All meals for a dollar and other vertex
enumeration problems

David Avis

Kyoto University and McGill University
http://cgm.cs.mcgill.ca/~avis

October 18, 2018

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Vertex Enumeration

Reverse Search

Parallel Reverse Search

Q>

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Outline of talk

Diet problem

e Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Diet problem

e Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

e Decison variables: How much of each product you will buy.

Vertex Enumeration

Diet problem

e Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

e Decison variables: How much of each product you will buy.

e Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

Vertex Enumeration

Diet problem

Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

Decison variables: How much of each product you will buy.

Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

Objective Eat for less than $1.

Vertex Enumeration

Sample data

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) (8) (mg) ¢ | Serv.

x1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
X4 Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
Xp Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

The decision variables are xi, x2, ..., X.

Fractional servings are allowed.
From Linear Programming, Vasek Chvatal, 1983

Vertex Enumeration

Linear programming formulation for diet problem

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) (8) (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800
min z = 3x1 + 24x; + 13x3 + 9x3 + 20x5 + 19x6
s.t. 110x; + 205x» + 160x3 + 160xs + 420xs + 260xs > 2000
4x; + 32xp + 13x3+8xa +4x5 +14xs > 55
2x1 4+ 12x» + b54x3 + 285x4 + 22x5 +80xs > 800

OSX1§4-7

O§X4§87

0§X2§37
0§X5§27

0§X3§27
0§X5§2

Vertex Enumeration

Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

Vertex Enumeration

Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

e x; = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢

Vertex Enumeration

Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

e x; = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢

e Where are the chicken, eggs and pork?

Vertex Enumeration

Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

e x; = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢

e Where are the chicken, eggs and pork?

e Do | have to eat the same food every day?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

e Many desirable items were not included in the optimum
solution

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

e Many desirable items were not included in the optimum
solution

e We obtained a unique optimum solution, but ...

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

e Many desirable items were not included in the optimum
solution

e We obtained a unique optimum solution, but ...

e ... people (and managers) like to make choices!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

Many desirable items were not included in the optimum
solution

We obtained a unique optimum solution, but ...

... people (and managers) like to make choices!

Ask the right question !

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

Many desirable items were not included in the optimum
solution

We obtained a unique optimum solution, but ...

... people (and managers) like to make choices!

Ask the right question !

What are all the meals | can eat for at most $17

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x + 13x3 + 9x4 + 20x5 + 19x5 < 100

110x; + 205xo + 160x3 + 160x4 + 420x5 + 260xg > 2000
4x1 + 32xp + 13x3 4+ 8xs4 +4x5 + 14xg > 55
2x1 + 12xo + 54x3 + 285x4 + 22x5 + 80x > 800

0<x <4, 0<x<3 0<x3<2,
0<x <8, 0<x5<2, 0<x<2

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x + 13x3 + 9x4 + 20x5 + 19x5 < 100

110x; + 205xo + 160x3 + 160x4 + 420x5 + 260xg > 2000
4x1 + 32xp + 13x3 4+ 8xs4 +4x5 + 14xg > 55
2x1 + 12xo + 54x3 + 285x4 + 22x5 + 80x > 800

0<x <4, 0<x<3 0<x3<2,
0<x <8, 0<x5<2, 0<x<2

e Any solution to these inequalities is a meal for under $1

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x + 13x3 + 9x4 + 20x5 + 19x5 < 100

110x; + 205xo + 160x3 + 160x4 + 420x5 + 260xg > 2000
4x1 + 32xp + 13x3 4+ 8xs4 +4x5 + 14xg > 55
2x1 + 12xo + 54x3 + 285x4 + 22x5 + 80x > 800

0<x <4, 0<x<3 0<x3<2,
0<x <8, 0<x5<2, 0<x<2

e Any solution to these inequalities is a meal for under $1

e But this is just a restatement of the problem

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x + 13x3 + 9x4 + 20x5 + 19x5 < 100

110x; + 205xo + 160x3 + 160x4 + 420x5 + 260xg > 2000
4x1 + 32xp + 13x3 4+ 8xs4 +4x5 + 14xg > 55
2x1 + 12xo + 54x3 + 285x4 + 22x5 + 80x > 800

0<x <4, 0<x<3 0<x3<2,
0<x <8, 0<x5<2, 0<x<2

e Any solution to these inequalities is a meal for under $1
e But this is just a restatement of the problem

e ... how do | find these solutions?

