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A polyhedral object in three-dimensional space is often well represented
by a set of points and line segments that act as its features. By a nice per-
spective projection of an object we mean a projection that gives an image in
which the features of the object, relevant for some task, are visible without
ambiguity. In this paper we consider the problem of computing a variety
of nice perspective projections of three-dimensional objects such as sim-
ple polygonal chains, wire-frame drawings of graphs and geometric rooted
trees. These problems arise in areas such as Computer Vision, Computer
Graphics, Graph Drawing, Knot Theory and Computational Geometry.

1. INTRODUCTION

When we draw or plot an image of a three-dimensional (3D) object on a sheet
of paper, or when we use a displaying device, such as a computer graphics screen,
we obtain a 2D representation that necessarily approximates the 3D object and
will never capture all its properties. It is obviously desirable to make this single
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image, even incomplete, as faithful as possible, where the measure of faithfulness
may change for different fields. In order to obtain a (geometric) image of a 3D
geometric object, we use a model (pinhole camera) based on perspective projections.
A perspective projection of a 3D object gives a planar description of how the object
looks from a particular view point in space, and we are interested in making that
projection as good as possible. The topic of this paper is hence related to the
much broader domain of Scientific Visualization [1, 2], the discipline concerned
with helping us to better visualize information, objects and processes in their fullest
generality.

We consider objects which may be abstracted as sets of segments in space. Am-
biguities and loss of information can arise in the image (the perspective projection),
and one is interested in producing projections which are the nicest in some sense.
Besides the general case of sets of points and segments in space, we consider also
the specific case of 3D simple polygonal chains, 3D wire-frame drawings of graphs
and 3D geometric rooted trees.

There are many possible definitions of the notion of quality or niceness of an
image of a 3D object obtained by a projection. There exists a variety of specific
geometrical characteristics that can more accurately describe the niceness of a pro-
jection of an object. Some of these criteria are more desirable than others depending
on the application on mind. A common sense requirement of quality is that the
significant features of the 3D object be visible in the image. For example, it is
natural to ask for the projection of a segment not be reduced to a point. It is also
a normal requirement to try to minimize the number of crossings in the projection,
making the image as simple and readable as possible. The term nice projection
refers to these requirements and to many others, and was first introduced in [3, 4]
where only orthogonal projections where considered.

Nice projections have received different names and definitions depending on the
context where they are studied: regular projections in Knot Theory [5], Witinger
projections in Scientific Visualization [6], general position projections in Computer
Graphics [7], and non-degenerate projections in Computational Geometry [8, 9, 10].
Kamada and Kawai [7] give quality criteria related to the visualization of 3D objects
represented by wire-frames and describe an algorithm for computing good directions
for orthogonal projection. In [3, 11, 4] the authors consider orthogonal projections
of sets of points, segments and polygonal objects; several criteria of niceness are
introduced, and algorithms are described for optimizing those criteria. Eades, Houle
and Webber in [12], and Webber in [13] extend and generalize the methods in [3, 4, 7]
with the specific goal of computing good orthogonal projections in order to visualize
3D graph drawings.

While we see that extensive work has been done on the complexity of computing
nice orthogonal projections, to date the more general problem of finding nice per-
spective projections has received meager attention in areas such as Computer Vision,
Computer Graphics, Graph Drawing, Knot Theory and Computational Geometry.
The quality of the images obtained by perspective projection depends strongly on
the choice of the center of projection and sometimes, but not always, on the plane
of projection. The situation is simpler for orthogonal projections, in particular be-
cause the choice of the viewpoint has one degree less of freedom, therefore it is not
a surprise that the methods can not always be easily extended.



Computing perspective projections has many practical applications in Computer
Vision problems that arise in robot navigation [22, 26, 28]. In this area most of
the work has concentrated on defining models of degeneracy or types of “bad”
projections [23, 24, 27].

