

Fig. 3.3
gons considered in this note.

Acknowledgement: The authors are grateful to Hossam ElGindy for stimulating discussions on this topic.

References

[AT] Avis, A. and Toussaint, G. T., "An optimal algorithm for determining the visibility of a polygon from an edge," IEEE Transactions on Computers, vol. C-30, No. 12, December 1981, pp.910-914.
[BB] Bruckner, C. K. and Bruckner, J. B., "On L_{n}-sets, the Hausdorff metric, and connectedness," Proc. Amer. Math. Soc., vol. 13, 1962, pp.765-767.
[EAT] ElGindy, H., Avis, D. and Toussaint, G. T., "Applications of a two-dimensional hiddenline algorithm to other geometric problems," Computing, vol. 31, 1983, pp.191-202.
[HV] Horn, A. and Valentine, F. A., "Some properties of L-sets in the plane," Duke Mathematics Journal, vol. 16, 1949, pp.131-140.
[LPSSSSTWY] Lenhart, W., Pollack, R., Sack, J., Seidel, R., Sharir, M., Suri, S., Toussaint, G., Whitesides, S., and Yap, C., "Computing the link center of a simple polygon," Proceedings of the Third Annual Symposium on Computational Geometry, Waterloo, Ontario, Canada, June 8-10, 1987, pp.1-10.
[Su] Suri, S., "Minimum link paths in polygons and applications," Ph.D. thesis, The Johns Hopkins University, Department of Computer Science, August 1987.
[Va] Valentine, F. A., "Local convexity and L_{n}-sets," Proc. Amer. Math. Soc., vol. 16, 1965, pp.1305-1310.

Fig. 3.1
anteed by the definition of $S^{*}(p)$. Finally let k be a point in the kernel of $S^{*}(p)$. Then clearly it follows that the path $\mathrm{p}, \mathrm{k}, \mathrm{q}^{\prime}, \mathrm{q}$ lies in P and is of link-distance three. Since the choice of p and q was arbitrary it follows that P is L_{3}-convex. On the other hand, an L_{3}-convex polygon is not necessarily P^{*}-convex, as illustrated in Fig. 3.2. Consider the point p. There is no star-shaped region $S^{*}(p)$ that P is weakly visible from. For S^{*} to contain p the kernel of $S^{*}(p)$ must lie in triangle psq. If this kernel lies below [ss'] then q' is not visible from $S^{*}(p)$. On the other hand if the kernel lies above [ss'] and close enough to r so that q^{\prime} is visible from $S^{*}(p)$ then r^{\prime} becomes invisible from $S^{*}(p)$. Therefore we have established the following result.

Theorem 3.1: P^{*}-convex polygons subsume L_{2}-convex polygons and are a subclass of L_{3}-convex polygons.

Fig. 3.3 illustrates the various relationships that exist between the different classes of poly-

Fig. 3.2
converse also holds true this is in fact a characterization of L-convex polygons. An interesting question arises when we relax the chord $\mathrm{L}(\mathrm{x})$ traversing x to allow more general regions such as star-shaped regions.

2. A new characterization of L-convex polygons

Horn and Valentine [HV] characterized L-convex polygons in terms of a covering of P as expressed by the following theorem.

Theorem 2.1: (Horn \& Valentine) A simple polygon P is L-convex if, and only if, P can be expressed as the sum of convex subsets of P every two of which have a point in common.

Here we provide an alternate characterization in terms of weak visibility. In the sequel let $S^{*}(x)$ denote the star-shaped subset of P containing x from which P is weakly visible.

Theorem 2.2: A simple polygon P is L-convex if, and only if, P has the property that for every point x in P there exists a subset S^{*} of P such that: (1) x is contained in S^{*}, (2) S^{*} is star-shaped from x , and (3) P is weakly-visible from S^{*}.