Vertex Enumeration

A more useful solution

‘All menus for a $1'

All (17) Extreme
Solutions to the Diet Problem with Budget $1.00
Cost Oat- Chicken Eggs Milk Cherry Pork

meal Pie Beans
925 4. 0 0 45 2. 0
97.3 4. 0 0 8. 0.67 0
98.6 4. 0 0 2.23 2. 1.40
100. 1.65 0 0 6.12 2. 0
100. 2.81 0O 0 8. 0.98 0
100. 3.74 0 0 2.20 2. 1.53
100. 4. 0 0 2.18 1.88 1.62
100. 4. 0 0 2.21 2. 1.48
100. 4. 0 0 5.33 2. 0
100. 4 0 0 8. 0.42 0.40
100. 4 0 0 8. 0.80 0
100. 4 0 0.50 8. 0.48 0
100. 4 0 1.88 : 2. 0
100. 4. 0.17 0 2 1.24
100. 4. 0.19 0 0.58 0
100. 4. 0.60 0 2 0
100. 4. 0 1.03 2 0.78

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solution

All (17) Extreme

Solutions to the Diet Problem with Budget $1.00

Cost Oat- Chicken Eggs Milk Cherry Dork
meal Pie Beans

925 4. 0 0 2.

97.3 4. 0 0 0.1

98.6 4. 0 0 2.

100. 0 0 2.

100. 0 0 0.

100. 0 0 2.

100. 0 0 1.

100. 0 0 2.

100. 0 0 2.

100. 0 0 0.

100. 0 0 0.

100. 0 0.50 0.4

100. 0 1.88 2.

100. 017 0 2.

100. 019 0 0.

100. 0.60 0 2.

100. 0 1.03 2.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solution

All (17) Extreme

Solutions to the Diet Problem with Budget $1.00

Cost Oat- Chicken Eggs Milk Cherry Dork
meal Pie Beans

925 4. 0 0 5 2.

97.3 4. 0 0 . 0.1

98.6 4. 0 0 .23 2.

100. 0 0 12 2,

100. 0 0 . 0.

100. 0 0 220 2

100. 0 0 18 1

100. 0 0 221 2.

100. 0 0 33 2.

100. 0 0 0.

100. 0 0 0.

100. 0 0.4

100. 0 8 2.

100. 0 2

100. 0 & 0

100. 0 3.73 2.

100. 1.03 221 2.

® Taking convex combinations of rows gives new meals

Outline

Vertex Enumeration

A more useful solution

Reverse Search

All menus for a $§1

All (17) Extreme
Solutions to the Diet Problem with Budget $1.00

Cost

100.

Oat- Chicken Eggs Milk Cherry Pork
Pie

meal
4.
4.
4.

1.65

[l ol ol ol ol 5 o al o

Beans

® Taking convex combinations of rows gives new meals

Parallel Reverse Search

e Eg. Taking half each of the last two rows gives a $1 meal with all foods

Outline Vertex Enumeration Reverse Search

10

Example in R?

