
All meals for a dollar and other vertex
enumeration problems

David Avis

Kyoto University and McGill University
http://cgm.cs.mcgill.ca/∼avis

October 18, 2018

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Vertex Enumeration

Reverse Search

Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Outline of talk

Diet problem

• Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

• Decison variables: How much of each product you will buy.

• Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

• Objective Eat for less than $1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Diet problem

• Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

• Decison variables: How much of each product you will buy.

• Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

• Objective Eat for less than $1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Diet problem

• Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

• Decison variables: How much of each product you will buy.

• Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

• Objective Eat for less than $1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Diet problem

• Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

• Decison variables: How much of each product you will buy.

• Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

• Objective Eat for less than $1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Sample data

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

The decision variables are x1, x2, ..., x6.
Fractional servings are allowed.
From Linear Programming, Vasek Chvátal, 1983

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Linear programming formulation for diet problem

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

min z = 3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6

s.t. 110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Linear programming solution

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

• x1 = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢
• Where are the chicken, eggs and pork?

• Do I have to eat the same food every day?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Linear programming solution

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

• x1 = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢

• Where are the chicken, eggs and pork?

• Do I have to eat the same food every day?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Linear programming solution

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

• x1 = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢
• Where are the chicken, eggs and pork?

• Do I have to eat the same food every day?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Linear programming solution

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

• x1 = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢
• Where are the chicken, eggs and pork?

• Do I have to eat the same food every day?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 ≤ 100

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

• Any solution to these inequalities is a meal for under $1

• But this is just a restatement of the problem

• ... how do I find these solutions?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 ≤ 100

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

• Any solution to these inequalities is a meal for under $1

• But this is just a restatement of the problem

• ... how do I find these solutions?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 ≤ 100

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

• Any solution to these inequalities is a meal for under $1

• But this is just a restatement of the problem

• ... how do I find these solutions?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 ≤ 100

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

• Any solution to these inequalities is a meal for under $1

• But this is just a restatement of the problem

• ... how do I find these solutions?

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solutionD. Avis, M
Gill Univ. 1All menus for a $1All (17) ExtremeSolutions to the Diet Problem with Budget $1.00Cost Oat- Chi
ken Eggs Milk Cherry Porkmeal Pie Beans92.5 4. 0 0 4.5 2. 097.3 4. 0 0 8. 0.67 098.6 4. 0 0 2.23 2. 1.40100. 1.65 0 0 6.12 2. 0100. 2.81 0 0 8. 0.98 0100. 3.74 0 0 2.20 2. 1.53100. 4. 0 0 2.18 1.88 1.62100. 4. 0 0 2.21 2. 1.48100. 4. 0 0 5.33 2. 0100. 4. 0 0 8. 0.42 0.40100. 4. 0 0 8. 0.80 0100. 4. 0 0.50 8. 0.48 0100. 4. 0 1.88 2.63 2. 0100. 4. 0.17 0 2.27 2. 1.24100. 4. 0.19 0 8. 0.58 0100. 4. 0.60 0 3.73 2. 0100. 4. 0 1.03 2.21 2. 0.78

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solutionD. Avis, M
Gill Univ. 1All menus for a $1All (17) ExtremeSolutions to the Diet Problem with Budget $1.00Cost Oat- Chi
ken Eggs Milk Cherry Porkmeal Pie Beans92.5 4. 0 0 4.5 2. 097.3 4. 0 0 8. 0.67 098.6 4. 0 0 2.23 2. 1.40100. 1.65 0 0 6.12 2. 0100. 2.81 0 0 8. 0.98 0100. 3.74 0 0 2.20 2. 1.53100. 4. 0 0 2.18 1.88 1.62100. 4. 0 0 2.21 2. 1.48100. 4. 0 0 5.33 2. 0100. 4. 0 0 8. 0.42 0.40100. 4. 0 0 8. 0.80 0100. 4. 0 0.50 8. 0.48 0100. 4. 0 1.88 2.63 2. 0100. 4. 0.17 0 2.27 2. 1.24100. 4. 0.19 0 8. 0.58 0100. 4. 0.60 0 3.73 2. 0100. 4. 0 1.03 2.21 2. 0.78

• Taking convex combinations of rows gives new meals

• Eg. Taking half each of the last two rows gives a $1 meal with all foods

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solutionD. Avis, M
Gill Univ. 1All menus for a $1All (17) ExtremeSolutions to the Diet Problem with Budget $1.00Cost Oat- Chi
ken Eggs Milk Cherry Porkmeal Pie Beans92.5 4. 0 0 4.5 2. 097.3 4. 0 0 8. 0.67 098.6 4. 0 0 2.23 2. 1.40100. 1.65 0 0 6.12 2. 0100. 2.81 0 0 8. 0.98 0100. 3.74 0 0 2.20 2. 1.53100. 4. 0 0 2.18 1.88 1.62100. 4. 0 0 2.21 2. 1.48100. 4. 0 0 5.33 2. 0100. 4. 0 0 8. 0.42 0.40100. 4. 0 0 8. 0.80 0100. 4. 0 0.50 8. 0.48 0100. 4. 0 1.88 2.63 2. 0100. 4. 0.17 0 2.27 2. 1.24100. 4. 0.19 0 8. 0.58 0100. 4. 0.60 0 3.73 2. 0100. 4. 0 1.03 2.21 2. 0.78
• Taking convex combinations of rows gives new meals