In the above work the models were theoretical in the sense that points and lines
have zero measure. In practice points and lines are made up of pixels and therefore
do not have zero measure. This causes the probability of obtaining bad projections
(or viewpoints) to increase. A practical and empirical study of this phenomenon was
carried out in [25]. The computational complexity of determining nice perspective
projections has not been addressed before.

In this paper we show how to obtain nice perspective projections under sev-
eral measures of niceness: regularity (Section 3), simplicity and minimum-crossing
(Section 4) and monotonicity (Section 5). Furthermore we study the computational
complexity of obtaining such projections for the idealized case of inifinite resolution.

2. PERSPECTIVE PROJECTIONS

A perspective projection in space is fully determined by a point ¢, the projection
center, and a plane 7, the projection plane, that does not pass through c. Let 7,
be the plane that goes through ¢ and is parallel to w. The perspective projection of
a point ¢, q & 7., is the intersection ¢* of the line gc¢ with the plane 7. The points
of the plane 7, cannot be projected onto 7.

The perspective projection of a geometric object is obtained by performing two
operations: the computation of the lines that pass through the projection center
¢ and each point of the object, and the intersection of this set of lines with the
projection plane 7.

3. REGULAR PROJECTIONS OF SEGMENTS

DErFINITION 3.1. Let S be a set of disjoint segments in space. A perspective
projection of S is said to be regular when the following three conditions are fulfilled:

1.- no point of the projection plane is the projection of more than one endpoint
of segments of S;

2.- no point of the projection plane is, simultaneously, the projection of an end-
point and an interior point of two segments of S;

3.- No point of the projection plane is the projection of more than two interior
points of segments of S.

This definition implies that the projection of a segment should not be reduced to
a point (condition 1), the endpoints of a segment should not be projected onto a
point of another projected segment (conditions 1,2) and three projected segments
should not intersect at an interior point (condition 3).

THEOREM 3.1. Given a set of n disjoint segments in space, deciding whether
their projection is regular can be done in O(n?) time and space.



FIG. 1. Non-regular segment projection

Proof. Let S* be the set of n segments that are the projection of the seg-
ments of S. It suffices to determine the forbidden situations using the technique of

[16] that computes the arrangement of segments .A(S*) in O(n?) time and space. W

A point that cannot be the projection center of a regular perspective projection
of S is called a forbidden point. Let us to analyze the different situations in which
forbidden points can arise. If a point lies on a line that passes through an endpoint
of a segment and through a second point of the same or another segment, then the
point will be a forbidden one. When the second point is an endpoint of the first
or second segment, regularity condition 1 is not satisfied. If the second point is an
interior point of the second segment, then regularity condition 2 is not satisfied.
When a point lies on a line that simultaneously intersects three (or more) segments,
then again the point is a forbidden one. Indeed, if we take that point as a projection
center, then regularity condition 3 does not hold. These straight lines are called
lines of forbidden points. Note that in all the cases the condition of regularity only
depends on the position of the projection center in relation to the segments of S
and it does not depend on the position of the projection plane.

In order to determine whether a line is a line of forbidden points, we must intersect
the line with each of the n segments of S and then test if any of the three forbidden
situations occurs. Therefore, we have the following;:

OBSERVATION 3.1. Given a set of n disjoint segments in space, deciding whether
a line is a line of forbidden points can be done in O(n) time and space.

FIG. 2. Double wedges



Next we study the set of forbidden points in detail. The family of forbidden lines
determined by one or two segments of S are their corresponding transversal lines.
The transversal line of one segment is the line containing it. The transversal lines
of two segments form four double wedges; each wedge is obtained by taking all the
lines that go through an endpoint of a segment and through any point of the other
segment (see Figure 2) . The set of forbidden lines given by three segments of S
is a subset of the transversals of the three lines that contain the segments. It is a
well known fact that the transversals of three lines determine a ruled quadric [14]
and therefore, any forbidden point corresponding to three segments of S belongs
to a ruled quadric. In some degenerated cases, a whole plane of forbidden points
may exist. Figure 3 shows a planar configuration of four segments such that any
line that cuts the ”central” segment also cuts two of the other three segments. This
violates condition 3 of regularity, so the supporting plane of the four segments is a

whole plane of forbidden points.

