
COMP 251: ARITHMETIC OPERATIONS

OMAR FAWZI

In this lecture, we are going to consider the complexities of basic arithmetic operations,
namely integer addition and multiplication. As always when analysing the asymptotic cost
of algorithms, the motivation is to understand how much harder does the problem get when
the inputs get larger.

1. Integer addition

Probably the first non-trivial algorithm you learned is how to add two numbers. Given
two arbitrarily large numbers, in principle, if you are given all the time you need, you
would be able to compute their sum.

What is the cost of this algorithm? To answer this question, we need to define the
problem formally and define what we mean by cost.

Addition
• Input: Two integers x and y represented by n decimal digits each.
• Output: The decimal representation x+ y.

Note that 0 ≤ x, y ≤ 10n − 1, so x + y has at most n + 1 digits. So our problem takes
two inputs of size n and outputs a string of length n + 1. It is important to note that
we are measuring the cost with respect to the size of the representation of the numbers
and not the numbers themselves. We measure the cost of an algorithm by counting how
many operations it does on digits (this is reasonable as the number of operations on digits
is independent of the growth of the input to our actual problem, so we can consider it as
constant time). In this model, it is easy to see the cost of the standard addition algorithm
is linear in n.

Is it possible to do better? The size of the input is linear in n, and we have to take
into account each digit for our computation, as changing one digit will change the output.
Therefore, we have to do at least a linear number of elementary operations to compute the
output. So the algorithm we know has an optimal asymptotic growth.

2. Integer multiplication

2.1. Simple algorithm. We begin by defining the problem
Multiplication
• Input: Two integers x and y represented by n decimal digits each.
• Output: The decimal representation x× y. (Has at most 2n digits).

Date: 19th February 2009.

1



2 OMAR FAWZI

Our vague memories from elementary school says that multiplication is harder and longer
than addition. Let us analyse the computational cost of the algorithm we used. Each digit
of y gets multiplied with x, and this takes linear time in the size of x. As a result, the cost
of this algorithm is quadratic in n (its running time is Θ(n2)).

And we ask the same question, is it possible to do better? The same argument as the
one used for addition tells us that we cannot hope for an algorithm that runs in less than
Θ(n), but there is a huge gap between Θ(n) and Θ(n2). It turns out we can do much
better.

2.2. Karatsuba’s algorithm. In 1962, Karatsuba found an algorithm using divide and
conquer whose running time is less than quadratic which was published in [2]. When we
want to apply divide and conquer, we try to solve our problem using solutions of smaller
instances of the problem. For this we decompose our input into the right n/2 digits and
the left n/2 digits (we suppose that n is even for now), which can be written

x = a+ b · 10n/2

y = c+ d · 10n/2.

Then,

x× y = (a+ b · 10n/2)(c+ d · 10n/2) = ac+ (ad+ bc) · 10n/2 + bd · 10n.

We need to compute

z1 = ac

z2 = ad+ bc

z3 = bd.

Remember that a, b, c and d are n/2 digit numbers. A natural way to compute z1, z2, z3
is to compute the products (of numbers of size n/2) ac, ad, bc, bd recursively and then
compute z2 at the cost of an addition. This means that we reduced a multiplication of size
n into 4 multiplications of size n/2 plus some additions, which have linear cost. We can
thus write a recurrence relation for the cost of this algorithm as follows

T (n) = 4T (n/2) + Θ(n).

By the master theorem, the cost of the algorithm is T (n) = Θ(n2), we get back the
same quadratic running time. But there may be room for improvement, if we are able
to compute the values z1, z2, z3 using fewer recursive calls. Remember that addition can
be considered as free, as it only takes linear time, so given a, b, c, d, we want to compute
z1, z2, z3 using as few multiplications as possible and as many additions as we need. If we
compute



COMP 251: ARITHMETIC OPERATIONS 3

p1 = ac

p2 = (a+ b)× (c+ d)
p3 = bd

we get

z1 = p1

z2 = p2 − p1 − p3

z3 = p3

You may argue that we only gained one operation, but as we apply the algorithm recur-
sively, this reflects in the number of the recursive calls, and as a result in the exponent
of the running time.

