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4.  Conclusion

It has been shown that the width of a convex polyhedron in 3-space can be computed in O(n
+ I) time. The main open question regarding this problem is to determine whether this algorithm
is optimal. No non-trivial lower bound is known on the complexity of this problem. Another area
for further investigation concerns the generalization of these results to dimensions higher than
three. Finally, an interesting open problem concerns the related area of minimax approximation.
We have seen in Sections 2-D and 3-C that the width of a set, as defined in this paper, solved the
problems of finding a minimax approximating line of a set of points in the plane as well as that of
finding the minimax approximating plane of a set of points in 3-space. An interesting intermediate
problem calls for finding the minimax approximating line of a set of points in 3-space. The con-
cepts developed in this paper do not seem applicable in this case. Note that this is equivalent to
finding the thinnest “tube” that encloses the set, and the diameter of the cross-section of this “tube”
is an alternate definition of the width of a set in 3-space and has applications to approximating po-
lygonal curves in three dimensions [15].
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Algorithm 3.1 - Width in Three Dimensions:

Begin

Step 1: Construct the convex hull in O(n log n) time using Preparata and Hong’s algorithm
[10].

Step 2: Transform the polyhedron into two planar subdivisions in O(n) time as described in
[3].

Step 3: Compute the overlay of the two planar subdivisions using Guibas and Seidel’s algo-
rithm [8] in O(n + I) time.

Step 4: Examine all vertices and all parallel rays of unbounded regions of the overlay to gen-
erate V-F and E-E pairs in O(I) time, and report the smallest antipodal pair distance
as being the width.

End

Theorem 3.2: Algorithm 3.1 correctly finds the width of a set of pointsP = {p1, p2,...,pn} in three
dimensions in O(n log n + I) time and O(n) space, whereI is the number of antipodal edge-edge
pairs ofCH(P).

Corollary 3.2: The width of a polyhedronP in three dimensions can be computed in O(n + I) time
and in O(n) space, whereI is the number of antipodal edge-edge pairs ofCH(P).

Note that in the worst case,I is Ω(n2), as in the example shown in Fig. 3. Also, note that if
the diameter is desired, one may examine all O(I) regions of the convex overlay in step 4, and gen-
erate V-V pairs instead of V-F and E-E pairs. The pair with the largest vertex-vertex distance de-
termines the diameter. Thus, using these methods, the complexity of finding the diameter of a set
of three dimensions is the same as that of finding the width.

C. Minimax Approximating Plane

Given a set of pointsP in 3-space, the minimax-approximating-plane problem consists of de-
termining a planeH such that the maximum distance between a pointp ∈ P andH is minimized.
Here the distance used is as in Section 2-D.

Theorem 3.3: Given a set of pointsP = {p1, p2,...,pn} in three dimensions, the minimax approxi-
mating plane ofP can be computed in O(n log n + I) time and O(n) space.

Proof: From Theorem 3.2 it follows that the width ofP can be computed in O(n log n + I) time.
From Theorem 3.1 we obtain that the width ofP is determined by either a V-F or E-E pair.
In both cases the minimax approximating plane can be computed in constant time.   Q.E.D.



- 8 -

of the other (a V-F pair). Because the orientation of the convex hull of P is such that no face is
vertical, no V-F pairs may be located at infinity in the subdivision overlay. Unfortunately, this is
not true of E-E pairs. These pairs may occur at vertices of the overlay, or at the intersection of par-
allel rays at infinity.

To generate all V-F and E-E pairs, we examine all vertices and some pairs of parallel rays of
the overlay. Since these rays occur in increasing order of slope as one travels along the convex hull
of overlay vertices in the counter-clockwise direction, we need only check rays bordering the same
unbounded region for parallelism. This we can do for all O(I) unbounded regions in constant time
each.

Finally, we must note that the distance between parallel planes of support containing an E-E
pair may be computed in constant time, as long as the edges in question are parallel. If they are not
parallel, then the pair may be ignored.

Lemma 3.2: Two nonparallel lines l1 and l2 in 3-space uniquely determine a pair of parallel
planes p1 and p2 such that p1 contains l1 and p2 contains l2.

Lemma 3.3: Given two nonparallel lines in 3-space, the minimum distance between parallel
planes containing the lines can be computed in O(1) time.

We now summarize the algorithm.

