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Abstract

We consider embedding classes of hexagonal unknots with edges
of fixed length. Cantarella and Johnston [3] recently showed that
there exist “stuck” hexagonal unknots which cannot be reconfigured
to convex hexagons for suitable choices of edge lengths. Here we un-
cover a new class of stuck unknotted hexagons, thereby proving that
there exist at least five classes of nontrivial embeddings of the unknot.
Furthermore, this new class is stuck in a stronger way than the class
described in [3] .

1 Introduction

A closed chain of n line segments with lengths [y, ..., [, embedded in R® forms
a space polygon. The space of such polygons is denoted (using the notation of
Cantarella and Johnston [3]) by Pol,(l1,...,1,). We are concerned here with
simple space polygons or unknots (also trivial knots). Recently Cantarella
and Johnston [3] and independently, Biedl, et al. [1] studied the embedding
classes of such objects and discovered that there exist stuck (or locked) simple
polygons. The polygon of Biedl, et al. [1] contains 10 edges whereas the ex-
ample of Cantarella and Johnston [3] has only six edges (see Figure 1). These
results are relevant to linkage convexification problems because they imply
there exist linkages in 3D that cannot be convexified. It is still not known
whether all linkages in 2D can be convexified. The results are also relevant
to understanding how small-scale rigidity influences the shape of DNA and
other complex molecules [5], [4]. Since, in addition to the flat convex version,
there is a “right” and “left” version of the unknot in Figure 1 , Cantarella
and Johnston in effect proved that the space of isotopic embeddings has at
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Figure 1: The stuck unknot of Cantarella and Johnston.

least three connected components. The lengths of the edges are crucial for
this property. Indeed, if all six lengths are the same, Millet and Orellana [6]
showed that the class of unknots in Polg(1,1,1,1,1,1) is connected. Further-
more, if we consider orientation Calvo [2] has shown that there are distinct
embeddings of left and right-handed trefoils in Polg(1,1,1,1,1,1). In the
conclusion of their paper Cantarella and Johnston state that they suspect
that all stuck unknots in Polg belong to the class illustrated in Figure 1, in
other words, that there are no more than three components in Polg. In this
note we describe a new class of stuck unknotted hexagons. An example of

such a hexagon in this new class is illustrated in Figure 2.

2 A New Stuck Unknotted Hexagon

Denote the space polygon by its vertices A = A;A,...Ag and let [; be the
length of link A;A;11, modulo 6. Note that the lengths in both figures are not
metrically accurate but the figures are easier to visualize as shown. For our
new class we could in fact use the same lengths as Cantarella and Johnston do
and in the same order. However, it makes the argument simpler if we change
them. Accordingly let the lengths be: Iy = 20, [, = lg =13, [3 =[5 = 4 and
[4 = 1. The argument follows directly from the results on stuck chains of five
segments (the “knitting-needles”) obtained in [3] and [1].

The only way to flatten the polygon with the knot diagram shown is to
either pass the chain Az A4A5Ag over Ay or under A,. For this to occur it is
necessary that the length of A3A4;A5Ag be not smaller than the length of the
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Figure 2: A new class of stuck unknotted hexagons.

shorter of [; and [g or 13. But the length of A3A;A5A441s 9 < 13. Therefore a
polygon with the knot diagram shown in Figure 2 is stuck. It remains to show
that such a knot diagram can be realized by a hexagon. There is considerable
leeway in such constructions and we will just outline one such strategy for
actually obtaining coordinates. First construct a crossing planar polygon
on the zy-plane with the given link lengths such that the distance between
the parallel links A; Ay and A4A5 is 1. Denote the height (z-coordinate) of
each vertex by h; and refer to Figure 3. The final polygon will have vertices
Ay, Ay, As on the zy-plane (shaded triangle) and thus height zero. Now select
some positive real number € as small as desired, say less than 0.1, and let
hs = +€and hs = —e. Link A3zA, is now fixed and above the zy-plane, where
Ay has height +¢€. The length of link A3 A4 is adjusted accordingly. Vertex As
is now fixed at height —e and the length of link A4 A5 is adjusted accordingly.
Construct the line segment from A5 with z-coordinate —e through link A5 A3
until it intersects the vertical line Lg that contains Ag at 6. Now check
if A;é’, which lies above the zy-plane by construction, also lies below link
AszAy. 1f it does choose hg = (¢)/2. If it lies above link A3A4 lower the line
(at Ag) until it lies below link A3A4 and choose the corresponding height for
Ag, adjusting the length of link A; Ag accordingly.