FIG. 3. Four coplanar segments that determine a whole plane of forbidden points

To sum up, the forbidden points of a set of segments either belong to the (;”)e
O(n?) planes that contain the wedges, or belong to the (3) € O(n®) ruled quadrics
given by the transversals to the three straight lines that contain any three segments
of S. Since the planes and the quadrics are finite in number and have zero measure in
space, we conclude that it is always possible to find a regular perspective projection.

We thus establish the following:

OBSERVATION 3.2. There always exists a regular perspective projection of a set
of disjoint segments in space.

Let us see how to compute a regular projection of a set of n disjoint segments
of S. First we translate the coordinate system oxyz to cxyz in such a way that all
endpoints of segments have coordinates strictly positive and no plane defined by
¢ and a segment of S contains the axis cz. All this can be done in O(n) time. If
¢ is not forbidden we are done. Otherwise, as cz is not by construction a line of
forbidden points, either ¢ is the only forbidden point of ¢z, and we can pick any
other point from cz, or we can select any point interior to the segment ci, where 4
is the forbidden point on cz closest to ¢, but different from c.

In order to avoid the forbidden situations due to regularity conditions 1 and 2, we
can use a brute force algorithm. We compute the intersection of each of the O(n)
lines that contain the segments and each of the O(n?) double wedges of forbidden
points with the cz axis; finally, we choose among the intersection points the point
i closest to ¢ and not equal to c¢. If we also used a brute force algorithm to avoid



the forbidden situations due to regularity condition 3 , then we would obtain an
algorithm that would run in O(n®) time. The key to decrease this complexity is
to employ a property of continuity of the arrangement of segments A(S*), where
S* denotes the projection from ¢ of the segments onto the plane y = —1. In the
worst case, the construction of A(S*) requires O(n?) time and space. If when
moving continuously along the cx axis, beginning at ¢, the forbidden point first
found corresponds to a forbidden situation due to condition 3, by continuity it will
be caused by three segments of S that are projected on a triangular cell of A(S*).
Hence, it suffices to compute the O(n?) quadrics determined by three segments of
S whose projections are triangular cells in A(S*) and then, if it exists, to search
for the intersection point i, # ¢, of the quadrics with the cx axis closest to c.

The algorithm described above has time complexity O(n?): computing ¢ and
deciding if ¢ defines a regular perspective projection of S takes linear time and
space; constructing A(S*) and searching in A(S*) takes quadratic time and space.
This leads to the following:

THEOREM 3.2. Given a set of n disjoint segments in space, a regular perspective
projection can be obtained in O(n?) time and space.

When c is a regular projection center, it may be desirable that, when moving ¢ by
a small amount in space, the new perspective projection of S remains regular. We
call the projection center of mazimum tolerance, the point ¢; that allows maximum
movement in space in such a way that the projection of S is always regular. In the
general case, the time complexity of the algorithm that finds the center of maximum
tolerance is high, but this time complexity decreases when we restrict the possible
position of the center of projection. A frequent case is when the projection center
lies on a line segment. In this situation we have the following:

THEOREM 3.3. Given a set of n disjoint segments in space, if the projection
center of mazimum tolerance that lies in a segment of a line exists, it can be found
in O(n3logn) time and O(n®) space.

Proof. We can decide in O(n) time if the line segment [ consists of forbidden
points. If not all the points of [ are forbidden points, then the intersection of | with
the O(n?) double wedges and the O(n®) quadrics of forbidden points will generate a
set L of O(n?®) forbidden points of I. We can sort the points of L in O(n? logn) time
and then, searching in order the points of L in O(n?®) time, find the segment s; of
maximum length determined by two consecutive ordered points of L. The projection

center of maximum tolerance that lies in [ is the mid-point ¢; of the segment s;. W