L3

L2
L1

z

y

x

Ln/2 -2
Ln/2 -1 Ln/2

Rn/2

Rn/2 -1

Rn/2 -2

R1

R2
R3

Fig. 3

E-E pairs include
(LiLi+1, RjRj+1)
For i, j ∈ {1,..., n/2-1}
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As in the two-dimensional case, the polyhedron is divided into an upper and a lower half-hull, and
each half-hull is then transformed into a planar subdivision. A face on the half-hull maps into a
vertex of the subdivision, an edge maps into an edge, and a vertex maps into a region (see Fig. 2).
Brown outlines a method for computing this transformation in linear time [3]. He finds the diam-
eter of the polyhedron by generating antipodal pairs of vertices. Noting that parallel planes of sup-
port must map onto the same point in ℜ2 under the transformation, and that these planes must meet
the polyhedron in different half-hulls, each antipodal pair of vertices then corresponds to a non-
null intersection of two regions of the two subdivisions.

To find the width, we generate all antipodal edge-edge and vertex-face pairs, by first com-
puting the convex subdivision overlay of the upper and lower subdivisions. Using Guibas and Sei-
del’s algorithm [8], which uses a variant of the planar sweep technique, this may be accomplished
optimally in O(n + I) time and O(n) space, where I is the number of edges of the overlay. Each
vertex of the overlay is formed either by the intersection of an edge from the upper subdivision and
an edge of the lower subdivision (an E-E pair), or by a vertex of one subdivision located in a region

UPPER
half-hull

LOWER
half-hull

Fig. 2.
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Lemma 3.1: Let a and b be parallel lines in 3-space. Let π1 and π2 be distinct parallel planes con-
taining a and b, respectively. Then there exists a preferred direction of rotation such that if π1 and
π2 are rotated about a and b in that direction to form the new parallel planes π1’ and π2’, then we
have that d(π1’, π2’) < d(π1, π2).

Theorem 3.1:  The width of a set of points P in three dimensions is the minimum distance between
parallel planes of support passing through either an antipodal vertex-face pair or an antipodal edge-
edge pair of CH(P).

Proof: Assume otherwise. Then the width must have been strictly determined by and E-F, F-F,
V-V or V-E pair.

Case 1 (F-F pair): Here the width is the distance between two particular extended faces of the
convex hull. Since this distance is the same as the distance between a vertex of one face and the
other extended face, it reduces to the case of a V-F pair.

Case 2 (E-F pair): The argument of case 1 also applies here to reduce this case to that of a V-
F pair.

Case 3 (V-V pair): Since the V-V pair admits parallel lines of support, we may rotate the par-
allel planes of support in the PDR in order to decrease the distance between them. This contradicts
the assumption that the V-V pair determined the width.

Case 4 (V-E pair): Since the V-E pair admits parallel lines of support, the argument of case
3 applies.   Q.E.D.

Corollary 3.1: The width of a polyhedron P in three dimensions is the minimum distance between
parallel planes of support passing through an antipodal vertex-face pair or an antipodal edge-edge
pair of CH(P).

The tetrahedra in Fig. 1 are examples of polyhedra where the minimum distance between par-
allel planes of support occurs at a vertex-face pair and an edge-edge pair, thus establishing both
possibilities. Note that from Lemma 3.1, it is clear that an E-E pair with parallel edges does not
determine the width.

B. Three-Dimensional Width Algorithm

We now extend the method used in Section 2-C to solve the three-dimensional width prob-
lem. The transform we use is based on the “slope” of the planes of support of the convex hull of
the point set P. These planes can be divided into two categories: those which are orthogonal with
respect to the xy-plane (called “vertical”) and those which are not. We shall restrict ourselves to
polygons with non-vertical faces, noting that if vertical faces do exist, the polyhedron may be ro-
tated so as to produce a polyhedron without vertical faces in time proportional to the number of
faces. The slope of a non-vertical plane is really a two-dimensional vector, so every such plane
maps into a point in ℜ2.

Plane: z = ax + by + c → (a, b) ∈ ℜ2.
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where d(p, x) is the euclidean distance between x and p. From the properties of the solution line, it
follows that once the width of P is known, l can be computed in O(1) time [13]. We therefore have
the following result.

Theorem 2.3:  Given a set of points P = {p1, p2,..., pn} in two dimensions, the minimax approxi-
mation line of P can be computed in O(n log h) time.

3.  The Width in Three Dimensions

A. Characterization of the Width

We turn now to the principal contribution of this paper. In extending the notion of the width
of a planar set to three dimensions, one might expect at first glance that it will always be deter-
mined by a vertex and a face of the convex hull of the set. It turns out that this is not true in general
- the width may also be determined by parallel planes of support, each of which contains an edge
of the polyhedron. As in two dimensions, we define two edges of the convex hull of a set of points
P in three dimensions as being an antipodal edge-edge (E-E) pair if parallel planes of support of
P contain these edges. Similarly, we define vertex-vertex (V-V), vertex-edge (V-E), vertex-face
(V-F), edge-face (E-F), and face-face (F-F) pairs. Since a plane of support may only meet a convex
polyhedron at a vertex, edge, or face, these are the only combinations possible.