An example of a polygon with the knot diagram shown in Figure 2 which is
stuck has the following coordinates. A; = (100, 10,0), A = (=100, 10, —1), A3 =
(10,20,0), Ay = (10,0,10), A5 = (—10,0,—10), A = (—10, 20, 0).

For completeness we review the proof that the “knitting needles” are
stuck. We include the proof of Biedl et al., [1] because it is simpler and
shorter than the proof in [3]. Let C' = Ag, Ay, ..., A5 be a polygonal chain
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Figure 3: One construction strategy for the polygon with the required knot
diagram.

of five links with lengths [y, 1[5, ..., 5, respectively. Let the first and last links
each be three times the sum of the lengths of the other three links. Finally
let the “knot” diagram of C' be as illustrated in Figure 4. Then we have the
following lemma.

Lemma 1 ([3], [1]) The “knitting needles” cannot be straightened.

Proof: Construct a ball of radius r = I, + [3 + [4 centered at A; and keep
link AgA; fixed as a reference frame during any untangling motion of the
remaining links. Because [; and [5 are each three times the length of r, it
follows that Ag and As must stay outside the ball at all times during any
motion. Therefore we can attach a chain of segments C’ between Ay and
Ajs such that C” lies outside the ball and such that the knot diagram of the
union of C' and C’ is the trefoil knot. Now assume that C' can in fact be
straightened. Since C’ remains outside the ball and A;A; A3 A, remains in-
side the ball at all times during the untangling motion it follows that if C'
were straightened then the union of C' and C’ would be the unknot, which
contradicts the fact that it is a trefoil knot. ]

This lemma imediately implies that the unknotted hexagon of Figure 2
cannot be convexified. If a link is removed from the polygon it can only
help to untangle it. To this end let us remove link A; A;. But this results in
the “knitting-needle” example which is stuck. Therefore the polygon is also
stuck and cannot be reconfigured into a convex polygon. The lemma also
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Figure 4: The “knitting-needles” example of a stuck chain of five segments [3],

).

shows that the hexagon of Figure 2 cannot be reconfigured to the hexagon
of Figure 1. Assume that it can and again remove link A; A;. Then certainly
the resulting chains can be reconfigured accordingly. But examining chain
Ag, As, ..., As, Ay in Figure 1, with A; A, missing, we see that A; Ag can be
rotated about Ag in the plane determined by A; AgAs to straighten Ag. Thus
we obtain a polygonal chain with four links. But by lemma 2 in [3] all
polygons in space with less than five links can be straightened. But this
implies that the polygon in Figure 2 with A; Ay missing can be straightened
and this contradicts the “knitting-needle” lemma.

3 Concluding Remarks

It is clear from the example in Figure 2 that here we also have left and right
versions of the polygon. In conclusion we can state the following result.

Theorem 1 For suitable choices of edge-length, there are at least five classes
of embeddings of the unknot in Polg

Just as in the example of Cantarella and Johnston, we can obtain a family
of stuck unknots similar to the polygon in Figure 2 for any value of n > 6
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by inserting a polygonal chain of any number of edges between A4 and Aj as
long as their total length does not exceed the length /.

Finally we remark that the hexagon in Figure 2 is in a sense more stuck
than the hexagon in Figure 1. Let us define the stuck number of a polygon as
the minimum number of links that must be removed so that the remaining
open chains can be straightened. Then, if the stuck number of a polygon
is k we will say the polygon is k-stuck. Let us call a polygon weakly k-
stuck if the removal of any k links allows the remaining open chains to be
straightened. Similarly, let us call a polygon strongly k-stuck if this is not
the case but there exists some set of £ links whose removal allows subsequent
straightening. From the results of Cantarella and Johnston [3] it follows that
the hexagon in Figure 1 is weakly 1-stuck whereas the example in Figure 2 is
strongly 1-stuck. Indeed, we have just seen that if in the hexagon of Figure 2
the link A; A, is removed we obtain the stuck knitting-needles example of
Cantarella and Johnston [3] and Biedl et al. [1].
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