The definition of regular perspective projection of a set of disjoint segments can
be extended to 3D simple polygonal chains and 3D wire-frame drawings of graphs,
i.e. 3D Féry drawings in which all edges are line segments with disjoint interiors.
The fundamental difference from the regular perspective projections of a set of
disjoint segments is that since two consecutive edges of a simple polygonal chain
or a Fary drawing share a vertex, the same occurs with their projection. The
forbidden points will be those determined by the edges of the simple polygonal



chain or the Fary drawing considered as a set of segments, with the exception of
the points of the lines that pass through a vertex and that do not cut any other
edge distinct from the two consecutive edges that share the vertex. Therefore, from
the former observations and the analysis of the methods used above, it follows that
the previous theorems can be easily extended to a simple polygonal chain and to a
Fary drawing in space.

In the work of Bhattacharya and Rosenfeld [6], a special type of regular orthogo-
nal projections of a polygonal chain, called Wirtinger projections, is introduced. In
a Wirtinger projection, no two consecutive edges of the simple polygonal chain can
be projected colinearly. To the forbidden points determined by the simple polygo-
nal chain, we must add the points of the planes that contain two consecutive edges
of the chain. Since the planes have zero measure in space, the results obtained for
the regular perspective projections of a simple polygonal chain remain valid for the
Wirtinger perspective projections.

4. MINIMUM-CROSSING AND SIMPLE PROJECTIONS

DEFINITION 4.1. Let S be a set of disjoint segments in space. The perspective
projection of S is said to be minimum-crossing when the number of crossings of
the projected segments of S is minimum. If the minimum number of crossings is
zero we call such projections simple or crossing free.

\
\
| \ <
™

FIG. 4. Non-simple segment projection

As in the case of regular projections, the number of crossings depends only on
the position of the projection center with respect to the segments of S.

THEOREM 4.1. Given a set of n disjoint segments in space, deciding whether
their projection is simple can be done in O(nlogn) time and O(n) space.

Proof. 1t suffices to decide if two of the n projected segments of S* intersect. To
do this, we can use the algorithm described in [15] that detects if any two segments

intersects in O(nlogn) time and O(n) space. W

When the projection center ¢ belongs to a transversal of two segments of S the
point ¢ is a forbidden one. Let T'(s,s’) be the set of transversals of the segments
s,8' € S. Since T'(s,s') is a region of space that does not have zero measure (see
Figure 5), it is possible that a simple perspective projection of S does not exist. The



FIG. 5. Forbidden points of two segments

problem of deciding if a simple perspective projection of S exists can be transformed
to the problem of deciding if the O(n?) regions determined by every two segments
cover the space. We will denote by T the contour of the union of those regions.
Therefore, a simple perspective projection of S exists if and only if 7' does not
cover the space. In this case, if we take any point c¢ in the complement of T" as the
projection center, we will obtain a simple perspective projection of S.

THEOREM 4.2. Given a set of n disjoint segments in space, finding a minimum-
crossing perspective projection can be done in O(n8) time. When the minimum
number of crossings is zero the perspective projection found is simple.

Proof. When the projection of two segments s and s’ of S cross each other,
then the projection center ¢ belongs to the region T'(s,s’). Therefore, in order
to determine the center of projection ¢ of the minimum-crossing perspective pro-
jection of S, we can choose a point ¢ covered by the minimum number of such
regions. Let P be the set of the O(n?) planes determined by the segments of S
taken two by two. Let A(P) be the arrangement corresponding to the planes of
P. Tt suffices to compute the arrangement A(P) using the algorithm of [16], and
during the construction, for each cell of the arrangement to compute the T'(s, s)
regions that contain it. The entire procedure can be done in O(n®) time and
space. By doing depth-first search on the dual graph of A(P) we can compute in

O(n®) time the cell of A(P) covered by the minimum number of T'(s, s') regions. M

The time complexity of finding a minimum-crossing perspective projection de-
creases when we restrict the possible positions of the center of projection.

THEOREM 4.3. Given a set of n disjoint segments in space, finding a minimum-
crossing perspective projection, with the restriction that the projection center lies
on a line segment, can be done in O(n? log n) time and O(n?) space.