The algorithm can be written as follows:
FastMult(x, y, n)
• Pad x and y with leading 0’s so that their size is 2k, where 2k is the smallest power

of two larger than n
• Return Mult(x, y, 2k)
• Mult(α, β,m)

– If m = 1, return α× β
– Else

∗ Decompose α = a+ b · 10m/2 and β = c+ d · 10m/2

∗ Compute p1 ← Mult(a, c,m/2), p2 ← Mult(a + b, c + d,m/2), p3 ←
Mult(b, d,m/2)
∗ Compute z1 ← p1, z2 ← (p2 − p1 − p2), z3 ← p3

∗ Add 0’s to compute z2 ← z2 · 10m/2, z3 ← z3 · 10m

∗ Return z1 + z2 + z3.
We argued the correctness of this algorithm, now we try to analyse the running time.

Mult called with size n consists in 3 recursive calls to size n/2. Thus the running time
T (n) of this algorithm on inputs of size n verifies

(1) T (n) = 3T (n/2) + Θ(n).

By the master theorem, this gives T (n) = O(nlog2 3) = O(n1.585), which is a big im-
provement over the simple quadratic algorithm. Moreover, the algorithm is quite simple
to implement, and the hidden constants are small, so in practice you don’t have to take
too large number to see Karatsuba’s algorithm beat the simple algorithm.

Technical detail: We did a small mistake in our algorithm, the product p2 = (a+ b)×
(c+ d) may be a product of n/2 + 1-digit numbers, as a+ b may have n/2 + 1 digits. We
disregarded this minor issue as it leads to a more complicated recurrence relation. One
way of solving this problem is to forget about the n/2+ 1st digit of a+ b and c+d and add



4 OMAR FAWZI

them separately. More precisely, if we write a+ b = l1 ·10n/2 +r1 and c+d = l2 ·10n/2 +r2.
Then (a+ b)× (c+ d) = l1l2 · 10n + (l1r2 + l2r1) · 10n/2 + r1r2. Because l1 and l2 are digits,
the first three terms can be computed in linear time, and the last one using a recursive call.
For this modified algorithm, the recurrence relation 1 is correct, and we get the wanted
running time.

2.3. Even faster multiplication with Fast Fourier Transform (FFT). There is still
a gap between our lower bound Ω(n) and this algorithm whose running time is Θ(n1.585).
There is an algorithm for integer multiplication due to Schönhage and Strassen in [3] that
runs in O(n log n log log n), but it is beyond the scope of this course. However, the ideas
used are interesting, namely the use of FFT. In this section, we present the Fast Fourier
Transform and how to apply FFT to polynomial multiplication.

Computer scientists usually say the main use of FFT is for polynomial multiplication,
but it is at least equally useful to quickly compute Fourier transforms, as its name suggests.
The ideas of the FFT algorithm date back to Gauss in 1805, who used it to interpolate
trajectories of some asteroids, but it became popular after by Cooley and Tukey published
an article [1] in 1965 describing the algorithm clearly. The reported story of this paper is
that Tukey first came up with the idea to apply it to the detection of nuclear tests in the
Soviet Union, and Cooley implemented the idea for a completely different problem: the
analysis of 3d crystallographic data.

The history of the FFT already shows how diverse applications it may have. It is now
heavily used in many domains, like digital signal processing, audio compression, polynomial
multiplication... etc.

2.3.1. The Discrete Fourier Transform (DFT). Let us define the DFT.
DFT
• Input: vector (signal) of real (or complex) numbers x[0], x[1], . . . , x[n− 1].
• Output: vector of complex numbers

x̂[j] =
∑
k

x[k]e−
i2πjk
n , 0 ≤ j ≤ n− 1

As you can see, the DFT uses complex numbers, so we list basic some facts about
complex number.