1,-10)
“1.1,0)
X3
©0,0,-1) ¥

X2

H-representation:

1-x +x3;20
I —x 4120
1+x +x320
1 +x+x320
~x;20
V-representation:
v =(-L1,0), v, =(-1,-1,0), v3=(1,-1,0),

va=(1,1,0), vs =(0,0,-1)

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

o V-representation (Vertices): vi, o, ..., vy are the vertices of P

N
X = E)\,'V,'
i=1

N
where > X = 1, X >0,i=12..,N
i=1

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

o V-representation (Vertices): vi, o, ..., vy are the vertices of P

N
X = Z)\,‘Vi
i=1
N
where > X = 1, X >0,i=12..,N
i=1

e Vertex enumeration: H-representation = V-representation

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

e V-representation (Vertices): vi, va, ..., vy are the vertices of P
N
X = Z)\,‘Vi
i=1
N
where > X = 1, X >0,i=12..,N
i=1

e Vertex enumeration: H-representation = V-representation

e Convex hull problem: V-representation = H-representation

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

e V-representation (Vertices): vi, va, ..., vy are the vertices of P

N
X = Z)\,‘Vi
i=1
N
where > X = 1, X >0,i=12..,N
i=1

e Vertex enumeration: H-representation = V-representation
e Convex hull problem: V-representation = H-representation

e Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

e Wide variety of users: scientists, engineers, economists,
operations researchers ...

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

e Wide variety of users: scientists, engineers, economists,
operations researchers ...

e ...who are not experts in polyhedral computation ...

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

e Wide variety of users: scientists, engineers, economists,
operations researchers ...

e ...who are not experts in polyhedral computation ...

e ... and not software engineers

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

Wide variety of users: scientists, engineers, economists,
operations researchers ...

e ...who are not experts in polyhedral computation ...

e ... and not software engineers

Software should be easy to install, run on standard work
stations and ...

Vertex Enumeration

Who uses vertex enumeration?

Wide variety of users: scientists, engineers, economists,
operations researchers ...

...who are not experts in polyhedral computation ...
. and not software engineers

Software should be easy to install, run on standard work
stations and ...

. should run faster on better hardware!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

e Wide variety of users: scientists, engineers, economists,
operations researchers ...

e ...who are not experts in polyhedral computation ...
e ... and not software engineers

e Software should be easy to install, run on standard work
stations and ...

e ... should run faster on better hardware!

e Goal: parallelize Irs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

PHYSICAL REVIEW B
CONDENSED MATTER

THIRD SERIES, VOLUME 49, NUMBER 1 1 JANUARY 1994-1

Ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor inter:

G. Ceder and G. D. Garbulsky
Department of Materials Science and Engineering, Massachusetis Institute of Technology, Cambridge, Massachusetts 02139

D. Avis
School of Computer Science, McGill University, Montreal, Quebec, Canada H34 247

K. Fukuda
Graduate School of Systems Management, University of Tsukuba, Tokyo, 3-29-1 Otsuka, Bunkyo-ku, Tokyo 112, Japan
(Received 9 September 1993)

The possible ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor pair
interactions are investigated by constructing an cight-dimensional configuration polytope and enumerat-
ing its vertices. Although a structure could not be constructed for most of the vertices, 31 ternary
ground states are found, some of which correspond to structures that have been observed experimental-
ly.

Outline

Vertex Enumeration

Reverse Search

Case study: MIT problem

large problems. The drawback of the method is that
many duplicates of the same vertex can be gencrated
when degeneracy 15 present. While both methods suc-
cessfully generated all vertices of the polytope, the double
description method seems to be more appropriate for this
computation because of the high degeneracy and
moderate size of the inequality system. For larger sys-
tems, however, the reverse search method may become
the only feasible algorithm for vertex enumeration.

I, RESULTS

The ground-state polytope we found is highly degen-
erate and consists of 4862 vertices in the eight-
dimensional space spanned by the correlation functions.
Some of the vertices found correspond to structures that
ean be transformed into each other by permutations of
the A, B, and C species. If these are considered to be the
same structure, the total number of distinct structures is

ool
c9eds
Qo000
©II63
Qo000
8c3

O
C@O
Q00
e
.
D]

O
cPoQe O@
00000 20
Q0! e
[B]:]8)] [@]s]

Do

g

Parallel Reverse Search

Case study: MIT problem

«O»r <« F»

it
-

DA

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

e Polytope mit defined by 729 inequalities in 8 dimensions

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

e Polytope mit defined by 729 inequalities in 8 dimensions
e Output consists of 4862 vertices

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

e Polytope mit defined by 729 inequalities in 8 dimensions
e Output consists of 4862 vertices

e In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
Irs (20MHz?)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

Polytope mit defined by 729 inequalities in 8 dimensions

Output consists of 4862 vertices

In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
Irs (20MHz?)