Proof. The points of the segment [ covered by the minimum number of regions
T(s,s") produce perspective projections of S with the minimum number of cross-
ings. The intersection of [ with each T'(s,s') gives one or two sub-segments of [.
When we compute the intersection of [ with the O(n?) regions T'(s, s'), we obtain a
set L of O(n?) sub-segments in O(n?) time. In order to find the points of I covered
by the minimum number of T'(s, s') regions, we can sort the set E of endpoints of
the segments of L in O(n? log n) time and then, by traversing the O(n?) points of E
in order, find the parts of the sub-segments of L covered by the minimum number of

T(s,s') regions. W



The definition of minimun-crossing perspective projection of a simple polygonal
chain or a Fary drawing in space is analogous to the definition for a set of disjoint
segments in space. Analyzing the techniques used in the study of the minimun-
crossing perspective projections of a set of disjoint segments, it is evident that the
results we have obtained for these, are also valid for simple polygonal chains and
3D Féry drawings.

5. MONOTONIC PROJECTIONS

5.1. Geometric preliminaries

We recall some definitions to be used later about Pliicker coordinates and co-
efficients. We refer the interested reader to [17, 18] for further details on this
topic. Frequently, it is useful to represent an oriented line by its Pliicker coordi-
nates and coefficients. The reason for this is that they allow us to represent an
oriented line as a point and a hyperplane in the oriented projective space of dimen-
sion five P?, in such a way that we can solve problems related to oriented lines by
using known results about hyperplane arrangements in P®. From now on, [ = ab
will denote the oriented line from a to b in that order. Let a = (aq,a1,a2,a3)
and b = (b, b1, b2, b3), with ag,by > 0, denote the homogeneous coordinates of a
and b, respectively. By definition, the Pliicker coordinates of | are the six-tuple
7T(l) = (71'01,71'02,7T12,7T03,7T13,7T23) with T35 = aibj - ajb,-, 0 S 1 < j S 3. The
Pliicker coordinates of | can be interpreted as the homogeneous coordinates of
a point in P®. We call w(l) the Pliicker point of I in P5. The Pliicker coeffi-
cients of [ are defined by the six—tuple w(l) = (7(23, —T713, 703,712, —7T02,71’01). The
Pliicker coefficients of I can be thought of as the coefficients of the hyperplane
h(l) = {p € P3|w(l) -p = 0} in P, referred to as the Plicker hyperplane of I. The
Pliicker hyperplane h(l) of [ induces open positive and negative Pliicker half-spaces
given by h*(l) = {pe P%|w(l)-p >0} and h=(I) = {p € P?|w(l) -p < 0}.

Let I = ab and I' = ¢d be two oriented lines. When 7 (1) € h(l'), then side(l,1') =
= mo1()ma3(l') — mo2()mi3 (') + mia(Dmoz(l') + moz(D)m12(l') — miz(Dmo2(l') +
+ ma3(l)mo1(I") = 0. In general, the absolute value of side(l,l') is six times the
volume of the tetrahedron abed. Therefore, lines [ and I' are coplanar, incident or
parallel, if and only if side(l,1') = 0. The sign of side(l,l') gives the orientation
of the tetrahedron abed (that can be interpreted with the right-hand rule) and
allows us to define the relative orientation of the two oriented lines | and I’. When
side(l,1") > 0, then it is w(I) € h*(I') and the line I’ is located to the right of the
line {. Similarly, if side(l,1") < 0, then it is w(I) € h~ (I') and the line I’ is located
to the left of the line /.

Note that the six-tuple m = (w1, 72, 12, To3, 713, T23) represents an oriented line
if and only if it satisfies the quadratic relation mgy o3 — moam13 + T12mMe3 = 0, which
states that every line is incident to itself. The former quadratic relation defines a

four-dimensional subset of P® of degree two, referred to as the Pliicker hypersurface
II.

5.2. Monotonicity in space
Given a line [, the pencil of planes that goes trough [ will be denoted by H(I).



DeFINITION 5.1. A simple polygonal chain in space is said to be strictly mono-
tonic with respect to a line [ when the intersection of the polygonal chain with any
plane of H(l) is the empty set or a point.