• Eg. Taking half each of the last two rows gives a $1 meal with all foods

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

A more useful solutionD. Avis, M
Gill Univ. 1All menus for a $1All (17) ExtremeSolutions to the Diet Problem with Budget $1.00Cost Oat- Chi
ken Eggs Milk Cherry Porkmeal Pie Beans92.5 4. 0 0 4.5 2. 097.3 4. 0 0 8. 0.67 098.6 4. 0 0 2.23 2. 1.40100. 1.65 0 0 6.12 2. 0100. 2.81 0 0 8. 0.98 0100. 3.74 0 0 2.20 2. 1.53100. 4. 0 0 2.18 1.88 1.62100. 4. 0 0 2.21 2. 1.48100. 4. 0 0 5.33 2. 0100. 4. 0 0 8. 0.42 0.40100. 4. 0 0 8. 0.80 0100. 4. 0 0.50 8. 0.48 0100. 4. 0 1.88 2.63 2. 0100. 4. 0.17 0 2.27 2. 1.24100. 4. 0.19 0 8. 0.58 0100. 4. 0.60 0 3.73 2. 0100. 4. 0 1.03 2.21 2. 0.78
• Taking convex combinations of rows gives new meals

• Eg. Taking half each of the last two rows gives a $1 meal with all foods

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

10

Example in R3

(1, 1, 0)
(1, −1 , 0)

(−1, −1 0)

(−1, 1, 0)

(0, 0, −1)

x 3

x 1

x 2

H-representation:

1 − x1 + x3 ≥ 0

1 − x2 + x3 ≥ 0

1 + x1 + x3 ≥ 0

1 + x2 + x3 ≥ 0

− x3 ≥ 0

V-representation:

v1 = (−1, 1, 0), v2 = (−1, −1, 0), v3 = (1 , −1, 0),

v4 = (1 ,1, 0), v5 = (0, 0, −1)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}

• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

More cores

Name lrs mplrs secs/efficiency
(mai20) 96 cores 128 cores 160 cores 192 cores 256 cores 312 cores

c40 10002 329 247 203 179 134 129
1 .48 .48 .46 .44 (.44) (.37)

perm10 2381 115 94 85 96 64 61
1 .34 .31 .28 .20 (.23) (.20)

mit71 21920 686 516 412 350 231 205
1 .54 .54 .54 .53 (.60) (.55)

bv7 9040 302 229 184 158 98 88
1 .49 .49 .49 .47 (.57) (.52)

cp6 1774681 56700 43455 34457 28634 18657 15995
1 .63 .62 .63 .63 (.72) (.69)

Table: efficiency = speedup/number of cores (mai cluster)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Even more cores ...

Name mplrs
1 core 300 cores 600 cores 900 cores 1200 cores

c40 17755 89 49 43 44
1 .66 .60 .46 .34

mit71 36198 147 80 63 49
1 .82 .75 .64 .62

bv7 10594 48 27 27 29
1 .73 .65 .44 .30

cp6 2400648 9640 4887 3278 2570
1 .83 .82 .81 .78

Table: Tsubame2.5 at Tokyo Institute of Technology: secs/efficiency

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:

• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:

• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:
• Generate all triangulations on a given point set.

• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:
• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.

• Generate all the cells or vertices of an arrangement of lines
planes, or hyperplanes.

• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:
• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.

• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:
• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:
• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:

• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:

• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:

• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:
• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:
• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:
• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:
• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Local Search

• G = (V ,E) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:
• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Problem

Problem:
Generate permutations of {1, 2, .., n}

Input:
n = 4

Output:

(1, 2, 3, 4) (1, 2, 4, 3) (1, 3, 2, 4) (1, 3, 4, 2) (1, 4, 2, 3) (1, 4, 3, 3)
(2, 1, 3, 4) (2, 1, 4, 3) (2, 3, 1, 4) (2, 3, 4, 1) (2, 4, 1, 3) (2, 4, 3, 1)
(3, 1, 2, 4) (3, 1, 4, 2) (3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 1, 2) (3, 4, 2, 1)
(4, 1, 2, 3) (4, 1, 3, 2) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 1, 2) (4, 3, 2, 1)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Adjacency Oracle

{π1, π2, ..., πn}isapermutationof {1, 2, .., n}

Adj(π, i) = (π1, π2, ..., πi−1, πi+1, πi , ...πn) for i = 1, 2, ..., n − 1.