Goal: Goal: parallelize Irs for multicore workstations using
existing code

Outline

Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

Polytope mit defined by 729 inequalities in 8 dimensions
Output consists of 4862 vertices

In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
Irs (20MHz?)

Goal: Goal: parallelize Irs for multicore workstations using
existing code

In 2012:

cddr+ | Irs mplrs

cores=8 cores=16 | cores=32
secs | secs || secs | su | secs | su | secs | su

368 | 496 | 99 | 50| 44 | 112 | 26 | 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on Irs

Vertex Enumeration

Case study: MIT problem

Polytope mit defined by 729 inequalities in 8 dimensions
Output consists of 4862 vertices

In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
Irs (20MHz?)

Goal: Goal: parallelize Irs for multicore workstations using
existing code

In 2012:

cddr+ | Irs mplrs

cores=8 cores=16 | cores=32
secs | secs || secs | su | secs | su | secs | su

368 | 496 | 99 | 50| 44 | 112 | 26 | 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on Irs

32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 x 1300=software)

Vertex Enumeration

More cores
Name Irs mplrs secs/efficiency
(mai20) || 96 cores | 128 cores | 160 cores | 192 cores || 256 cores | 312 cores

c40 10002 329 247 203 179 134 129
1 48 48 46 44 (.44) (.37)

perml0 2381 115 94 85 96 64 61
1 .34 .31 .28 .20 (:23) (.20)

mit71 21920 686 516 412 350 231 205
1 .54 .54 .54 .53 (.60) (.55)

bv7 9040 302 229 184 158 98 88
1 49 49 49 47 (.57) (52)
cpb 1774681 || 56700 43455 34457 28634 18657 15995
1 .63 .62 .63 .63 (.72) (.69)

Table: efficiency = speedup/number of cores (mai cluster)

Vertex Enumeration

Even more cores ...

Name mplrs
1 core | 300 cores | 600 cores | 900 cores | 1200 cores
c40 17755 89 49 43 44
1 .66 .60 46 .34
mit71 36198 147 80 63 49
1 .82 75 .64 .62
bv7 10594 48 27 27 29
1 .73 .65 A4 .30
cpb 2400648 9640 4887 3278 2570
1 .83 .82 .81 .78

Table: Tsubame2.5 at Tokyo Institute of Technology: secs/efficiency

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:
o Generate all triangulations on a given point set.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:

o Generate all triangulations on a given point set.
o Generate all planar spanning tress on a given set of points.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:
o Generate all triangulations on a given point set.
o Generate all planar spanning tress on a given set of points.
e Generate all the cells or vertices of an arrangement of lines
planes, or hyperplanes.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:
o Generate all triangulations on a given point set.
o Generate all planar spanning tress on a given set of points.
e Generate all the cells or vertices of an arrangement of lines
planes, or hyperplanes.
o Generate all vertices of a convex polyhedron

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, '91)

e Space efficient technique to list unstructured discrete objects
e Typical Problems:

o Generate all triangulations on a given point set.

o Generate all planar spanning tress on a given set of points.

e Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.

o Generate all vertices of a convex polyhedron

e Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

e V are the objects to be generated

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

e V are the objects to be generated
e Define graph G = (V, E) by:

Outline Vertex Enumeration Reverse Search

Reverse Search - Adjacency Oracle

e V are the objects to be generated
e Define graph G = (V, E) by:

e Forevery ve Vi=12 ., A (maximum degree)

v/ where w € E

Adj(v, i) = {

@ otherwise

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

V are the objects to be generated
Define graph G = (V, E) by:

e Forevery ve Vi=12 ., A (maximum degree)

v/ where w € E

Adj(v, i) = {

@ otherwise

For every edge v’ in G there is a unique i such that
v/ = Adj(v,).