Observe that if P is strictly monotonic with respect to line [, then ! can not
intersect the convex hull of the chain P, because on the contrary there always exist
a plane of H(I) that intersects P in two points. Note that when we move the line
to infinity, we obtain the standard definition of monotonicity of a polygonal chain
with respect to a direction in space: the intersection of the simple polygonal chain
with any plane of the pencil of parallel planes orthogonal to the fixed direction is
the empty set or a point.

FIG. 6. Polygonal chain strictly monotonic with respect to a line

DEFINITION 5.2. Let P be a simple polygonal chain in space. A perspective
projection P* of P is said to be monotonic when the polygonal chain P* is strictly
monotonic with respect to some direction of the projection plane.

Let P be a strictly monotonic polygonal chain in space with respect to an oriented
line I. Let ¢ be a point of [ and let 7 be a plane that separates [ and P. Denote
by P* the projection of P from center ¢ onto plane m. Finally, let @ be a vector
of the plane 7 orthogonal to the direction vector of the straight line I. Under these
conditions the projection P* of P is a monotonic projection. More specifically, we
have the following:

THEOREM 5.1. The polygonal chain P* of the plane w is strictly monotonic with
respect to the direction 7.

Proof. We prove by contradiction that the intersection of the polygonal chain P*
with any line of the pencil of parallel lines orthogonal to the direction 77 is the empty
set or a point. Assume that a line r in 7 orthogonal to 77 intersects two edges of P*
at the points e* of and f* respectively. Let e and f be, respectively, the points of P
whose projections are e* and f*. Under these conditions, the plane 7 (r) in H(l) that
passes through r intersects the simple polygonal chain P in e and f. Therefore the
chain P is not strictly monotonic with respect to the line [ contradicting our hypoth-

esis. W



Let P = {vy,---,vn} be a simple polygonal chain in space. Fori =1,---,n — 1,
let I; be the oriented line going through the vertices v; and v;41 in that order. Let:

n—1 n—1
L=()rtW) 5 R=()h ().
i=1 =1

We will denote S(P) the set of Pliicker points 7(s) of lines s that intersect with
the convex hull conv(P) of the simple polygonal chain P.

THEOREM 5.2. The simple polygonal chain P is strictly monotonic with respect
to line 1 if and only if 7(l) € (LUR — S(P))N1II.

Proof. If P is strictly monotonic with respect to I, then we know that w(l) ¢
S(P). Besides, it must be 7(l) € (L U R) N II because, on the contrary, line [
is located in different sides of two consecutive lines /; and l;;; and, consequently,
there exist a plane of H(l) that intersects I; and l;11, in contradiction with the
monotonicity of P with respect to I. Conversely, if #(l) € (LU R — S(P)) N
II, then P is strictly monotonic with respect to [. Indeed, if we do a rotational
sweep of a plane that passes consecutively through [ and through the points of the

chain P, from v; to v,, then the sweep plane and P always intersect at a point. H

THEOREM 5.3. Given a simple polygonal chain of n vertices, determining whether
it is strictly monotonic with respect to some line can be done in O(n log n) time.

Proof. We will denote L' = L— S(P) and R' = R— S(P). In order to determine
whether P is strictly monotonic respect to some line, it suffices to check whether
L'NTT# 0 or RN # (. We begin by computing, in O(n log n) time, the convex
hull conv(P) of P and then constructing the set O H(P) of oriented lines, according
to the order of the vertices of P, contained in the edges of conv(P) — P. Since L'
(R') is the set of lines located to the left (right) of all the lines I; that does not
intersect conv(P), then these lines must be located also to the left (right) of the
lines of OH(P). So, we have:

I = <(j h+(li)> ﬂ ﬂ )h+(s) ‘R = (O h(li)> ﬂ ﬂ h=(s)

s€EOH(P s€EOH(P)

