2. Kirkpatrick and Seidei's algorithm
with modification

Algorithm 2 is defined in much the same way as
Algorithm 1. However, Steps 1.2 and 2.3 are re-
placed by the following modified steps.

Bridge(i.j~
Pi Pj

"'4

Pxmin ; r ' ~ i

Figure 1. Points in the shaded area are discarded by Step 2.3 of
Kirkpatrick and Seidel's original algorithm.

30

Volume 3. Number 1 PATTERN RECOGNITION LETTERS January 1985

Bridge(i.j) ~ PJ
Pi

l~ lax

Pxmin

Figure 2. Points in the shaded area are discarded by the modi-
fied Step 2.3.

1.2. Let

2.3. Let

Let

T = {P in S Ix(P) above the line

through Pxmin and Pxmax}"

Sleft = {P in S]x(P)<.x(Pi)
and x(P) above the line through

Pk and Pi}.

S~igh~ = {P in S I x(P)~x(Pi)
and x(P) above the line through
Pj and P,,}.

In the modified Step 2.3, the algorithm removes
from consideration points in a larger area than in
the original Step 2.3. This new step cannot discard
convex hull vertices, as these must lie outside any
partial hull. In Figure 2, the shaded area under the
upper hull represents the location of ignored points.

and Pvmax is the point with maximum y co-
ordinate. Let

T = {P~min, P.vxmax, Pvmax, Pxvmax, Pxmax}

U {P in S [P is above the convex

polygonal chain (Prmin, Pvxmax,

Pvmax, Pxymax, Pxmax)}"

3. Description of implementation

All these algorithms were implemented in Stan-
ford PASCAL. The 'sets' were implemented using
linked lists. CONNECT and BRIDGE were imple-
mented as recursive procedures. Finding the median
(such as the median line A or the median slope) was
implemented using the algorithm of Blum et al. [7]
as described in [11. The code for ULTIMATEI,
ULTIMATE2 and ULTIMATE3 are available from the
authors.

ULTIMATEI. Implementation of Kirkpatrick and
Seidel's algorithm

The lower hull is found by modifying the method
used to find the upper hull. Since the points are
generated in the unit square, the y coordinates
were subtracted from 1 to 'flip' all the points. This
enabled the UPPER HULL procedure to handle the
case of finding the lower hull. Also, CONNECT was
run from right to left, for procedure LOWER HULL,
to allow the main program to produce all the
points of the hull in order.

Algorithm 3. Kirkpatrick and Seidel's algorithm
with 'throw-away' preprocessing

Algorithm 3 is defined in much the same as
Algorithm 1. Step 1.2 is replaced by the following
modified version. This method of ' throw-away' is
fully documented elsewhere [2,20].

1.2. Let xymax, yxmax and),max be 3 other ex-
tremal points falling on the convex hull; where

Pxy max maximizes

(-x(Pi) +Y(Pi)),

Pvxmax maximizes

(x(Pi) +Y(Pi))

ULTIMATE2. Implementation of the modified al-
gorithm

The condition ' P above the line through Pt and
Pi' is true if the crossproduct of Pi ,Pi , P is posi-
tive.

ULTIMATE3. Implementation of the algorithm with
"thro w-away'

The condition 'P above the polygonal chain

(Pxmin, Pyxmax, Pvmax, Pxymax, Pxmax)'

is tested as follows:
For each point P, find the edge (P~,Pf) such

that

31

Volume 3, Number I PATTERN RECOGNITION LETTERS January 1985

x (P e) >_ x (P) >- x(Pt) .

Retain the point P if the crossproduct o f Pe, Pf, P
is positive.

Note that the polygonal chain may have at most
4 edges, but may have fewer in the special case

where two extremal points are equal. Duplicates
can simply be 'deleted' f rom the chain and the
method above is then applied.

4. E x p e r i m e n t a l results

The three algorithms implemented, ULTIMATE I,
ULTIMATE2 and ULTIMATE3, were run on an

AMDAHL 5850 computer using the Stanford
PASCAL Compiler. Monte-Carlo simulations were
carried out. There were two simple sizes; 1000 and
2000 points in the plane. Pseudo random samples
were generated for four distributions:

(I) uniform in the unit square,
(2) circular normal,
(3) uniform in a unit circle, and
(4) uniform on the boundary of a unit circle.

The programs were timed using FORTRAN library
subrout ines TIMERI and TIMER2.