Quick review of complex numbers:
• i is defined as i2 = −1.
• A complex number z = a+ ib where a and b are reals.
• eix = cosx+ i sinx, these points lie on the unit circle (see figure 1).
• The complex numbers e

i2πj
n for 0 ≤ j ≤ n− 1 are called the n-th roots of unity.

2.3.2. Computing the DFT efficiently. The input vector is a sequence of n real numbers.
So, here, our unit will be a real number (in the previous sections, the unit was a digit).
Consequently, we suppose that we can apply operations on real and complex numbers
at unit cost, so we measure the cost by the number of complex operations used by our
algorithm, this measure is sometimes called the arithmetic complexity.



COMP 251: ARITHMETIC OPERATIONS 5

Figure 1. The complex unit circle (figure taken from Wikipedia article on
Euler’s Formula)

The simplest way of computing the DFT would be to compute the elements x̂[j] of the
vector one by one. This gives an algorithm whose cost is Θ(n2).

The main idea is to observe that the DFT of x can be computed from the DFTs of 2
vectors with half the size of x (in other words, find a divide and conquer approach). This
can be seen by separating the elements of x of odd even and odd index, (we’ll suppose that
n is a power of 2, n = 2k)

x̂[j] =x[0] + x[2]e−
i2πj
n/2 + x[4]e−

i2πj·2
n/2 + · · ·+ x[n− 2]e−

i2πj·(n−2)/2
n/2

+ x[1]e−
i2πj
n + x[3]e−

i2πj
n e
− i2πj
n/2 + · · ·+ x[n− 1]e−

i2πj
n e
− i2πj·(n−2)/2

n/2

Let us name the vector of even indices y, and odd indices z, such that y[j] = x[2j] and
z[j] = x[2j + 1] for 0 ≤ j ≤ n/2− 1, then we see that

x̂[j] = ŷ[j] + e−
i2πj
n ẑ[j], 0 ≤ j ≤ n/2− 1.

and for j ≥ n/2 we use the identity e−
i2π(j+n/2)

n/2 = e
− i2πj
n/2 e−i2π = e

− i2πj
n/2 . As a result,

x̂[j] = ŷ[j − n/2] + e−
i2πj
n ẑ[j − n/2], n/2 ≤ j ≤ n− 1.

Given the DFT of y and z, we can thus compute the DFT of x in linear time. Using
this relationship, we can build an easy recursive algorithm that computes the DFT. This
algorithm is the simplest form of the Fast Fourier transform. The number of arithmetic
operations required by this algorithm verifies:



6 OMAR FAWZI

T (n) = 2T (n/2) + Θ(n).
This is exactly the same recurrence relation as merge sort, we conclude that T (n) =

Θ(n log n).

2.3.3. Link to multiplication. Now let us get to the link between the Fourier transform and
multiplication, more precisely polynomial multiplication.

Recall polynomial multiplication, if P = p0 +p1X+ · · ·+pn−1X
n−1 and Q = q0 +q1X+

· · ·+ qn−1X
n−1, then by letting pj = qj = 0 for j ≥ n,

PQ = p0q0 + (p0q1 + p1q0)X + · · ·+
∑

0≤k≤j
pkqj−kX

j + · · ·+ qn−1pn−1X
2n−2.

We can define the polynomial multiplication problem as follows:
Polynomial multiplication
• Input: Polynomials P andQ of degree at most n−1, represented by their coefficients

(p0, p1, . . . , pn−1) and (q0, q1, . . . , qn−1).
• Output: PQ represented by the list of its coefficients (c0, c1, . . . , c2n−2).

Note that if we let the coefficients pj and qj be digits (i.e. having value ≤ 9) and replace
X by 10, then the representations of P and Q by their coefficients are exactly the decimal
representation of the corresponding number P (10) and Q(10). Moreover, in this case, the
coefficients of PQ almost make up the decimal representation the product P (10)×Q(10).
The only difference is in the carry. In fact the coefficients

∑
0≤k≤j pkqj−k of PQ may be

greater than 9. But we can see that integer multiplication and polynomial multiplication
are related, and that polynomial multiplication is likely to be easier, as we don’t have to
care about carries.