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

V are the objects to be generated
Define graph G = (V, E) by:

e Forevery ve Vi=12 ., A (maximum degree)

v/ where w € E

@ otherwise

Adj(v, i) = {

For every edge v’ in G there is a unique i such that
v/ = Adj(v,).

"Similar’ objects are joined by an edge

Reverse Search

Reverse Search - Adjacency Oracle

V are the objects to be generated
Define graph G = (V, E) by:

Forevery v e V i=1,2, ..,A (maximum degree)

v/ where w € E

@ otherwise

Adj(v, i) = {

For every edge v’ in G there is a unique i such that
v/ = Adj(v,).
"Similar’ objects are joined by an edge

Maximum degree A should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph

e v* € V is a target vertex

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph
e v* € V is a target vertex
e f:V — Vis a local search function s.t.:

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph
e v* € V is a target vertex

e f:V = Visa local search function s.t.:
o f(v¥)=v*

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph

e v* € V is a target vertex

e f:V — Vis alocal search function s.t.:
o f(v¥)=v*
e lterating f on any v leads to v*

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

e G =(V,E) is the given graph

e v* € V is a target vertex

e f:V — Vis a local search function s.t.:
o f(v¥)=v*
e lterating f on any v leads to v*
o le. f(F(f..(f(v))..)=v"

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

G = (V, E) is the given graph

v* € V is a target vertex

f: Vi Vis a local search function s.t.:
o f(v¥)=v*
e lterating f on any v leads to v*
o le. f(F(f..(f(v))..)=v"

f defines a spanning tree on G rooted at v*

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

G = (V, E) is the given graph

v* € V is a target vertex

f: Vi Vis a local search function s.t.:
o f(v¥)=v*
e lterating f on any v leads to v*
o le. f(F(f..(f(v))..)=v"

f defines a spanning tree on G rooted at v*

e Reverse search generates this tree starting at v*

Reverse Search

Example - Problem

Problem:

Generate permutations of {1,2,.., n}

Input:

Output:

Outline Vertex Enumeration Reverse Search Parallel Reverse Search
Example - Adjacency Oracle
{71, 72, ..., Tn isapermutationof {1,2, ... n}
Adj(m, i) = (71, T2, cooy Wi—1, Tjg1, Ty ...p) for i=1,2,...,n— 1.

Note: A=n—-1

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Local Search

Let m = (71, 72, ...,)
Target: (1,2,...,n)

f(m) = (M1, T2y ey W1y W1y Tiy eves Tny)

where j is the smallest index for which 7; > 74 1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Reverse Search Tree

Reverse Search

Reverse Search - Pseudocode

Algorithm 1 reverseSearch(v*, A, Adj, f)

repeat
v vij«—0
while j < A do
j+—Jj+1
if f(Adj(v,j)) = v then
v < Adj(v,)) forward step
print v
j«0
end if
end while
if v # v* then
(v,j) < f(v) backtrack step
end if
untilv=v*andj=A

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-|

————u

il

— | e e

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-|

————u

il

— | e e

e G =(V,E) is defined by the vertices and edges of the
polytope

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-|

————u

il

— | e e

e G =(V,E) is defined by the vertices and edges of the
polytope
e Pivoting between vertices defines the adjacency oracle

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-|

—————————u

il

— | e e

e G =(V,E) is defined by the vertices and edges of the
polytope

e Pivoting between vertices defines the adjacency oracle

e Simplex method gives a path from any vertex to the optimum
vertex

Reverse Search

Reverse search for vertex enumeration-|

————u

il ‘

— | e e

G = (V, E) is defined by the vertices and edges of the
polytope

Pivoting between vertices defines the adjacency oracle
Simplex method gives a path from any vertex to the optimum
vertex

Irs is a C implementation available on-line

Outline

Vertex Enumeration

Reverse Search

Reverse search for vertex enumeration-I|

http://cgm.cs.mcgill.ca/ avis/C/Irs.html

/T001

/'011

101

/.000

—-
path of
simplex
method

111

7'010

100

(a) The “simplex tree”

jective (— X ;).