Table 1
Mean running times (milliseconds) of three programs for five
random samples of size n for four distributions

Distribution PROGRAM N= 1000 N = 2000

U L T I M A T E I 1363.8 2597.6
Uniform in the

ULTIMATE2 524.7 1076.3
unit square ULTIMATE3 271.6 323.6

ULTIMATE I 1299.4 2726.2
Circular ULTIMATE2 473. I 994.0
normal U LTIMATE3 178.3 313.1

ULTIMATEI 2019.6 4757.3
Uniform in a U LTIMATE2 543.5 1191.0
unit circle ULTIMATE 3 285.5 714.5

ULTIMATEI 4563.7 10848.3
(1000) a (2000) a

Uniform on the ULTIMATE2 2222.2 5254.9
boundary of a (993) a (1987) a
unit circle ULTIMATE3 2187.9 5181.3

(993) a (1988) a

a Mean number of convex hull points found.

The results of the experimental runs are shown
in Table I. Mean times for five random samples
for each combinat ion of program, distribution,
and sample size are presented. It is evident that
for every distribution ULTIMATE I is the slowest,
ULTIMATE2 is faster, and ULTIMATE3 is the fastest.

The case where all generated points lie on the
boundary of a circle and also on the convex hull,
ULTIMATE I iS slower than the other two programs.
The gap between ULTIMATE2 and ULTIMATE3 is
quite small for this distribution.

For points generated uniformly in the unit
square, ULTIMATE2 is believed to run in O(n) ex-
pected time and the ' throw-away ' preprocessing
used in UI_TIMATE3 has been shown to enable
algorithms with even O(n ~) worst case time com-

plexity to run in O(n) expected time. The belief for
ULTIMATE2 is substantiated by the fact that it runs
two and a half times faster than the original algor-
ithm, ULTIMATE I, which does not run in linear
expected time for these distributions. The proof of
ULTIMATE3'S expected time is corroborated by its
excellent performance here, showing how powerful
the ' th row-away ' procedure is [2,8,20]. Notice that
for this distribution ULTIMATE3 can compute the
convex hull of 2000 points before ULTIMATE2 has
finished solving the problem for 1000 points.

Another interesting point that should be made is
that all three programs are exceedingly slow. It has

been shown by Bhattacharya and Toussaint [6]
that Eddy ' s O(n 2) algorithm [91 with ' throw-away '
preprocessing computes the convex hull of 100
points on the boundary of a circle in 152.9 milli-
seconds. Though Eddy 's algorithm appears much
faster, the environments in which the Monte-Carlo
simulations were run are very different (Stanford
PASCAL vs. FORTRAN G1; AMDAHL 5850 vS.
AMDAHL V-7), and are not directly comparable.
Thus, no rigorous conclusion may be drawn.

All three implementations are reliable. The tact
that ULTIMATE! always finds n convex hull points
for n points generated uniformly on the boundary
of a unit circle is astounding. ULTIMATE2 and
ULTIMATE3 are close behind finding 9907o of the
convex hull vertices. The figures for ULTIMATE2
and ULTIMATE3 differ f rom ULTIMATEI due to the
precision involved in the computat ions of the cross-
products computed in the former implementations.

32

Volume 3, Number 1 PATTERN RECOGNITION LETTERS January 1985

It should be noted that almost all existing convex

hull a lgori thms make use of crossproducts .

The reliabili ty of these programs may be com-

pared to that of the implementa t ions of Eddy ' s [9]

and Akl and Toussa in t ' s [3] a lgori thms given in

Bhat tacharya and Toussa in t [6]. On the average,

the implementa t ion of Eddy finds 944 out of 1000

points on the b o u n d a r y of a circle, while that of

Akl and Toussa in t returns 971.

5. Conclusions

Implementa t ions of various versions of Kirk-

patrick and Seidel 's a lgori thm were presented and

were found to be very slow in general. Though

having a worst case complexity of O(n log h) which

is theoretically opt imal , this complexity has a very

large cons tan t factor. A modif ied version of this

or iginal a lgor i thm believed to run in l inear ex-

pected t ime was shown to be a b o u t two and a half

t imes faster than the implementa t ion of Kirkpatr ick

and Seidel 's a lgori thm. However, it could not keep

up with Kirkpatr ick and Seidel 's a lgor i thm with

' t h row-away ' preprocessing, showing how power-

ful this technique is. P roo f of the O(n) expected

t ime per fo rmance of the modif ied a lgor i thm, even

for un i fo rm dis t r ibut ions , remains an open prob-

lem. Hence, the theoretically ' u l t ima te ' convex

hull a lgor i thm for points in the plane does not live

up to expectat ions in practice, where the best

a lgor i thm to date (with respect to space and time)

still appears to be that of Akl and Toussa in t [2] as

implemented by Bhat tacharay and Toussa in t [6].