Now we try to use FFT to obtain a fast algorithm for polynomial multiplication. One
trick is to change representation, we want a representation of polynomials for which it is
easy to multiply two representations. Remember that a polynomial may be determined in
other ways. For example, a polynomial P of degree at most n−1 is completely determined
by the values it takes on n (or more) distinct numbers a0, . . . , an−1 (if you don’t remember
this fact, it comes from the fact that a polynomial of degree n− 1 cannot have more than
n− 1 zeros). So P can be represent as well with the list (P (a0), P (a1), . . . , P (an−1)). Now
observe that if we fix the values a0, . . . , am, and represent our polynomials of degree less
than n − 1 in this way, multiplication is very easy. In fact, the representation of PQ is
simply

PQ(aj) = P (aj) ·Q(aj)
which only requires a linear number of operations in m. Note that we will have to choose

m to be at least 2n− 1, so that the product PQ is completely determined. But this is still
linear in n.

So our strategy to multiply polynomials P and Q given in standard representation (with
coefficients) will be to evaluate the polynomials P and Q in 2n well chosen points of the



COMP 251: ARITHMETIC OPERATIONS 7

complex plane, then we immediately have the values that PQ takes on these points, and
then we get back to the coefficient representation of PQ by doing the inverse transforma-
tion.

The points we will choose are the 2n-th roots of unity, i.e. the complex numbers e−
i2πj
2n ,

for 0 ≤ j ≤ 2n−1. Observe that the evaluation vectors P (e−
i2πj
2n ) we want to compute look

very similar to the discrete Fourier transforms of (p0, p1, . . . , pn−1) and (q0, q1, . . . , qn−1), in
fact these evaluations are the Fourier transforms of the vectors (p0, p1, . . . , pn−1, 0, . . . , 0)
and (q0, q1, . . . , qn−1, 0, . . . , 0) of size 2n (just write the definition of the DFT).

So the evaluations can be computed with O(n log n) arithmetic operations. Now it only
remains to do the inverse transformation, that is to compute the coefficients of PQ given
its values on the 2n-th roots of unity (this is called interpolation in general). This looks
harder, but it turns out that for the points we chose (the roots of unity), interpolation is
almost the same as evaluation, so, roughly, all we have to do is to compute the Fourier
transform of the vector (PQ(1), PQ(e−

i2πj
2n ), . . . , PQ(e−

i2πj
2n )). In other words, the direct

Fourier transform and the inverse Fourier transform are almost the same operation.
In fact, let us see what we get when we compute the Fourier transform of the Fourier

tranform of x:

ˆ̂x[l] =
2n−1∑
j=0

2n−1∑
k=0

x[k]e−
i2πjk

2n e−
i2πjl
2n

=
2n−1∑
k=0

x[k]
2n−1∑
j=0

(e−
i2π(k+l)

2n )j

=
2n−1∑

k=0,k+l 6=2n

x[k]
e−i2π(k+l) − 1

e−
i2π(k+l)

2n − 1
+ x[2n− l] · 2n

= 2nx[n− l].

So by computing the FFT of the vector (PQ(1), PQ(e−
i2π
2n ), . . . , PQ(e−

i2π(2n−1)
2n )), rear-

ranging coefficients and dividing by 2n, we get the coefficients of the polynomial PQ.
Finally, this gives an algorithm that computes the product of two polynomials of degree

at most n− 1 using O(n log n) arithmetic operations.

References

[1] Cooley, J. and Tukey, J. An algorithm for the machine calculation of complex Fourier series. Math.
Comput. 19, 297-301, 1965.

[2] Karatsuba, A. and Ofman, Yu. Multiplication of Many-Digital Numbers by Automatic Computers.
Doklady Akad. Nauk SSSR 145, 293-294, 1962. Translation in Physics-Doklady 7, 595-596, 1963.

[3] Schönhage, A. and Strassen, V. Schnelle Multiplikation grosser Zahlen. Computing, vol. 7, 281-292,
1971.