Note: ∆ = n − 1

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Local Search
Let π = (π1, π2, ..., πn)
Target: (1, 2, ..., n)

f (π) = (π1, π2, ..., πi−1, πi+1, πi , ..., πn)

where i is the smallest index for which πi > πi+1.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Example - Reverse Search Tree

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search - Pseudocode

Algorithm 1 reverseSearch(v∗,∆,Adj , f)

repeat
v ← v∗ j ← 0
while j < ∆ do
j ← j + 1
if f (Adj(v , j)) = v then

v ← Adj(v , j) forward step
print v
j ← 0

end if
end while
if v 6= v∗ then

(v , j)← f (v) backtrack step
end if

until v = v∗ and j = ∆

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-I

• G = (V ,E) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-I

• G = (V ,E) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-I

• G = (V ,E) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-I

• G = (V ,E) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-I

• G = (V ,E) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse search for vertex enumeration-II
http://cgm.cs.mcgill.ca/ avis/C/lrs.html

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:

• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:

• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:

• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:

• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:
• maxd is the depth at which forward steps are terminated.

• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:
• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.

• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:
• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Extended Reverse Search - Pseudocode

Algorithm 2 extendedReverseSearch(v∗,∆,Adj , f , d ,maxd ,mind)

repeat
v ← v∗ j ← 0
while j < ∆ and d < maxd do
j ← j + 1
if f (Adj(v , j)) = v then
v ← Adj(v , j) forward step
print v
j ← 0
d ← d + 1

end if
end while
if v 6= v∗ then

(v , j)← f (v) backtrack step
d ← d − 1

end if
until (d = mind or v = v∗) and j = ∆

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

• Phase 1: (single processor)
• Generate the reverse search tree T down to a fixed depth

init depth.
• Redirect output nodes and store in list L.

• Phase 2: (full parallelization)

• Schedule threads from L using subtree enumeration feature.
• Use parameter max threads to limit number of parallel threads.
• Direct output to shared output stream.

• Phase 3: (partial parallelization)

• Wait until all children threads terminate.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

• Phase 1: (single processor)
• Generate the reverse search tree T down to a fixed depth

init depth.
• Redirect output nodes and store in list L.

• Phase 2: (full parallelization)
• Schedule threads from L using subtree enumeration feature.
• Use parameter max threads to limit number of parallel threads.
• Direct output to shared output stream.

• Phase 3: (partial parallelization)

• Wait until all children threads terminate.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Naive Parallel Reverse Search: 3 phases

• Phase 1: (single processor)
• Generate the reverse search tree T down to a fixed depth

init depth.
• Redirect output nodes and store in list L.

• Phase 2: (full parallelization)
• Schedule threads from L using subtree enumeration feature.
• Use parameter max threads to limit number of parallel threads.
• Direct output to shared output stream.

• Phase 3: (partial parallelization)
• Wait until all children threads terminate.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Parallel Reverse Search - Pseudocode

Algorithm 3 parallelReverseSearch(v∗,∆,Adj , f , id ,mt)

num threads ← 0
redirect output to a list L Phase 1
extendedReverseSearch(v∗,∆,Adj , f , 0, id , 0)
remove all v ∈ L with depth(v) < id and output v
while L 6= ∅ do

if num threads < mt then
remove any v ∈ L Phase 2
num threads ← num threads + 1
extendedReverseSearch(v ,∆,Adj , f , depth(v),∞, depth(v))

end if
end while
while num threads > 0 do

wait for termination signal
if L 6= ∅ then

wait until a termination signal is received
extendedReverseSearch(v ,∆,Adj , f , depth(v),∞, depth(v))

else
num threads ← num threads − 1 Phase 3

end if
end while

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs (Implemented by Gary Roumanis)

A portable parallel implementation of lrs derived from the parallel
reverse search algorithm.

Architecture:

• Light C++ wrapper around lrs.
• Leverage lrs’s restart feature.
• Use portable g++ compiler.

• Multi-producer and single consumer.
• Producer threads traverse subtrees of the reverse search tree,

appending nodes to a lock-free queue.
• Consumer thread removes nodes from shared queue and

concatenates to unified location.

• Leverage open source Boost library for atomic features.
• Ensures portability, maintainability and strong performance.

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

3 Phases: CPU utilization

Figure: Input file: mit, id = 6, cores=12

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Estimates at depth 2: mit

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Initial depth variation: mit

Figure: id = 3, L = 127, 124 secs

Figure: id = 6, L = 1213, 105 secs

Figure: id = 4, L = 284, 105 secs

Figure: id = 10, L = 7985, 125 secs

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:

• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.
• These problems were solved in mplrs
• Please come back for part 2!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:

• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.
• These problems were solved in mplrs
• Please come back for part 2!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:
• Success depends on balance of the reverse search tree.

• Conflicting issues in setting init depth.
• These problems were solved in mplrs
• Please come back for part 2!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:
• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.

• These problems were solved in mplrs
• Please come back for part 2!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:
• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.
• These problems were solved in mplrs

• Please come back for part 2!

Outline Vertex Enumeration Reverse Search Parallel Reverse Search

plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:
• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.
• These problems were solved in mplrs
• Please come back for part 2!

	Vertex Enumeration
	Reverse Search
	Parallel Reverse Search