(-2,-2,0)

(2,0,0)

(0,2,0)

(0,0,1)

Width at V-F pair

y

z

x

z

Width at E-E pair

(0,2,-1)

(2,0,0)
x(-2,0,0)

y

(0,2,1)

Fig. 1.
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To find the diameter of the convex n-gon P, all of the possible pairs of antipodal vertices are
generated by considering where the intervals of the upper and lower lines overlap. Each such in-
tersection corresponds to a unique pair of vertices of P with lines of support with the same slopes.
All intersections are determined in O(n) time by scanning the set of intervals of one line to deter-
mine the interval of the other line in which it lies.

Finding the width of a set of points P now reduces to considering where all points on each of
the upper and lower lines lie with respect to the intervals of the other. If parallel lines of support
exist at an edge and a vertex of the convex hull of P, then the point and the interval of the upper
and lower lines corresponding to the edge and the vertex of CH(P), respectively, must intersect.
Also, every such intersection corresponds to a unique V-E pair. The scans for these intersections
may be done in O(h) time because of the sorted order of the intervals.

To summarize, the width of a set of points P may be computed in O(n log h) time in the fol-
lowing manner.

Algorithm 2.2 - Width Using Geometric Transforms:

Begin

Step 1: Construct the convex hull in O(n log h) time as in step 1 of Algorithm 2.1

Step 2: Apply the transform to obtain two ordered sets of intervals in O(h) time.

Step 3: Scan the sets for intersections between the intervals of one set and the interval end-
points of the other, generating V-E pairs in O(h) time. For each such pair, compute
the distance between the vertex and the extended edge, and note the smallest such dis-
tance. When the scan is complete, that distance is the width.

End

We therefore have the following result.

Theorem 2.2:  Algorithm 2.2 correctly finds the width of a set of points P = {p1, p2,..., pn} in two
dimensions in O(n log h) time, where h is the number of vertices of the convex hull of P.

Corollary 2.2: The width of a simple n-gon may be computed in O(n) time using geometric trans-
forms.

D. Minimax Approximation Line of a Set

Given a set of points P in the plane, the minimax approximation problem consists of deter-
mining a straight line l such that the maximum distance between a point p ∈ P and the line l is min-
imized. Here the distance between p and l is defines as

d p l,( ) min

xεl
d p x,( ){ }=
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B. Rotating Caliper Algorithm

The first algorithm presented here is pattered after that of Shamos [2], where the diameter of
a set of points is obtained through the use of “rotating calipers” [14]. This algorithm was also sug-
gested independently by Iri and Imai [12] recently. We include a sketch for the sake of complete-
ness.

The convex hull CH(P) of P is first constructed. Then an initial antipodal V-E pair is found
by choosing an arbitrary edge of CH(P) and finding its antipodal vertex in O(log n) time using bi-
nary search as suggested in [13]. However, repeating this for every edge, as is done in [13], leads
to a complexity of O(n log n). Instead, we apply the rotating calipers method to generate all V-E
pairs in O(n) time. Let h denote the number of vertices on the convex hull of P.

Algorithm 2.1 - Width Using Rotating Calipers:

Begin

Step 1: Compute CH(P).

Step 2: Find initial V-E pair in O(log h) time (h is the number of convex hull vertices).

Step 3: Use the rotating calipers to generate all V-E pairs in O(h) time, noting the distance
between vertex and edge.

Step 4: Report the minimum V-E distance as the width.

End

Step 1 of the algorithm may be done in O(n log h) time using the convex hull algorithm of
Kirkpatrick and Seidel, yielding O(n log h) time overall [4], [5]. Since the convex hull of a simple
n-gon may be computed in O(n) time [6], [7], step 1 may be changed to give an O(n) time algorithm
for simple n-gons.

C. Computing the Width Using Geometric Transforms

Brown’s algorithm [3] to find the diameter of a convex polygon may also be modified to yield
the width. He notes that the most important feature of parallel lines of support is that they have the
same slope, which allows us to ignore the actual Cartesian coordinates of the vertices of the poly-
gon in favor of the slopes of the lines of support that are admitted by each vertex and edge.