110

induced by the ob-

/7
1007010 o001
1 7 N\
o 10 o
111

(b) The corresponding re-

verse search tree.

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

e Objects generated are not stored in a database: no collisions

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

e Objects generated are not stored in a database: no collisions

e Each vertex is reported once and may be discarded afterwards

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

e Objects generated are not stored in a database: no collisions
e Each vertex is reported once and may be discarded afterwards

e Subtrees may be enumerated independently without
communication

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

Objects generated are not stored in a database: no collisions

Each vertex is reported once and may be discarded afterwards

Subtrees may be enumerated independently without
communication

Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

o all subtrees to be listed at some fixed depth

Outline Vertex Enumeration Reverse Search

Extended Reverse Search

Extension to allow :
o all subtrees to be listed at some fixed depth

e a subtree to be enumerated from its given root

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search

Extended Reverse Search

Extension to allow :
e all subtrees to be listed at some fixed depth

e a subtree to be enumerated from its given root
e Additional parameters:

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :
e all subtrees to be listed at some fixed depth

e a subtree to be enumerated from its given root
e Additional parameters:
e maxd is the depth at which forward steps are terminated.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :
e all subtrees to be listed at some fixed depth
e a subtree to be enumerated from its given root

e Additional parameters:

e maxd is the depth at which forward steps are terminated.
e mind is the depth at which backtrack steps are terminated.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :
e all subtrees to be listed at some fixed depth
e a subtree to be enumerated from its given root

e Additional parameters:

e maxd is the depth at which forward steps are terminated.
e mind is the depth at which backtrack steps are terminated.
e d is the depth of subtree root v*.

Reverse Search

Extended Reverse Search - Pseudocode

Algorithm 2 extendedReverseSearch(v*, A, Adj, f, d, maxd, mind)

repeat
v vij—0
while j < A and d < maxd do
J—j+1
if f(Adj(v,j)) = v then
v+ Adj(v,J) forward step
print v
j+<0
d«—d+1
end if
end while
if v £ v* then
(v,j) « f(v) backtrack step
d+d-1
end if
until (d = mind or v=v*) and j = A

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

e Users are from many disciplines and are not software
engineers!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

e Users are from many disciplines and are not software
engineers!

e No special setup, extra library installation, or change of usage
for users

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

e Users are from many disciplines and are not software
engineers!

e No special setup, extra library installation, or change of usage
for users

e Use available cores on user machine 'automatically’

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

Users are from many disciplines and are not software
engineers!

No special setup, extra library installation, or change of usage
for users

Use available cores on user machine 'automatically’

¢ Reuse existing Irs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

e Phase 1: (single processor)
o Generate the reverse search tree T down to a fixed depth
init_depth.
o Redirect output nodes and store in list L.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

e Phase 1: (single processor)
o Generate the reverse search tree T down to a fixed depth
init_depth.
o Redirect output nodes and store in list L.
e Phase 2: (full parallelization)

e Schedule threads from L using subtree enumeration feature.
o Use parameter max_threads to limit number of parallel threads.
e Direct output to shared output stream.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

e Phase 1: (single processor)
o Generate the reverse search tree T down to a fixed depth
init_depth.
o Redirect output nodes and store in list L.
e Phase 2: (full parallelization)

e Schedule threads from L using subtree enumeration feature.
o Use parameter max_threads to limit number of parallel threads.
e Direct output to shared output stream.