Since L' and R’ are the intersection of halfspaces, they are convex polytopes, pos-
sibly unbounded, of P3. Note that because II is of degree two, the number of inter-
section points with each face of any dimension of L' or R’ is constant. Therefore, it
suffices to determine if L' or R’ are empty sets. This can be done in O(n) time using

linear programming techniques [19]. W

Given the simple polygonal chain P of n vertices, we will find all the lines ¢
such that P is strictly monotonic. Note that it is possible that any such line does
not exist. Transferring the problem to the P5 projective space, it is equivalent
to computing (L' NIM) U (R'NII) = (L' U R") N1, a set that eventually can be



empty. We will follow the method described in [17] in order to compute all the
features of a polytope. First of all we must have a bound on the number of the
features of the polytope; by the Upper Bound Theorem [20], the number of features
of the polytopes L' and R’ is known to be O(nl3%/2]) = O(n?). It is not difficult to
find configurations that attain this bound. Since II is of degree two, intersecting
a polytope with II can only increase the above complexity by a constant factor.
Finally, in order to compute the polytopes L' and R’ we can use an algorithm
of Chazelle [21] that constructs the representation of a polytope by the incidence
graph of their faces [20] in O(n?) time. Therefore, we have the following:

THEOREM 5.4. Given a simple polygonal chain of n vertices, computing all the
lines with respect to which it is strictly monotonic can be done in O(n?) time.

Suppose that L' N II and R' N1II are empty. If a chain is not strictly monotonic
with respect to a line, it may be desirable to know which lines are closer to make
the chain strictly monotonic (in other words, to compute the set of lines that lies
to the left or to the right of the maximum number of edges of P).

THEOREM 5.5. Given a simple polygonal chain of n vertices, computing the set
of lines that lies to the left or to the right of the mazimum number of edges of the
polygonal chain can be done in O(n®) time. When this mazimum number equals n,
the polygonal chain is strictly monotonic with respect to the lines found.

Proof. First, we construct the arrangement A(H) of the set of O(n) hyperplanes
determined by the edges of the polygonal chain P. This process can be done in
O(n®) time using the method of [16]. Next we determine, in O(n®) time, the cells of
A(H) that intersect IT and, by selecting a point for each of these cells, we compute
the number of times that the line that represents the point lies to the left and to
the right of the edges of P. Finally, by doing depth-first search on the dual graph of
A(H), we compute in O(n®) time the cells of A(H) formed by points that represent

lines that lie to the left or to the right of the maximum number of edges of P. H

The definition of monotonicity of a simple polygonal chain can be easily extended
to a geometric rooted tree (in [3] several applications of geometric rooted trees to
Medicine are illustrated). A geometric rooted tree is strictly monotonic with respect
to a line when the path from the root to every vertex is a monotonic polygonal chain
with respect to the given line. So, it is evident at once that the results that we have
obtained for polygonal chains are also valid for rooted trees. Monotonic projections
are also important when viewing hierarchical graph drawings.

6. CONCLUSIONS

In the paper by Bose et al. [3], the term nice projection was coined for those
projections which preserve certain properties of the objects in space. In their work,
they consider orthogonal projections and define several criteria of niceness. Here we
consider some of their criteria and use perspective projections instead. Computing
nice perspective projections is harder in general because there is an additional



parameter (the projection center) to be taken into account and that makes the
space of forbidden directions more complex.

Algorithms have been presented to compute nice perspective projections un-
der several measures of niceness: regularity, simplicity and minimum-crossing and
monotonicity. The results presented here are immediately applicable to problems
that arise in areas such as Computer Vision, Computer Graphics, Graph Drawing,
Knot Theory and Computational Geometry.

Almost all the complexity results discussed in this paper are restricted to inputs
of idealized points and line segments viewed under the real RAM model of compu-
tation. This may be appropriate for some areas such as Knot Theory. For other
areas, such as Computer Graphics and Computer Vision, such an assumption im-
plies infinite resolution images, an unrealistic assumption. Extending our work to
projections of 3D objects for a finite resolution image model is an open problem.
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