Proof: [only if] If P is L-convex it has the property that for every point x in P there exists a traversing chord $L(x)$ from which P is weakly visible [HV]. Clearly $L(x)$ satisfies the three conditions of the theorem. [if] Let x and y be any two points in P. From the weak visibility of P from $S^{*}(x)$ it follows that there must exist a point z in $S^{*}(x)$ visible from y. From the star-shapedness of $S^{*}(x)$ from x it follows that x and z are visible. Therefore x and y have link-distance two. Since x and y were chosen arbitrarily we have that P is L-convex. Q.E.D.

3. A new class of polygons

It is interesting to consider a further generalization by removing from condition (2) the requirement that S^{*} be star-shaped from x. We then obtain a new class of polygons.

Definition: A simple polygon P is said to be P^{*} - convex provided that every point x in P is contained in a star-shaped subset of P from which P is weakly visible.

An L-convex polygon is clearly P^{*}-convex. However, the converse is no longer true as illustrated in Fig. 3.1. The polygon in Fig. 3.1 is not L-convex because the link-distance between vertices 2 and 5 is three. On the other hand the polygon is P^{*}-convex. To see this let S_{12} denote the union of S_{1} and S_{2} and let S_{23} denote the union of S_{2} and S_{3}. Every point x in P must lie in either region S_{12} or S_{23}, both regions are star-shaped from vertices 4 and 1 , respectively, and P is weakly visible from each such region.

We can also show that if a polygon is P^{*}-convex it must be L_{3}-convex. To see this choose any two points p, q in a polygon that is P^{*}-convex and let $\mathrm{S}^{*}(\mathrm{p})$ be the star-shaped region in P that contains p as guaranteed by the definition. Let q^{\prime} be a point in $S^{*}(p)$ that is visible from q as guar-

A New Characterization of L-Convex Polygons

Thomas Shermer
Godfried Toussaint

ABSTRACT

In 1949 Horn and Valentine [HV] showed that if each pair of points a, b in a simple polygon P could be connected by a polygonal path of length two lying in P (such polygons are termed L-convex polygons) then through each point x in P there exists a line segment $L(x)$ lying in P such that for every point y in P there exists a point z in $L(x)$ with the property that the segment $y z$ lies in P. Since the converse also holds true this is in fact a characterization of L-convex polygons. We show that by relaxing $\mathrm{L}(\mathrm{x})$ from a line-segment to a star-shaped subset $\mathrm{S}(\mathrm{x})$ of P containing x we obtain a new characterization of L-convex polygons if $S(x)$ is constrained to be star-shaped from x , and a new class of polygons if it is not.

1. Introduction

This note is concerned with certain link-distance properties of a simple planar polygon P having n sides. The notion of a link-distance between two points a , b inside P was introduced as early as 1949 by Horn and Valentine [HV]. Since then mathematicians have investigated the properties of this distance measure further in [BB] and [Va] whereas computer scientists have investigated the computational aspects [LPSSSTWY] and [Su]. The link-distance is defined as the smallest number of links (i.e., straight line segments) in a polygonal path connecting a and b within P, and turns out to be a useful metric for path planning within P when straight motion is easy to accomplish but turns are expensive. Alternately, it is the ideal metric for modeling robots that use telescopic-joint manipulators to pick and place objects in a work-space represented by a simple polygon.

A chord of a polygon P is a line segment [ab] contained in P such that both of its endpoints a and b are in $b d(\mathrm{P})$. A polygon P is said to be L_{2}-convex (or simply L-convex) if every pair of points a, b in P have a link-distance of two between each other. More generally we say that P is $\mathrm{L}_{\mathrm{k}}{ }^{-}$ convex if every pair of points a, b in P have link-distance k between them. L_{2}-convex polygons have received some attention in the computational geometry literature. In particular, Elgindy, Avis and Toussaint [EAT] have shown that if a polygon is known to be L_{2}-convex it can be triangulated in linear time. No such efficiency is known for arbitrary simple polygons. They also show that testing a simple polygon for L_{2}-convexity can be done in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time. P is said to be weakly-visible [AT] from a subset S of P if for every point x in P there exists a point y in S such that the line segment [xy] lies in P. Horn and Valentine [HV] have shown that if P is L-convex then for every point x in P there exists a chord that traverses x, say $L(x)$, such that P is weakly visible from $L(x)$. Since the