However , as the experimental results show, the

a lgor i thm of Kirkpatrick and Seidel is the most

accurate f rom the numerical point of view, of all

a lgori thms tested so far by the authors . Thus , if

the pr imary practical considera t ion is accuracy

over and above runn ing time then their a lgor i thm

may still be preferred.

References

[11 Aho, A.V., J.E. Hopcroft and J.D. UIIman (1974). The
design and Analysis o f Computer Algorithms. Addison-
Wesley, Reading, MA.

[2] Akl, S.G. and G.T. Toussaint (1978). Efficient convex hull
algorithms for pattern recognition applications. Pro-
ceedings 4th International Joint Conference Pattern
Recognition, Kyoto, Japan. Nov. 1978, 483-487.

[3] Akl, S.G. and G.T. Toussaint (1978). A fast convex hull
algorithm. Information Processing Letters 7, 219-222.

[4] Avis, D. (1979). On the complexity of finding the convex
hull of a set of points. Technical Report No. SOCS 79.2,
School of Computer Science, McGill University.

[5] Bentley, J.L. and M.I. Shamos (1978). Divide and conquer
for linear expected time. Information Processing Letters 7,
87-91.

[6] Bhattacharya, B.K. and G.T. Toussaint (1981). A time-
and-storage efficient implementation of an optimal planar
convex hull algorithm. Technical Report No. SOCS-81.40,
School of Computer Science, McGill University, Decem-
ber.

[71 Blum, M., R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E.
Tarjan (1972). Time bounds for selection. Journal o f
Computer and System Sciences 7, 448-461.

[81 Devroye, L. and G.T. Toussaint (1981). A note on linear
expected time algorithms for finding convex hulls. Com-
puting 26, 361-366.

[9] Eddy, W.F. (1977). A new convex hull algorithm for
planar sets. A C M Transactions on Mathematical Software
3, 398-403 and 411-412.

[101 van Emde Boas, P. (1980). On the O(n log n) lower-bound
for convex hull and maximal vector determination. Infor-
mation Processing Letters 10, 132-136.

[111 Graham, R.L. (1972). An efficient algorithm for deter-
mining the convex hull of a finite planar set. Information
Processing Letters 1, 132-133.

[121 Jarvis, R.A. (1973). On the identification of the convex
hull of a finite set of points in the plane. Information Pro-
cessing Letters 2, 18-21.

[131 Kirkpatrick, D.G. and R. Seidel (1982). The ultimate
planar convex hull algorithm? Proceedings 20th Annual
Allerton Conference on Communications, Control and
Computing, Oct. 1982.

[14] Kirkpatrick, D.G. and R. Seidel (1982). The ultimate
planar convex hull algorithm? Technical Report No.
83-577, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY.

[15] Preparata, F.P. (1979). An optimal real-time algorithm for
planar convex hulls. Communications o f the ACM 22,
402-405.

[16] Preparata, F.P. and S.J. Hong (1977). Convex hulls of
finite sets of points in two and three dimensions. Com-
munications o f the A C M 20, 87-93.

[171 Shamos, M.I. (1978). Computational Geometry. Ph.D.
Thesis, Yale University, New Haven, CT.

[181 Shamos, M.I. (1981). Personal Communication to G.
Toussaint as described in Toussaint, G.T. 'Computational
Geometric Problems in Pattern Recognition. In J. Kittler,
K.S. Fu and L.F. Pau, Eds., Pattern Recognition Theory
and Applications. Nato Advanced Stud)' Institute. Oxford
University, 73-91.

[19] Toussant, G.T. (1978). The convex hull as a tool in pattern

33

Volume 3, Number 1 PATTERN RECOGNITION LETTERS January 1985

recognition. Proceedings AFOSR Workshop in Com-
munication Theory and Applications. Provincetown, MA,
September.

[201 Toussaint, G.T., S.G. Akl and L.P. Devroye (1978). Effi-
cient convex hull algorithms for points in two and more

dimensions. Technical Report No. SOCS 78.5, School of
Computer Science, McGill University.

[21] Yao, A.C. (1981). A lower bound to finding convex hulls.
Journal of the ACM 28, 780-789.

34