His first step is to divide the polygon into upper and lower chains, so that when one line of
support meets the polygon on the upper chain, the other lies on the lower chain. The transform of
an edge of the polygon is defined as the slope of the line containing that edge. The transform of a
vertex of the polygon is defined as the set of slopes of the lines of support passing through it. Since
every vertex lies between two edges, this set of slopes is a closed interval. When the upper and
lower sets of points on the line are generated, they appear in sorted order because the slopes of the
edges of the polygon are already sorted. This leaves us with upper and lower lines of slopes, divid-
ed into intervals corresponding to vertices of the polygon, which can be obtained in linear time.
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of the polyhedron that admit parallel planes of support. In the worst case I can be Ω(n2) but typi-
cally, it is only O(n). Brown’s original diameter algorithm has worst-case time complexity of O(n2

log n). However, its complexity can be reduced to O(n + I) time if Guibas and Seidel’s convex sub-
division overlay algorithm [8] is used to report intersections between two sets of regions in the
plane.

2.  The Width in Two Dimensions

A. Characterization of the Width

Before presenting the width-finding algorithms, it is useful to characterize the width of a set
of points, and to introduce some terminology. When we say that A is contained in B, we mean that
every point of A also lies in B. We call any two edges of the convex hull CH(P) of a set of points
P an antipodal edge-edge (E-E) pair if parallel lines of support of P contain these edges. Similarly,
we can define vertex-vertex (V-V) and vertex-edge (V-E) pairs. Note that these are the only possi-
ble combinations, since a line of support of P must intersect CH(P) either at a single vertex, or
along one of its edges. Define d(l1, l2) to be the minimum Euclidean distance between a point x ∈
l1 and a point y ∈ l2. Note that in the interest of brevity, proofs of simple lemmas are omitted and
left as exercises for the reader. For the lazy reader they can be found in [9].

Lemma 2.1: Let a and b be vertices in the plane. Let l1 and l2 be distinct parallel lines containing
a and b, respectively. Then there exists a preferred direction of rotation (PDR) such that if l1 and
l2 are rotated about a and b in the PDR to form new parallel lines l1’ and l2’, d(l1’, l2’) < d(l1, l2).

Theorem 2.1: The width of a set of points P in two dimensions is the minimum distance between
parallel lines of support passing through an antipodal vertex-edge pair of CH(P).

Proof: Assume otherwise. Then the width must have been determined by either a strict E-E or
V-V pair.

Case 1 (E-E pair): Here the width of the set of points is the distance between two particular (ex-
tended) edges of its convex hull. Since this distance is the same as the distance between an endpoint
of one of the edges and the other (extended) edge, it reduces to the case of a V-E pair.

Case 2 (V-V pair): We may rotate the parallel lines of support in the PDR in order to decrease the
distance between them. This contradicts the assumption that the width occurred at this V-V pair.
Q.E.D.

Corollary 2.1: The width of a simple polygon P in two dimensions is the minimum distance be-
tween parallel lines of support passing through an antipodal vertex-edge pair of CH(P).

We note here that this result has been known for some time [11].
(1)
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ABSTRACT

Given a set of points P = {p1, p2,..., pn} in three dimensions, the width of P, W(P), is
defined as the minimum distance between parallel planes of support of P. It is shown
that W(P) can be computed in O(n log n + I) time and O(n) space, where I is the num-

ber of antipodal pairs of edges of the convex hull of P, and in the worst case I = Ω(n2).
For convex polyhedra, the time complexity becomes O(n + I). If P is a set of points
in the plane, the complexity can be reduced to O(n log n). Finally, for simple polygons
linear time suffices.

Index Terms - Algorithms, antipodal pairs, artificial intelligence, computational geo-
metry, convex hull, geometric complexity, geometric transforms, image processing,
minimax approximating line, minimax approximating plane, pattern recognition, ro-
tating calipers, width.

1.  Introduction

The width of a set of points P (or a simple polygon P) in two dimensions is the minimum
distance between parallel lines of support of P (or P). In three dimensions, it is the minimum dis-
tance between parallel planes of support. This notion of width is closely related to that of diameter
(the maximum distance between parallel lines or planes of support), and the methods that will be
presented reflect this. Computation of the width has applications in collision avoidance problems
[1], and in approximating polygonal curves [11]-[13].

The two-dimensional width problem has received some attention from the computational
point of view in [13], where two algorithms are proposed for computing the width of a convex
polygon with n vertices. One algorithm runs in O(n2) time in the worst case and the other incorpo-
rates binary search to reduce this complexity to O(n log n).

In this paper two algorithms to find the width of a convex polygon will be presented, one
based on Shamos’ “rotating calipers” method for computing the diameter [2], and the other on
Brown’s method using geometric transforms [3]. Both of these algorithms run in O(n) time and
O(n) space. A modification of Brown’s algorithm for finding the diameter of a convex polyhedron
in three dimensions computes the width in O(n + I) time, where I is the number of pairs of edges
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