e Phase 3: (partial parallelization)
o Wiait until all children threads terminate.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallel Reverse Search - Pseudocode

Algorithm 3 parallelReverseSearch(v*, A, Adj, f, id, mt)

num_threads < 0
redirect output to a list L Phase 1
extendedReverseSearch(v*, A, Adj, f, 0, id, 0)
remove all v € L with depth(v) < id and output v
while L # & do
if num_threads < mt then
remove any v € L Phase 2
num_threads < num_threads + 1
extendedReverseSearch(v, A, Adj, f, depth(v), 0o, depth(v))
end if
end while
while num_threads > 0 do
wait for termination signal
if L # @ then
wait until a termination signal is received
extendedReverseSearch(v, A, Adj, f, depth(v), co, depth(v))
else
num_threads < num_threads — 1 Phase 3
end if
end while

Parallel Reverse Search

plrs (Implemented by Gary Roumanis)

A portable parallel implementation of /rs derived from the parallel
reverse search algorithm.

Architecture:
e Light C++ wrapper around Irs.
e Leverage Irs’s restart feature.
e Use portable g++ compiler.
e Multi-producer and single consumer.
e Producer threads traverse subtrees of the reverse search tree,
appending nodes to a lock-free queue.
e Consumer thread removes nodes from shared queue and
concatenates to unified location.
e Leverage open source Boost library for atomic features.
e Ensures portability, maintainability and strong performance.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

3 Phases: CPU utilization

1400

1200

1000

800

CPU[%]

600

400

200

0 20 40 60 80 100 120

timels]

Figure: Input file: mit, id = 6, cores=12

Outline Vertex Enumeration Reverse Search

Estimates at depth 2: mit

T e
Degth 2

Eabiwat
=392 ‘3“\'0

Parallel Reverse Search

Outline

H
5

CPU

1400

1200

1000

1400

1200

1000

Vertex Enumeration

Reverse Search

Initial depth variation: mit

“data_d3"

g

20 40 60 80 100
timefs]

Figure: id = 3, L =127, 124 secs

“data_d6’ +

timefs]

Figure: id = 6, L = 1213, 105 secs

120

1400

Parallel Reverse Search

1200

“data_dd” 4

1000

800

H
5

600

400

200

timefs]

Figure: id = 4, L = 284, 105 secs

1400

1200

"datadi0’ +

1000

CPU

600

400

200

Figure: id =10, L

60 80 100 120
timefs]

= 7985, 125 secs

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:
e No parallelization in Phase 1.
e Complete parallelizatin in Phase 2.
o Parallelization drops monotonically in Phase 3.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:

e No parallelization in Phase 1.
e Complete parallelizatin in Phase 2.
o Parallelization drops monotonically in Phase 3.

e This leads to the following issues:

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:

e No parallelization in Phase 1.
e Complete parallelizatin in Phase 2.
o Parallelization drops monotonically in Phase 3.

e This leads to the following issues:
e Success depends on balance of the reverse search tree.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:

e No parallelization in Phase 1.

e Complete parallelizatin in Phase 2.

o Parallelization drops monotonically in Phase 3.
e This leads to the following issues:

e Success depends on balance of the reverse search tree.
o Conflicting issues in setting init_depth.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:
e No parallelization in Phase 1.
e Complete parallelizatin in Phase 2.
o Parallelization drops monotonically in Phase 3.
e This leads to the following issues:
e Success depends on balance of the reverse search tree.
o Conflicting issues in setting init_depth.
e These problems were solved in mplrs

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

e Algorithm analysis:
e No parallelization in Phase 1.
e Complete parallelizatin in Phase 2.
o Parallelization drops monotonically in Phase 3.
e This leads to the following issues:
e Success depends on balance of the reverse search tree.
o Conflicting issues in setting init_depth.
e These problems were solved in mplrs
e Please come back for part 2!

	Vertex Enumeration
	Reverse Search
	Parallel Reverse Search

